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Abstract: Paradoxical low-flow/low-gradient aortic stenosis (P-LFLG-AS) occurs in about one-third
of patients with severe AS and preserved left ventricular (LV) ejection fraction (EF). Our aim was to
differentiate between altered LV loading conditions and contractility as determinants of subtle LV
systolic dysfunction in P-LFLG-AS. We retrospectively analyzed medical records of patients with
isolated severe degenerative AS and preserved EF (30 subjects with P-LFLG-AS and 30 patients
with normal-flow/high-gradient severe AS (NFHG-AS)), without relevant coexistent diseases (e.g.,
diabetes, coronary artery disease and chronic kidney disease) or any abnormalities which could
account for a low-flow state. Patients with P-LFLG-AS and NFHG-AS did not differ in aortic valve
area index and most clinical characteristics. Compared to NFHG-AS, subjects with P-LFLG-AS
exhibited smaller LV end-diastolic diameter (LVd) (44 ± 5 vs. 54 ± 5 mm, p < 0.001) (consistent
with lower LV preload) with pronounced concentric remodeling, higher valvulo-arterial impedance
(3.8 ± 1.1 vs. 2.2 ± 0.5 mmHg per mL/m2, p < 0.001) and diminished systemic arterial compliance
(0.45 ± 0.11 vs. 0.76 ± 0.23 mL/m2 per mmHg, p < 0.001), while circumferential end-systolic LV
midwall stress (cESS), an estimate of afterload at the LV level, was similar in P-LFLG-AS and NFHG-
AS (175 ± 83 vs. 198 ± 69 hPa, p = 0.3). LV midwall fractional shortening (mwFS) was depressed
in P-LFLG-AS vs. NFHG-AS (12.3 ± 3.5 vs. 14.7 ± 2.9%, p = 0.006) despite similar EF (61 ± 6
vs. 59 ± 8%, p = 0.4). By multiple regression, the presence of P-LFLG-AS remained a significant
predictor of lower mwFS compared to NFHG-AS upon adjustment for cESS (β ± SEM: −2.35 ± 0.67,
p < 0.001); however, the significance was lost after further correction for LVd (β = −1.10 ± 0.85,
p = 0.21). In conclusion, the association of P-LFLG-AS with a lower cESS-adjusted mwFS, an index of
afterload-corrected LV circumferential systolic function at the midwall level, appears secondary to a
smaller LV end-diastolic cavity size according to the Frank–Starling law. Thus, low LV preload, not
intrinsic contractile dysfunction or excessive afterload, may account for impaired LV circumferential
midwall systolic performance in P-LFLG-AS.

Keywords: aortic stenosis; left ventricular systolic function; afterload; preload; low-flow state

1. Introduction

A considerable proportion (up to 50%) of patients with severe aortic stenosis (AS) do
not meet the traditional criterion of transvalvular pressure gradient [1]. Low-gradient AS
with reduced LV stroke volume (SV) index may result from left ventricular (LV) systolic dys-
function (i.e., classical low-flow/low-gradient AS) [2]) or a low-flow state despite ejection
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fraction (EF) ≥ 50%, i.e., paradoxical low-flow/low-gradient AS (P-LFLG-AS), representing
10–25% of severe AS [2] and 25–35% of patients with preserved EF [1]. In contrast, low-
gradient AS despite normal SV index is frequently associated with a less than severe AS [3].
The diagnosis of true paradoxical P-LFLG-AS, termed stage D3 symptomatic severe AS
by the recent American College of Cardiology/American Heart Association (ACC/AHA)
guidelines [4], is challenging and requires the elimination of possible measurement errors,
corroboration of stenosis severity by multiple imaging modalities and consideration of
body habitus and inadequate blood pressure control [1–4].

