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Dysbiosis of human gut microbiome in young-
onset colorectal cancer
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The incidence of sporadic young-onset colorectal cancer (yCRC) is increasing. A significant

knowledge gap exists in the gut microbiota and its diagnostic value for yCRC patients.

Through 16S rRNA gene sequencing, 728 samples are collected to identify microbial markers,

and an independent cohort of 310 samples is used to validate the results. Furthermore,

species-level and functional analysis are performed by metagenome sequencing using

200 samples. Gut microbial diversity is increased in yCRC. Flavonifractor plautii is an

important bacterial species in yCRC, while genus Streptococcus contains the key phylotype

in the old-onset colorectal cancer. Functional analysis reveals that yCRC has unique

characteristics of bacterial metabolism characterized by the dominance of DNA binding and

RNA-dependent DNA biosynthetic process. The random forest classifier model achieves a

powerful classification potential. This study highlights the potential of the gut microbiota

biomarkers as a promising non-invasive tool for the accurate detection and distinction of

individuals with yCRC.
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Colorectal cancer (CRC) is the third most common cancer
worldwide, affecting ~10% of patients under 50 years of
age1. As a traditional elderly disease, CRC incidence in the

young is steadily rising across the globe2–4. In contrast, the
incidence of CRC in older patients is seeing a progressive decrease
in the developed world, which is likely to be attributed to
population-based CRC screening5,6. Young-onset CRC (yCRC)
patients often present with more advanced disease and adverse
pathological features compared to their older counterparts7. This
may have a negative impact on their survival outcome8,9. Diag-
nostic and therapeutic protocols dedicated to sporadic CRC
in young individuals are currently an unmet clinical need.
Also, there is no consensus on whether yCRC patients are
indistinguishable or different omics entities compared to old-
onset CRC (oCRC) patients.

Evidence is accumulating that the intestinal microbiota, har-
boring far more genes than our human genome, has emerged as a
key environmental factor implicated in the development of CRC,
especially within the different ages demographic10,11. The
potential of the gut microbiota to affect health is particularly
relevant for older or younger individuals because the microbiota
may modulate aging-related changes in innate immunity,
inflammation, and cognitive function12,13. Both cell culture-
dependent and -independent studies have shown that the gut
microbiota of the elderly is different from that of the young14,15.
Zhang et al. tested the fecal samples of 314 young people from
multi-ethnic and multi-regional areas of China and found a
functional core group of gut microbiota in a healthy young
Chinese population, including a variety of bacteria that partici-
pate in the production of short-chain fatty acids, maintaining
intestinal mucosal barrier and anti-inflammatory function in
healthy individuals16. However, major risk factors (unhealthy
diets, obesity, and sedentary lifestyles) are becoming more pre-
valent in successive generations, raising the question of whether
altered gut microbiota—especially in the early years of life—
could interact with an underlying genetic backdrop to trigger the
early onset of the disease. Studies have reported that under long-
term physiological stress, the composition and metabolic changes
of young people’s gut microbiota are consistent with the increase
in intestinal permeability and inflammation17,18. Specific gut
bacteria can invade at least half of the colonic mucus in patients
with CRC but without a predisposition for hereditary disease19.
Therefore, there may exist a characteristic pathogenic bacteria
spectrum with diagnostic value in yCRC.

In the present study, a total of 1038 samples are submitted to
16S rRNA gene sequencing, and 200 samples are analyzed by
metagenome sequencing. The fecal microbial composition, the
functional changes of the microbial communities and the
microbial markers of yCRC are explored. We hypothesize that the
yCRC and oCRC may have different gut microbial bases, which
may shed light on the pathogenesis of CRC at different ages, and
may serve as a promising non-invasive biomarker for
sporadic yCRC.

Results
Participate information and study design. In total, 1038 eligible
cases including 185 yCRC, 379 oCRC, 217 age-matched healthy
controls for the yCRC (yControl) and 257 age-matched healthy
controls for the oCRC (oControl) were included in this study
according to the strict recruitment process (Fig. 1). The fecal
microbiota was assessed using 16S rRNA gene sequencing
(n= 728 from the Fudan cohort and n= 310 from the Huadong
cohort) and metagenomic sequencing (n= 200). Subsequently,
the Fudan cohort was randomly assigned to the training phase
(Accounted for 70%) and the testing phase (Accounted for 30%).