As shown by a meta-analysis of 18 studies including 7459 AS patients with preserved
EF, mortality risk was higher in P-LFLG-AS compared to high-gradient AS and normal-
flow/low-gradient AS [5]. According to the current clinical practice guidelines, aortic valve
replacement (AVR), either surgical or transcatheter, should be considered in symptomatic
patients with P-LFLG-AS [3,4]. Importantly, prognosis after transcatheter aortic valve
implantation prognosis is worse in low-flow AS regardless of mean pressure gradient or
EF [6], which strongly argues in favor of the contribution of non-valvular factors to impaired
hemodynamics in low-flow AS subjects, including P-LFLG-AS. Notably, a network meta-
regression analysis of 15 studies and 9737 patients with severe AS and preserved EF has
demonstrated that AVR confers the least survival benefit in P-LFLG-AS compared to the
remaining three flow-gradient subtypes of AS, including normal-flow/high-gradient AS
(NFHG-AS) [7]. Accordingly, several potential non-valvular mechanisms, which are not
ameliorated by AVR, have been implicated in the pathogenesis of decreased SV in P-LFLG-
AS. These mechanisms include increased arterial load, diastolic dysfunction mediated by
concentric remodeling of a small left ventricle, and intrinsic myocardial dysfunction despite
preserved EF [1,2,8,9].

Our aim was to differentiate between altered LV loading conditions and contractility
as determinants of subtle LV systolic dysfunction in P-LFLG-AS.

2. Materials and Methods
2.1. Patients

We retrospectively pre-screened the dataset of previously described patients with
severe symptomatic degenerative AS (aortic valve area (AVA) index ≤ 0.6 cm2/m2 by the
continuity equation) and EF ≥ 50% without relevant coexistent diseases and concomitant
abnormalities [10,11]. Beyond more than mild aortic regurgitation or disease of another
valve, significant (≥50%) epicardial coronary narrowings, a history of acute coronary syn-
dromes or coronary revascularization [10,11], exclusion criteria included any abnormalities
which could potentially contribute to low SV index: atrial fibrillation, relevant mitral steno-
sis, mitral insufficiency or tricuspid regurgitation and right ventricular dysfunction [1].
We also excluded subjects with diabetes or chronic kidney disease because we had previ-
ously demonstrated subtle impairment of LV contractility in AS with concomitant type 2
diabetes [12] or renal dysfunction [13].

A total of 60 patients entered the final analysis, including 30 subjects with P-LFLG-AS
(SV index < 35 mL/m2 and mean aortic gradient < 40 mmHg) and 30 subjects with NFHG-
AS (SV index ≥ 35 mL/m2 and mean aortic gradient ≥ 40 mmHg), corresponding to,
respectively, stage D3 and D1 symptomatic severe AS, according to the current ACC/AHA
guidelines on the management of valvular heart disease [4].

The institutional ethics committee approved the protocol, including the fact that
informed consent was not sought as a retrospective data analysis was planned (Approval
No. 122.6120.228.2016 of 27 June 2016; renewal issued on 31 January 2019).

2.2. Analysis of Medical Records

Routine echocardiography during the index hospitalization had been performed by
an experienced sonographer. From in-hospital echocardiographic records (LV internal
diameters and wall thickness) and average in-hospital cuff systolic blood pressure, we
calculated LV systolic performance and circumferential systolic wall stress at the midwall
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level as previously described, assuming a simplified cylindrical two-shell LV model [14–16],
similar to our earlier reports [10–13]. The model is based on a constant volume of each
of two concentric shells representing the LV myocardium throughout the cardiac cycle
and allows the quantification of systolic epicardial migration of a theoretical midwall fiber
which is located at the midpoint of the LV wall at end-diastole [17] (Figure 1).
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Figure 1. LV is represented by 2 concentric shells with the LV midwall located at the mid-point of the
LV wall at end-diastole (upper panel). In systole, the LV midwall fibers migrate from the midpoint
towards the epicardium due to the obvious assumption of a constant volume of the LV inner shell
throughout the cardiac cycle. Consequently, Th exceeds PWs/2 (lower panel). LV: left ventricle; PWs:
end-systolic LV posterior wall thickness; Th: end-systolic thickness of the LV inner myocardial shell
(i.e., between the midwall and endocardium).