In the training phase, the microbial markers and classifier were
identified by random forest model between CRC and age-
matched control (163 oCRC vs. 142 oControl; 100 yCRC vs. 104
yControl). In the testing phase, 70 oCRC, 44 yCRC, 61 oControl,
and 44 yControl were recruited to validate the strength of
microbial classifier for distinguishing oCRC or yCRC from health.
Moreover, to further measure the strength of observed associa-
tions, 41 yCRC, 146 oCRC, 54 oControl, and 69 yControl from
Huadong cohort were served as independent external validation
phase. Non-quantitative fecal occult blood test (FOBT), serum
carcinoembryonic antigen (CEA), and serum carbohydrate anti-
gen 19-9 (CA19-9) were used to compare with the CRC classifier.

The clinical characteristics including age, gender, tumor
location, tumor size, tumor differentiation, AJCC disease stage,
KRAS/NRAS/BRAF mutation status, non-quantitative FOBT,
serum CEA and CA19-9 were matched between oCRC group
and yCRC group. The CRC group and its corresponding control
group was age-matched, respectively, and there was no statistical
difference. Specifically, the Fudan cohort included 728 patients,
with mean age of 63.23 ± 8.56 (25–75% percentile, 55–69) years in
oControl, 64.26 ± 8.68 (25–75% percentile, 57–70) years in oCRC,
39.76 ± 6.11 (25–75% percentile, 35–45) years in yControl, and
40.45 ± 7.02 (25–75% percentile, 36–46) years in yCRC, respec-
tively. The Huadong cohort included 310 patients, with mean age
of 60.46 ± 6.94 (25–75% percentile, 54–65) years in oControl,
62.42 ± 7.67 (25–75% percentile, 55–68) years in oCRC,
37.74 ± 6.19 (25–75% percentile, 33–42) years in yControl, and
39.68 ± 7.11 (25–75% percentile, 33–45) years in yCRC, respec-
tively. The positive rate of non-quantitative FOBT and serum
tumor markers in the CRC group were significantly higher than
those in the healthy control group. Detailed clinical data for
studied individuals was shown in Supplementary Tables 1, 2 and 3.

Gut microflora dysbiosis in yCRC. After denoising using
DADA2, an average of 28,455 16S rRNA gene sequences per
sample was obtained (min: 4794; max: 143,517; median: 23,660),
and 40,032 amplicon sequence variants (ASVs) were obtained
from Fudan cohort (Supplementary data 1). To assess the differ-
ences of bacterial diversity among groups, sequences were aligned
for alpha-diversity. The results showed that fecal microbial alpha-
diversity was significantly decreased in the oCRC group compared
to oControl group, and the similar decline was found in yCRC
compared to yControl. In contrast, microbial diversity was
markedly increased in yCRC versus oCRC (Fig. 2a, b). Moreover,
a Venn diagram of bacteria showed that 326 of the total 822
genera were shared among the four groups, while 361 of 582
genera were shared between the yCRC group and oCRC group.
Notably, 12 of 397 ASVs were unique for yCRC group (Fig. 2c).
To display microbiome space between samples, beta diversity was
calculated using weighted UniFrac method, and principal coor-
dinates analysis (PCoA) was performed. The results presented a
significantly different distribution among groups using permuta-
tional multivariate analysis of variance (PERMANOVA) analysis
(Fig. 2d). These results suggest that the yCRC group has unique
diversity and microbial distance metric from the oCRC group.

Phylogenetic profiles of fecal microbial communities in yCRC.
To identify differentially abundant taxa in oCRC and yCRC, we
performed linear discriminant analysis coupled with effect size
analysis (LEfSe) algorithms on fecal microbiota composition
between CRC (oCRC or yCRC) and age-matched healthy
control (oControl or yControl) based on the 16S rRNA gene
sequencing. There were 38 bacterial taxa showing distinct relative
abundances between oCRC and oControl, and 24 bacterial
taxa were differentially abundant between yCRC and yControl
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Fig. 1 Study design and flow diagram. A total of 1038 eligible cases were included in this study. The fecal microbiota was assessed using 16S rRNA gene
sequencing or metagenomic sequencing. 144 yCRC patients, 233 oCRC, and 351 age-matched healthy controls from the Fudan cohort were randomly
divided into the training phase (accounted for 70%) and the testing phase (accounted for 30%) to identify the gut microbiome community and microbial
markers. The strength of observed associations of microbial markers was further independently verified in 41 yCRC, 146 oCRC, and 123 age-matched
healthy controls from the Huadong cohort. CRC colorectal cancer, yCRC young-onset CRC, oCRC old-onset CRC, yControl age-matched healthy controls
for the yCRC, oControl age-matched healthy controls for the oCRC, RFC random forest classifier.
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(linear discriminant analysis (LDA) score > 2.0, p < 0.05). 22 and
8 of these genera remained significantly different after adjusting
for the age and gender using multivariate association with linear
models (MaAsLin2) method (Fig. 3a, b). The increased abun-
dance of genera Streptococcus, Fusobacterium, and Gemella, was
observed in oCRC group, and the genera Fusobacterium, Flavo-
nifractor and Odoribacter, contained the key phylotypes in the
yCRC group. We further identified genera Faecalibacterium and
Blautia as key microbiota in the oControl and yControl group,
respectively (Fig. 3a, b). The statistical distribution and relative
abundance of these specific genus-level biomarkers support the
prevalence of the bacteria in most of the samples.

Given gut microbial dysbiosis have been associated with tumor
stage and tumor location20,21, we first catalog the microbiome
signature across different disease stages in oCRC and yCRC. The
genera Fusobacterium and Christensenellaceae_R7 were enriched
in stage 0–III and stage IV oCRC, respectively, while genus
Faecalibacterium was the significantly distinct bacteria dominant
in age-matched healthy control (Supplementary Fig. 1a). In
yCRC, genera Erysipelotrichaceae_UCG003, UCG005, and Fae-
calibacterium were the dominant microbiota in the stage 0–III

young-onset patients, stage IV young-onset patients, and age-
matched healthy control, respectively (Supplementary Fig. 1b).
We further compared the changes in the microbiome signature of
oCRC and yCRC according to tumor location. As shown in
Supplementary Fig. 1c, the increased abundance of genera
Parvimonas and Fusobacterium, were observed in old-onset left-
side colon cancer (LCC) and right-side colon cancer (RCC),
respectively. By contrast, the butyrate-producing bacteria Faeca-
libacterium contained the main phylotype in the age-matched
healthy controls for the oCRC. In the comparison of microbial
differences among young people, we identified genera Alistipes
and Roseburia as key microbiota in the young-onset LCC and
RCC, respectively, which was accompanied by significant increase
of Escherichia Shigella in age-matched healthy control (Supple-
mentary Fig. 1d). These results indicate significant interactions
between gut microbiota and clinicopathological characteristics.

To further obtain deeper insights into gut microbiota species
identification and metabolic imputation, metagenomic sequen-
cing with species-level taxonomic resolution was performed using
samples selected randomly from Fudan cohort (n= 50 per
group). The strong associations of community composition
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Fig. 2 Bacterial diversity of the fecal microbiota associated with yCRC and oCRC. a Fecal microbial diversity estimated by observed count of ASVs.
n= 728 from Fudan cohort (n= 233 for oCRC and n= 203 for oControl; n= 144 for yCRC and n= 148 for yControl). p values are calculated by two-sided
unpaired Student’s t test. Bars represent standard deviation. b Fecal microbial diversity estimated by Shannon index. n= 728 from Fudan cohort (n= 233
for oCRC and n= 203 for oControl; n= 144 for yCRC and n= 148 for yControl). p values are calculated by two-sided unpaired Student’s t test. Bars
represent standard deviation. c A Venn diagram displayed the overlaps among groups. n= 728 from Fudan cohort (n= 233 for oCRC and n= 203 for
oControl; n= 144 for yCRC; and n= 148 for yControl). d Beta diversity calculated by PCoA of weighted UniFrac distances and PERMANOVA. n= 728 from
Fudan cohort. 203 oControl vs. 233 oCRC, two-sided, p= 0.001; 148 yControl vs. 144 yCRC, p= 0.019; 203 oControl vs. 148 yControl, p= 0.037; 233
oCRC vs. 144 yCRC, p= 0.001. CRC colorectal cancer, yCRC young-onset CRC, oCRC old-onset CRC, yControl age-matched healthy controls for the yCRC,
oControl age-matched healthy controls for the oCRC, PCoA principal coordinate analysis, PERMANOVA permutational multivariate analysis of variance
analysis. Source data are provided as a Source Data file.
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between 16S rRNA sequencing and metagenomic sequencing was
confirmed by Procrustes analysis (Protest was performed to test
for significance. oCRC versus oControl: M2= 0.7934, p= 0.004;
yCRC versus yControl: M2= 0.9265, p= 0.043) and Mantel test
(oCRC versus oControl: r= 0.1936, p= 0.011; yCRC versus
yControl: r= 0.1961, p= 0.021) (Supplementary Fig. 2a, b).
Compared to 16S rRNA sequencing, metagenomic sequencing
supported that genus Streptococcus was still the key microbiota in
the oCRC group, whereas genus Flavonifractor was the dominant