The calculation of midwall fractional shortening (mwFS) enables avoiding an over-
estimation of fractional shortening with conventional endocardial measurements due to
radial thickening, but not shortening, of longitudinal subendocardial fibers, especially in
patients with concentric LV geometry [14–17]. Accordingly, mwFS [%] was defined as
follows (Figure 2):

mwFS = 100% × {[LVd + PWd/2 + IVSd/2] − [LVs + (2 × Th)]}/(LVd + PWd/2 + IVSd/2)

where LVd is end-diastolic LV internal diameter; LVs is end-systolic LV internal diameter;
PWd is end-diastolic LV posterior wall thickness; IVSd is end-diastolic interventricular
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septum thickness; and Th is end-systolic thickness of the LV inner myocardial shell (i.e.,
between the midwall and endocardium), calculated on the basis of the assumption of a
constant volume of the LV inner shell throughout the cardiac cycle [12,15].
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Figure 2. Calculation of LV midwall fractional shortening (mwFS) from LV end-diastolic diameter
(Dm) and LV end-systolic diameter (Sm) at the midwall level. IVSD: interventricular septum end-
diastolic thickness; LV: left ventricle; LVd: LV end-diastolic internal diameter; LVs: LV end-systolic
internal diameter; PWd: end-diastolic LV posterior wall thickness; Th: end-systolic thickness of the
LV inner myocardial shell (i.e., between the midwall and endocardium).

In addition, mwFS was analyzed after adjustment for circumferential end-systolic
LV midwall stress (cESS) which is directed along the same axis as systolic shortening of
primarily circumferential midwall fibers, thereby providing a measure of the fundamental
relationship between stress (an index of afterload) and shortening oriented in the same
direction (Figure 3).
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Figure 3. An indirect insight into load-independent intrinsic LV systolic function (i.e., contractility)
by means of the analysis of relations between LV systolic performance (mwFS, LV midwall fractional
shortening) and surrogate indices of LV afterload (cESS, circumferential end-systolic LV midwall
stress) and preload (LVd, end-diastolic LV internal diameter).

Although commonly referred to as cESS, in the present study this measure of after-
load was computed taking into account not only brachial systolic pressure but also mean
transaortic pressure gradient, in agreement with an approach by Carter-Storch et al. [18]
and Gerdts et al. [19]. Therefore, cESS (hPa) was calculated using the following formula:

cESS = {1 + [(LVs/2 + PWs)2/(LVs/2 + Th)2]}/{[(LVs/2 + PWs)2 − (LVs/2)2]} × (LVs)2

× (SBP + APGmean) × 1.333

where PWs is end-systolic LV posterior wall thickness, SBP is cuff systolic blood pressure
(mmHg), APGmean is mean aortic pressure gradient (mmHg), 1.333 is a conversion factor
from mmHg into hPa and all diameters are expressed in cm [16,18,19] (other abbreviations
as in the previously shown formula for mwFS).

Since LV wall stress varies continuously during ejection [20,21] and these changes are
pronounced in pressure overload states [21,22], this method allows adjustment for actual
LV wall stress during ejection, following the original concepts of Carabello et al. [23] and
Gaasch et al. [21] who plotted mean circumferential fiber shortening at the midwall and EF,
respectively, against mean circumferential wall stress during shortening.