microbiota in the yCRC group (Supplementary Fig. 2c, d). Then,
species-level microbial markers were also characterized between
CRC patients (oCRC, yCRC) and age-matched healthy controls
(oControl, yControl) by LEfSe (Supplementary Fig. 2c, d).
Compared to yControl, bacterial species of Flavonifractor plautii,
which was reported affecting antigen-induced T helper 2 cell
(Th2) immune responses in mice22, was consistently the
dominant population in yCRC detected by both 16S rRNA
and metagenomic sequencing. Enterocloster bolteae, Lachnospire

Fig. 3 Phylogenetic profiles of fecal microbial communities in yCRC and oCRC. a Histogram of LDA coupled with effective size measurement based on
the 16S rRNA gene sequencing (adjusting by MaAsLin2, n= 233 for oCRC and n= 203 for oControl), and the metagenomic sequencing (n= 50 in each
group) between oCRC and oControl. p values are calculated by Kruskall–Wallis test, logarithmic LDA score > 2.0, p < 0.05. b LEfSe based on the 16S rRNA
gene sequencing (adjusting by MaAsLin2, n= 144 for yCRC and n= 148 for yControl), and the metagenomic sequencing (n= 50 in each group) between
yCRC and yControl. p values are calculated by Kruskall–Wallis test, LDA score > 2.0, p < 0.05. ‘#’ showed bacterial taxa with distinct relative abundances
between groups detected by 16S rRNA gene sequencing after adjusting for the age and gender using MaAsLin2; ‘+’ suggested the significantly differential
bacteria between groups detected by metagenomic sequencing. LDA linear discriminant analysis, CRC colorectal cancer, yCRC young-onset CRC, oCRC
old-onset CRC, yControl age-matched healthy controls for the yCRC, oControl age-matched healthy controls for the oCRC. Source data are provided as a
Source Data file.
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eligens, and Eggerthella lenta contained the key phylotypes in the
oCRC compared to oControl. Correspondingly, butyric acid-
producing bacteria Faecalibacterium prausnitzii and Eubacterium
rectale were enriched in oControl and yControl, respectively23.
The statistical distribution and relative abundance of these
species-level biomarkers showed the prevalence of them in most
of the samples. Obviously, the correlation between metagenomics
and 16S rRNA gene sequencing data highlights the robustness of
our results.

Functional analysis of fecal microbiota. It was reported that
microbiota imbalance can induce systematic metabolic
alterations24,25, while metabolic dysfunction can in turn influence
microbiota composition26. To study the functional and metabolic
changes of the fecal microbial communities, all the clean reads
from metagenomic sequencing were aligned to the suggested
database to obtain Kyoto Encyclopedia of Genes and Genomes
(KEGG) modules and Gene Ontology (GO) enrichment from
bacterial species (Supplementary Fig. 3). As a result, the KEGG
modules involved in short-chain fatty acid metabolism were
overrepresented in health (7 from 25 modules in oControl, 3 from
8 modules in yControl) compared to CRC (2 from 19 modules in
oCRC, 1 from 5 modules in yCRC) (Supplementary Fig. 3a, b). In
GO-enrichment analysis, the plasma membrane and protein
binding were the key terms increased in oCRC, while translation,
transposase activity, and structural constituent of ribosome were
overrepresented in oControl (Supplementary Fig. 3c). Notably,
the GO enrichments between yCRC and yControl displayed
sparse differential terms, characterized by the dominant of DNA
binding and RNA-dependent DNA biosynthetic process in
yCRC, indicated stronger cell proliferation and invasion ability
(Supplementary Fig. 3d). Altogether, our results suggested that
young-onset or oCRC patients have their unique bacterial
metabolic features.