In agreement with current clinical practice guidelines [24], EF was estimated from
recorded 2D images using the biplane modified Simpson’s rule and validated by one of
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the senior authors as previously described [12]. LV mass was calculated from M-mode
measurements using the Devereux formula [24]. LV hypertrophy was defined as height-
indexed LV mass >47 g/m2.7 in women and >50 g/m2.7 in men. As previously proposed,
valvulo-arterial impedance (Zva) was derived from the mean aortic pressure gradient
(APGmean), average in-hospital systolic blood pressure (SBP) and SV index using the
following formula [12,25]:

Zva = (APGmean + SBP)/SV index

while systemic arterial compliance (SAC) was derived from SV index and average in-
hospital pulse pressure (PP) using the following equation [12,25]:

SAC = SV index/PP

2.3. Statistical Analysis

Data are presented as mean ± standard deviation (S.D.) or numbers and percentages.
Intergroup comparisons between P-LFLG-AS and NFHG-AS were performed using the
2-tailed Student’s t-test (or Welch test in case of variance inhomogeneity according to
Levene’s test) or Fisher’s test for continuous and dichotomous variables, respectively.
Forward stepwise ridge regression analysis was used to address the question of whether the
association of P-LFLG-AS with lower mwFS compared to NFHG-AS could be attributable
to different LV loading conditions, represented by cESS and LVd reflecting, respectively,
afterload and preload (Figure 3).

The study had a power of 80% to detect a mean difference in mwFS between P-LFLG-
AS patients (n = 30) and NFHG-AS subjects (n = 30) of 0.74 S.D. (i.e., about 2.5% because
S.D. was 3.4% pooling both groups) at a type I error rate of 0.05.

A p-value below 0.05 was inferred as significant. All analyses were performed by
means of the Statistica 64 (data analysis software system, version 13.3.704.0; TIBCO Software
Inc. (2017), Palo Alto, CA, USA).

3. Results

Patients with P-LFLG-AS and NFHG-AS did not differ in most clinical characteristics
and AVA index (Tables 1 and 2).

Table 1. Clinical characteristics of patients with P-LFLG-AS vs. NFHG-AS.

Characteristic P-LFLG-AS
n = 30

NFHG-AS
n = 30 p-Value a

Age, years 69 ± 11 70 ± 10 NS
Women/men, n 18/12 16/14 NS

Hypertension, n (%) 25 (83%) 24 (80%) NS
Body mass index, kg/m2 29.0 ± 4.2 28.4 ± 4.5 NS
eGFR, mL/min/1.73 m2 75 ± 13 77 ± 15 NS

Systolic blood pressure, mmHg 136 ± 14 129 ± 17 NS
Diastolic blood pressure, mmHg 73 ± 8 66 ± 8 0.02

Medication, n (%)
ACEI or ARB 12 (40%) 10 (33%) NS
Beta-blockers 16 (53%) 15 (50%) NS

Diuretics 13 (43%) 12 (40%) NS
Calcium-channel blocker 10 (33%) 11 (37%) NS

Data are presented as mean ± standard deviation or numbers (percentages). a p-values below 0.05 are denoted
in bold. ACEI: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; eGFR: estimated
glomerular filtration rate according to the CKD-EPI formula; NFHG-AS: normal-flow/high-gradient severe aortic
stenosis; NS: non-significant; P-LFLG-AS: paradoxical low-flow/low-gradient severe aortic stenosis.
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Table 2. Hemodynamic characteristics of patients with P-LFLG-AS vs. NFHG-AS.

Characteristic P-LFLG-AS
n = 30

NFHG-AS
n = 30 p-Value a

AVA index, cm2/m2 0.4 ± 0.1 0.4 ± 0.1 NS
Mean aortic pressure gradient, mmHg 31 ± 8 54 ± 13 <0.001

LV end-diastolic diameter, mm 44 ± 5 54 ± 5 <0.001
LV end-systolic diameter, mm 28 ± 7 34 ± 7 <0.001

End-diastolic LV posterior wall thickness, mm 12 ± 2 12 ± 2 NS
End-diastolic interventricular septum thickness, mm 14 ± 4 14 ± 3 NS

LV mass index, g/m2.7 60 ± 20 111 ± 161 0.1
LV hypertrophy, n (%) 20 (67%) 28 (93%) 0.02

Relative LV wall thickness 0.62 ± 0.16 0.49 ± 0.07 <0.001
EF, % 61 ± 6 59 ± 8 NS

Stroke volume index, mL/m2 27.6 ± 4.5 45.7 ± 9.1 <0.001
LV midwall fractional shortening, % 12.3 ± 3.5 14.7 ± 2.9 0.006

Circumferential end-systolic LV midwall stress, hPa 175 ± 83 198 ± 69 NS
Valvulo-arterial impedance, mmHg per mL/m2 3.8 ± 1.1 2.2 ± 0.5 <0.001

Systemic arterial compliance, mL/m2 per mmHg 0.45 ± 0.11 0.76 ± 0.23 <0.001

Data are presented as mean ± standard deviation or numbers (%). a p-values below 0.05 are denoted in bold.
AVA: aortic valve area; EF: LV ejection fraction; LV: left ventricular; other abbreviations as in Table 1.

In addition to decreased SV index and mean aortic gradient, subjects with P-LFLG-AS
exhibited smaller LV size (consistent with low LV preload) with pronounced concentric
remodeling compared to NFHG-AS (Table 2). P-LFLG patients had higher Zva and de-
creased systemic arterial compliance, while cESS, an estimate of afterload at the LV level,
was similar in P-LFLG-AS and NFHG-AS (Table 2). With regard to LV systolic performance,
mean mwFS was depressed in P-LFLG-AS vs. NFLG-AS despite comparable EF (Table 2).

Upon forward stepwise ridge regression, the presence of P-LFLG-AS remained a
significant predictor of lower mwFS compared to NFHG-AS after adjustment for cESS;
however, the significance was lost after further correction for LVd (Table 3).

Table 3. Forward stepwise ridge regression analysis of predictors of LV midwall fractional shortening
in patients with P-LFLG-AS compared to NFHG-AS adjusted for estimates of LV afterload (cESS) and
preload (LVd).

Predictors of LV Midwall Fractional Shortening Nonstandardized
Regression Coefficient ± SEM p-Value a

Unadjusted for either cESS or LVd (R2 = 0.12, p = 0.008)

P-LFLG-AS vs. NFHG-AS −1.95 ± 0.79 0.015

AVA index, per decrease by 0.1 cm2/m2 −0.67 ± 0.40 0.09

Adjusted for cESS (R2 = 0.38, p < 0.001)

P-LFLG-AS vs. NFHG-AS −2.35 ± 0.67 <0.001

cESS, per increment by 20 hPa −0.41 ± 0.08 <0.001

AVA index, per decrease by 0.1 cm2/m2 −0.56 ± 0.34 0.10

Adjusted for cESS and LVd (R2 = 0.42, p < 0.001)

P-LFLG-AS vs. NFHG-AS −1.10 ± 0.85 0.21

cESS, per increment by 20 hPa −0.47 ± 0.09 <0.001

LVd, per decrease by 5 mm −0.71 ± 0.31 0.03

AVA index, per decrease by 0.1 cm2/m2 0.55 ± 0.33 0.10
a p-values below 0.05 are denoted in bold. cESS: circumferential end-systolic LV midwall stress; LVd: LV end-
diastolic diameter; SEM: standard error of the mean; R2: adjusted coefficient of multiple determination; other
abbreviations as in Tables 1 and 2.
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4. Discussion

Our principal finding was the lack of significant load-independent differences in
mwFS, an index of LV circumferential systolic function at the midwall level, between
P-LFLG-AS and NFHG-AS. In particular, the association of P-LFLG-AS with lower mwFS
corrected for cESS, an index of afterload, was abolished after further adjustment for a
smaller LV diastolic dimension by an average of 10 mm, a surrogate measure of decreased
preload in P-LFLG-AS versus NFHG-AS.