Identification and validation of fecal microbial ASVs-based
markers for oCRC and yCRC. To evaluate the classification
power of fecal bacteria markers for oCRC and yCRC, a random
forest classifier (RFC) model was constructed. We performed a
tenfold cross-validation on a random forest model in the training
phase (70% of the samples randomly selected from the Fudan
cohort including 163 oCRC and 142 oControl) to detect unique
ASVs-based markers for oCRC. Our analysis identified the top 40
differentially abundant markers as the optimal marker set
between 163 oCRC and 142 oControl (Fig. 4a, b). The probability
of disease (POD) index was then calculated using the identified 40
ASVs-based markers for both the training group and the testing
group. In the training phase, the average POD value was sig-
nificantly increased in the oCRC group versus the oControl
(p= 2.22e−16, Fig. 4c), and the POD index achieved an area
under receiving operating characteristics curves (AUC) value of
89.28% (95% CI: 85.84–92.72%) (Fig. 4d). In the testing phase
(the remaining 30% samples from Fudan cohort, including 70
oCRC and 61 oControl), the average POD value increased sig-
nificantly in oCRC group as compared with the oControl group
(p= 2.4e−12, Fig. 4e), and the AUC value of the microbial
markers was 86.67% (95% CI: 80.31–93.04%) (Fig. 4f).

Similarly, the strength of fecal microbiome in distinguishing
yCRC from age-matched control was also illustrated by construct-
ing a RFC model. In the training phase (70% samples randomly
selected from Fudan cohort, including 100 yCRC and 104
yControl), top 60 differentially abundant genera markers were
selected as the optimal marker set (Fig. 5a, b). The POD value was
significantly increased in the yCRC group vs. the yControl
(p= 2.22e−16, Fig. 5c), and the POD index achieved an AUC

value of 86.57% (95% CI: 81.78–91.36%) (Fig. 5d). In the testing
phase (the remaining 30% samples from Fudan cohort, including 44
yCRC and 44 yControl), the average POD value was significantly
increased (p= 7e−06) in yCRC group, and the POD achieved an
AUC value of 79.52% (95% CI: 69.85–89.2%) (Fig. 5e, f).

To measure the strength of observed associations, the 146
oCRC, 41 yCRC, 54 oControl, and 69 yControl from Huadong
cohort were served as independent external validation set
(Supplementary data 2). The results showed that the average
POD value in the oCRC was significantly higher than that of
oControl (p= 1.8e−15, Fig. 6a), and the POD achieved an AUC
value of 86.67% (95% CI: 79.31–94.03%) (Fig. 6b). Also, the
average POD value was significantly elevated in the yCRC versus
yControl (p= 5.1e−10), and the POD achieved an AUC value of
87.8% (95% CI: 80.82–94.78%) (Fig. 6c, d). Collectively, our
results show that POD based on fecal microbial markers has a
strong power for distinguishing yCRC or oCRC from health.

Predicting performance of fecal microbial markers for yCRC
and oCRC. Clinically, both non-quantitative FOBT or quantita-
tive fecal immunochemical test (FIT) are non-invasive methods
for CRC screening27. CEA and CA19-9 are the two most widely
used serum tumor markers, especially in diagnosis and prognosis
of advanced CRC28. In order to compare the RFC microbial
markers with the conventional screening methods, we used two
independent group, including 728 subjects in the Fudan cohort
and 310 subjects in the Huadong cohort. As a result, using non-
quantitative FOBT, CEA, or CA19-9 levels as a predictor alone
between 233 oCRC cases and 203 oControl in the Fudan cohort
generated an AUC of 0.5833, 0.7439, and 0.6691, respectively;
however, the combination of CEA and CA19-9 achieved an AUC
of 0.8199 (Fig. 6e). Simultaneously, an AUC of 0.5566, 0.7711,
0.6984, and 0.8254, respectively, were obtained between 144
yCRC and 148 yControl (Fig. 6f). Notably, the RFC model we
constructed could discriminate the samples of yCRC or oCRC
from respective age-matched controls with an AUC of 0.8981 or
0.8511, respectively, which significantly improve predictive per-
formance (Fig. 6e, f). Furthermore, the strength of microbial
model for distinguishing yCRC or oCRC from health was vali-
dated by comparing with non-quantitative FOBT, CEA, and
CA19-9 in Huadong cohort. The non-quantitative FOBT, CEA,
CA19-9 alone, and the combined CEA and CA19-9 yielded an
AUC of 0.5076, 0.7435, 0.6721 and 0.7851 to discriminate 146
oCRC from 54 oControl, while the microbial markers increased
the AUC to 0.8656 (Fig. 6g). Similar results were found between
41 yCRC and 69 yControl in Huadong cohort when compared
non-quantitative FOBT, CEA, CA19-9 alone, or the combined
CEA and CA19-9 (AUC: 0.6203, 0.7296, 0.5832, and 0.7252,
respectively) with the microbial markers (AUC: 0.8561) (Fig. 6h).
In general, our results suggest the great potential of using gut
microbiota biomarkers as a promising non-invasive tool in
detection and distinction of yCRC and oCRC. Patients with yCRC
and oCRC have their unique fecal microbial markers for better
distinguishing them from health.

Discussion
In CRC, it is still challenging to early evaluate the yCRC that has
increasing aggressiveness and unclear underlying mechanisms29.
In recent years, the microbiome signature has attracted extensive
attention in various disease fields due to its excellent performance
in early diagnosis and prognosis evaluation30–32. Meanwhile,
increasing studies have shown that microbiome signatures are
characterized by age sequence and colorectal adenoma-carcinoma
sequence33,34. Given these evidences, we strive to explore the
intestinal microbial composition and function of yCRC, and
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Fig. 4 Identification of microbial markers of oCRC by random forest models. a In the training phase, a tenfold cross-validation was performed on a
random forest model between 163 oCRC cases and 142 oControl. b Top 40 differentially abundant markers were selected as the optimal marker set based
on random forest between 163 oCRC cases and 142 oControl. The x-axis presents the mean decrease accuracy to each marker, which indicates the
contribution to the accuracy of the model; ‘#’ showed bacterial taxa with distinct relative abundances between groups detected by 16S rRNA gene
sequencing after adjusting for the age and gender using MaAsLin2; ‘*’ suggested the relative abundance differences derived from LEfSe analysis of 16S
rRNA gene sequencing. c The POD value in oCRC (n= 163) vs. oControl (n= 142) in the training set. oCRC vs. oControl, The box denotes 25th– 75th
percentiles and the central mark indicates the median; the whiskers are 1.5 times the interquartile range; dots outside the whiskers indicate outliers; p value
is calculated by two-sided unpaired Mann–Whitney test. d The POD-based AUC value between oCRC (n= 163) and oControl (n= 142) in the training set.
Error bars denote 95% confidence interval for AUC value. e The average POD value in 70 oCRC vs. 61 oControl in the testing phase. oCRC vs. oControl.
The box denotes 25th–75th percentiles and the central mark indicates the median; the whiskers are 1.5 times the interquartile range; dots outside the
whiskers indicate outliers; p value is calculated by two-sided unpaired Mann–Whitney test. f The POD-based AUC value between oCRC (n= 70) and
oControl (n= 61) in the testing phase. Error bars denote 95% confidence interval for AUC value. AUC area under the curve, CRC colorectal cancer, oCRC
old-onset CRC, oControl age-matched healthy controls for the oCRC, POD probability of disease, SD standard deviation. Source data are provided as a
Source Data file.
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establish the microbiome signature for better identifying yCRC
from age-matched healthy people and distinguishing them from
elderly patients. Our efforts resulted in the discovery of unique
microbiome signatures for the oCRC (n= 233) and yCRC

(n= 144) versus age-matched control (oControl and yControl),
thereby successfully discriminating them from training and test-
ing cohorts. Importantly, microbial markers successfully achieved
an independent validation of oCRC (n= 146) and yCRC (n= 41)