4.1. Comparison with Previous Studies

Thirty years ago, in an experimental model of pressure-overload LV hypertrophy,
Mirsky et al. [26] demonstrated that the correction for preload, considerably lower in
animals with versus without pressure overload-induced concentric LV hypertrophy for any
given afterload, entirely eliminated an artifactual depression of LV contractility derived
from end-systolic stress–shortening relations when preload was not accounted for. In brief,
depressed LV systolic performance might result not from an apparent impairment of the
intrinsic LV contractile state, but from a smaller LVd according to the Frank–Starling law.
In patients with P-LFLG-AS, this mechanism was demonstrated by Gotzmann et al. [27],
who reported a decreased maximum rate of LV pressure rise during the isovolumetric
contraction (dp/dtmax), but higher dp/dtmax normalized for lower LV end-diastolic volume
(i.e., the Starling contractile index) in P-LFLG-AS compared to NFHG-AS. That dp/dtmax is
independent of afterload enables the separation of the effect of afterload from that of preload
and intrinsic LV properties on LV performance. Notably, Eleid et al. [28] reported similar
dp/dtmax in P-LFLG-AS and NFHG-AS; nevertheless, mean LVd was almost identical
in their subjects with P-LFLG-AS and NFHG-AS. Accordingly, it can be hypothesized
that a depressed mwFS at a comparable cESS in our P-LFLG-AS patients might rather
be a consequence of inadequate LV preload (reflected by decreased LVd) than impaired
LV contractility.

We observed similar cESS, lower cESS-adjusted mwFS (i.e., without preload cor-
rection), increased Zva and diminished systemic arterial compliance in P-LFLG-AS vs.
NFHG-AS. No significant intergroup differences in cESS despite a 1.7-fold higher Zva and
1.5-fold higher systemic arterial compliance might have reflected the impact of a smaller
LV size and more concentric LV geometry which counterbalanced the effect of excessive
arterial load on cESS in P-LFLG-AS. An increased Zva, especially its arterial component,
is a typical feature of P-LFLG-AS [1,2], confirmed in both invasive [27,28] and noninva-
sive [8] studies. The maintenance of cESS at a constant level over time appears pivotal
for an adequate hypertrophying response to chronic LV pressure overload. Indeed, in
an experimental model of LV pressure overload, Gaasch et al. [21] reported that mwFS
and mean circumferential wall stress during ejection were preserved in compensated LV
hypertrophy, in contrast to gradually decreasing mwFS and progressive rises of the wall
stress in LV hypertrophy with concomitant pump failure. These observations were recently
confirmed in an elegant longitudinal study by Ito et al. [29], who observed gradually
increasing cESS and falling mwFS in patients with EF < 60% and depressed LV contractility
during the progression from moderate to severe AS, while mwFS was unchanged and cESS
even slightly decreased over time (by about 6%) in those with EF ≥ 60%. Additionally,
in our previous retrospective observational study of nondiabetic AS subjects, we have
also reported no significant differences in cESS between moderate and severe AS with
EF ≥ 50% [11]. Accordingly, cESS appears to be a controlled variable in AS subjects with
preserved EF, including also P-LFLG-AS.

Admittedly, we did not assess longitudinal LV systolic function in our retrospective
analysis of routine echocardiographic records. However, our findings are partially con-
sistent with earlier noninvasive studies comparing P-LFLG-AS and NFHG-AS, including
novel echocardiographic techniques. In particular, circumferential LV strain [30–33] and
meridional ESS [34] were comparable in P-LFLG-AS and NFHG-AS, in contrast to early
impairment of longitudinal LV systolic function in P-LFLG-AS [1,30–32] which was linked
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to elevated Zva and diminished systemic arterial compliance [30–32,34]. Importantly,
mwFS is largely controlled by circumferentially oriented fibers which predominate in the
myocardial midwall, while subendocardial fibers are mainly oriented in the meridional
direction [14–17,26].