Fig. 5 Identification of microbial markers of yCRC using random forest models. a A tenfold cross-validation on a random forest model between 100 yCRC
and 104 yControl in the training set. b Top 60 differentially abundant genera markers were selected as the optimal marker set based on random forest
between 100 yCRC and 104 yControl. The x-axis presents the mean decrease accuracy to each marker, which indicates the contribution to the accuracy of
the model; #’ showed bacterial taxa with distinct relative abundances between groups detected by 16S rRNA gene sequencing after adjusting for the age
and gender using MaAsLin2; ‘*’ suggested the relative abundance differences derived from LEfSe analysis of 16S rRNA gene sequencing. c The POD value in
yCRC (n= 100) versus yControls (n= 104) in the training set. yCRC vs. yControl. The box denotes 25–75th percentiles and the central mark indicates the
median; the whiskers are 1.5 times the interquartile range; dots outside the whiskers indicate outliers; p value is calculated by two-sided unpaired
Mann–Whitney test. d The POD-based AUC value between yCRC (n= 100) and yControl (n= 104) in the training set. Error bars denote 95% confidence
interval for AUC value. e The average POD value in 44 yCRC vs. 44 yControl in the testing phase. yCRC vs. yControl. The box denotes 25th–75th
percentiles and the central mark indicates the median; the whiskers are 1.5 times the interquartile range; dots outside the whiskers indicate outliers; p value
is calculated by two-sided unpaired Mann–Whitney test. f The POD-based AUC value between yCRC (n= 44) and yControl (n= 44) in the testing phase.
Error bars denote 95% confidence interval for AUC value. AUC area under the curve, CRC colorectal cancer, yCRC young-onset CRC, yControl age-
matched healthy controls for the yCRC, POD probability of disease. Source data are provided as a Source Data file.
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from Huadong cohort. Furthermore, microbial markers could
help identify CRC in the young people and CRC in the elderly.
These findings collectively indicated that the fecal microbiome
would be a promising non-invasive approach for early screening
of yCRC and oCRC, respectively.

Prior studies have reported the association of microbial dys-
biosis with senescence and chronic disease35. Firstly, we analyzed
the diversity of the fecal microbiome among the groups and
found that the diversity of the oCRC group was lower, while the
fecal microbiota of patients with yCRC exhibited higher diversity
than that of oCRC. As biological age increases, overall gut
microbiota richness decreases, while some microbial taxa asso-
ciated with aging emerge. Moreover, high bacterial diversity often
occurs in a variety of diseases and is considered to be a type of
microbial dysbiosis, which challenges the general assumption that
reduced alpha-diversity is usually associated with CRC micro-
biota dysbiosis36, suggesting the particularity of gut microbes in
young-onset patients. We also compared the differential enriched
fecal microbiota among groups, and noted that the Streptococcus,
Fusobacterium, and Gemella, whose connection with CRC has
been widely reported37–39, had significantly increased abundance
in oCRC patients. We identified the yCRC-associated genera
including Fusobacterium and Flavonifractor. Moreover, bacterial
species of Flavonifractor plautii, a flavonoid-degrading bacterium,

was consistently the dominant population in yCRC detected by
both sequencing methods in our study. Fusobacterium, especially
Fusobacterium nucleatum, is an opportunistic pathogen of many
chronic oral and intestinal diseases, and the infection rate
increases with age40. Unexpectedly, our study identified Fuso-
bacterium as an important microbiota for CRC in young and old
people. It cannot be explained by the fact that pathogenic
microorganisms can easily induce inflammation and immuno-
deficiency in elderly patients41. However, this result implies that
Fusobacterium has a strong mucosal adhesion ability in the
general population. Flavonifractor, a rare clinical pathogens that
may induce oxidative stress and systemic inflammation in alco-
holic hepatitis patients42, has not been found to be associated
with aging. It is noteworthy that a recent study identified Fla-
vonifractor plautii as one of the key bacterium associated with
CRC in the Indian races43. Considering that flavonoids are a large
number of polyphenolic compounds in plant-based diets44, our
above findings reveal that the incidence of CRC in young people
may be more closely related to diet and lifestyle.

Then, we conducted function analysis and found that the DNA
binding and RNA-dependent DNA biosynthetic process pathway
were overrepresented in yCRC group, indicated stronger cell
proliferation and invasion ability. A previous study demonstrated
that tumor cells alter their metabolism to meet their demand for