Accordingly, these observations suggest a preferential impairment of LV longitudinal
systolic function—not assessed in our study—in P-LFLG-AS, probably dependent on
the long-time exposure of subendocardial cardiomyocytes to excessive wall stress with
consequent supply–demand ischemia, apoptosis and fibrosis [34–36]. In particular, close
associations of myocardial fibrosis with longitudinal LV dysfunction were reported in
severe AS [34,37], including also P-LFLG-AS [34]. Moreover, depressed global longitudinal
strain predicted adverse cardiovascular events in P-LFLG-AS [33] and moderate-to-severe
AS [38–41]. Unlike LV function along the long axis, radial and circumferential systolic
function may be preserved, in analogy to heart failure with preserved EF [42], which may
also explain the absence of significant load-independent differences in mwFS between P-
LFLG-AS and NFHG-AS in the present study. In line with this concept, compared to mwFS
or circumferential strain, a decrease in longitudinal strain occurs earlier with increasing AS
severity [43] or higher Zva in severe AS [44].

Additionally, it would also be interesting to analyze determinants of LV contractility in
AS patients with reduced EF who had been excluded from the present study. Nevertheless,
compared to patients with severe AS and normal LV contractility (by means of cESS-
adjusted mwFS), those with depressed contractility and EF < 60% had similar both cESS
and LVd, in contrast to AS subjects with EF ≥ 60% who exhibited lower cESS and decreased
LVd (by about 7.5 mm) and concentric LV hypertrophy or remodeling in about 90% [29].
These findings suggest that reduced LV contractility can be in part attributable to low
preload only in AS with preserved EF, similar to our P-LFLG-AS subjects, whose vast
majority also exhibited concentric LV hypertrophy or remodeling. Finally, depressed mwFS
in P-LFLG-AS could also be determined by the magnitude of diastolic dysfunction, like in
hypertensive subjects [45].

Notably, these changes presumably develop before the onset of severe AS, being
different in those with depressed and preserved EF. Ito et al. [29] reported an increasing
proportion of subjects with high cESS (from 8% to 17%) over a 3-year interval prior to the
diagnosis of severe AS with EF < 60%, especially in patients with impaired LV contractility,
whose prevalence increased from 38% to 68% during the progression from moderate to
severe AS. In sharp contrast, in those with EF ≥ 60%, cESS remained normal and even
declined over time, which was more pronounced in the case of reduced LV contractility.
Importantly, in AS with EF ≥ 60%, low LV contractility was present already in 17% of
patients with moderate AS, further increasing to 24% during the progression to severe
AS [29].

4.2. Clinical Implications

These results highlight the relevance of avoiding excessive diuretic use and preventing
bradycardia in order to optimize stroke volume and maintain adequate cardiac output
in P-LFLG-AS.

The dependence of depressed LV performance on low preload in P-LFLG-AS supports
the concept of so-called preload stress echocardiography. P-LFLG-AS poses a diagnos-
tic challenge because this condition requires multimodal imaging to differentiate true
severe AS from pseudosevere AS, present in about one-third of patients with apparent
P-LFLG-AS [1,46]. In asymptomatic or equivocal symptomatic subjects with LFLG-AS,
Kusunose et al. [47] reported the ability of preload augmentation by leg positive pressure
to increase transvalvular flow rate by an average of 11%, which enabled the confirmation
of true severe AS in 14 out of 32 P-LFLG-AS cases by a projected AVA at a normal mean
transvalvular flow rate of 250 mL/s. Dobutamine stress echocardiography, recommended
in classical LFLG-AS (i.e., with reduced EF), may also be considered in P-LFLG-AS with
uncertain diagnosis [48]. Nevertheless, since dobutamine can induce adverse side effects,
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e.g., arrhythmias and hypotension, in P-LFLG-AS subjects with restrictive LV physiology,
preload stress challenge could be a potential alternative in P-LFLG-AS with an adequate
preload reserve, i.e., a rise in transvalvular flow by at least 15% in response to preload
recruitment, which is necessary to calculate a projected AVA [48].

The prognostic relevance of advanced indices of LV systolic performance is of clinical
relevance. Depressed LV longitudinal strain was associated with adverse clinical outcome
in AS [33,38–41] and optimally treated dilated cardiomyopathy [49], providing incremental
prognostic value to EF. With regard to mwFS, a measure of circumferential LV systolic
function, reduced cESS-adjusted mwFS predicted mortality in severe AS and EF ≥ 60%
but not EF < 60% [29]. In addition, combined circumferential and longitudinal LV was
related to aortic valve-dependent events in asymptomatic severe AS beyond traditional
risk predictors [50], whereas new-onset low mwFS predicted CV death and heart failure
hospitalizations independently of time-dependent EF changes in asymptomatic mild or
moderate AS participating in the SEAS study [51]. In addition, midwall LV replacement
fibrosis by means of late gadolinium enhancement coincided with lower EF [52], was
independently associated with mortality in moderate or severe AS [52,53] and did not
resolve after AVR [54]. Therefore, it might be speculated that extended imaging of LV
function and structure by both advanced echocardiography and magnetic resonance might
be helpful in the future optimization of the timing of interventional treatment in AS.

4.3. Limitations of the Study

First, as our retrospective study was based on measurements performed on pre-
recorded echocardiographic images from the index hospitalization, we had no opportunity
to analyze LV systolic function along the longitudinal axis or to apply other advanced
echocardiographic techniques. Notably, impaired longitudinal LV performance precedes
circumferential dysfunction in AS [34,37,43,44]. On the other hand, we aimed to differ-
entiate the impact of LV loading conditions and intrinsic myocardial dysfunction on LV
performance. An analysis of the circumferential stress–shortening relationship appears
more suitable for this purpose because Aurigemma et al. [16] demonstrated that long-axis
shortening was unrelated to meridional ESS, in contrast to the inverse mwFS–cESS rela-
tionship, which suggests that factors other than afterload considerably affect longitudinal
systolic function. Second, we assumed LVd as an approximate measure of preload, in
contrast to experimental studies [17,26] where preload was represented by LV end-diastolic
wall stress. However, LV end-diastolic pressure (LVEDP) was unknown in our study
subjects. Nevertheless, Peverill [55] has recently discussed limitations inherent in various
clinical definitions of preload, considered as the stimulus that directly activates the Frank–
Starling mechanism, including LV volume/diameter, LVEDP and LV end-diastolic wall
stress. Additionally, the proportion of patients on diuretics, known to decrease LV filling
pressure, was similar in P-LFLG-AS and NFHG-AS. Third, the lack of an echocardiographic
core lab poses another limitation to the study. Nonetheless, both image acquisition and
measurements were performed by experienced sonographers. Fourth, medical records of
consecutive AS patients with a variety of coexistent diseases were pre-screened. However,
in order to limit the heterogeneity of the study group, we excluded from the final analysis
the subjects with diabetes, chronic kidney disease, significant coronary artery disease, more
than mild aortic insufficiency or disease of another valve, as well as with any abnormalities
which could potentially contribute to a low-flow state. Fifth, a low number of patients
who entered the final analysis poses a considerable limitation of the study. Finally, the
potential effects of cardiovascular drugs on LV function cannot be excluded. Nevertheless,
the proportion of study subjects on renin–angiotensin axis antagonists, beta-blockers and
calcium channel blockers was similar among patients with P-LFLG-AS and NFHG-AS.

5. Conclusions

The association of P-LFLG-AS with lower cESS-adjusted mwFS, an index of afterload-
corrected LV circumferential systolic function at the midwall level, appears secondary
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to a smaller LV end-diastolic cavity size according to the Frank–Starling law. Thus, low
LV preload, not intrinsic contractile dysfunction or excessive afterload, may account for
impaired LV circumferential midwall systolic performance in P-LFLG-AS.
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