Fig. 6 Independent validation and diagnostic performance of fecal microbial markers for yCRC and oCRC. a The POD value compared between 146
oCRC and 54 oControl in the independent external validation phase from Huadong cohort. oCRC vs. oControl. The box denotes 25th–75th percentiles and
the central mark indicates the median; the whiskers are 1.5 times the interquartile range; dots outside the whiskers indicate outliers; p value is calculated by
two-sided unpaired Mann–Whitney test. b The POD-based AUC value between oCRC (n= 146) and oControl (n= 54) in the Huadong cohort. Error bars
denote 95% confidence interval for AUC value. c The POD value compared between 41 yCRC and 69 yControl in the independent external validation phase
from Huadong cohort. yCRC vs. yControl. The box denotes 25th–75th percentiles and the central mark indicates the median; the whiskers are 1.5 times the
interquartile range; dots outside the whiskers indicate outliers; p value is calculated by two-sided unpaired Mann–Whitney test. d The POD-based AUC
value between yCRC (n= 41) and yControl (n= 69) in the Huadong cohort. Error bars denote 95% confidence interval for AUC value. e and f AUC values
for the prediction of oCRC (e) and yCRC (f) using microbial markers, non-quantitative FOBT, serum CEA, serum CA19-9, or the combined CEA and CA19-9
among 203 oControl, 233 oCRC, 148 yControl, 144 yCRC in Fudan cohort. g and h AUC values for the prediction of oCRC (g) and yCRC (h) using microbial
markers, non-quantitative FOBT, serum CEA, serum CA19-9, or the combined CEA and CA19-9 among 54 oControl, 146 oCRC, 69 yControl, 41 yCRC in
Huadong cohort. ROC, receiver operating characteristic curves; AUC area under the curve, CRC colorectal cancer, yCRC young-onset CRC, oCRC old-onset
CRC, yControl age-matched healthy controls for the yCRC, oControl age-matched healthy controls for the oCRC, FOBT fecal occult blood test, CEA
carcinoembryonic antigen, CA19-9 carbohydrate antigen 19-9. Source data are provided as a Source Data file.
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macromolecules and support a high rate of proliferation as well as
respond to oxidative stress45. Among the metabolic reprogram-
ming in tumor cell, pentose phosphate pathway was stimulated
and the production of nucleotides and DNA synthesis was
increased, which in turn reduced intracellular reactive oxygen
species levels, and promoted antioxidant defense45. Therefore, the
yCRC-specific microbiota manifested as a metabolic state that is
more prone to malignant progression, supporting the poorer
prognosis of young-onset patients.

Last but not least, we identified specific fecal microbial markers
for distinguishing yCRC or oCRC from age-matched healthy
controls, and validated the strength of observed associations
based on random forest classification models. As the results
showed, classifier based on optimal 40 differentially abundant
genus-level markers achieved a high accuracy between oCRC and
oControl in training cohort, which also achieved a high accuracy
between oCRC group and healthy controls in testing cohorts and
independent validation cohort. Similarly, the classifier based on
optimal 60 differentially abundant genus-level markers for dis-
tinguishing yCRC from yControl also achieved a good perfor-
mance in training cohort, testing cohort and independent
validation cohort. These findings suggested that fecal microbiota-
based biomarkers were potentially helpful in predicting the risks
of oCRC and yCRC, as well as distinguishing CRC onset based on
age. A recent practice guideline recommended reducing the age to
initiate CRC screening to 45 years old46. However, the cost-
effectiveness analysis shows that lowering the age of screening
also brought many socioeconomic problems47. Thus, better risk
assessment and personalized screening strategies can help
improve the detection of at-risk populations. Given the accuracy
for non-invasively detecting yCRC of our study, it may help raise
awareness about CRC in the young, and promote colonoscopy
screening in certain young populations with CRC-related
microbiome signatures to reduce the incidence of sporadic CRC.

In addition to the fecal microbiota that has received increasing
attention, FOBT, including either guaiac-based (gFOBT, non-
quantitative FOBT) or immunological-based (iFOBT, FIT), is also
a non-invasive method and is currently implemented for CRC
screening in average-risk population48–50. Specifically, non-
quantitative FOBT detects hemoglobin, while quantitative FIT
detects globin and is not affected by diet51. The diagnostic
accuracy of non-quantitative FOBT in the published literature
ranged from 25.5% to 86.0% with sensitivity and specificity values
ranged from 7.4–75.0% and 21.6–98.6%, respectively52–56. FIT for
hemoglobin shows better CRC diagnostic performance than non-
quantitative FOBT57. However, its high diagnostic sensitivity
comes at the cost of a high false positive rate58,59. Furthermore,
the optimal threshold of FIT for CRC screening is still unknown
because the fecal hemoglobin concentration varies with gender
and age60. A systematic review with meta-analysis reported that
FIT had a pooled sensitivity of 91% and a pooled specificity of
90% in detecting CRC using a positivity threshold of 10 μg/g,
whereas a threshold ≥ 20 µg/g resulted in a pooled sensitivity of
75% and a pooled specificity of 0.9561. This review is highly
heterogeneous by population setting, age range, FIT brand and
FIT threshold used. In a primary care population with low-risk
symptoms of CRC, the AUC for the FIT was 0.9262. Another
review further quantified the performance characteristics of FIT
for CRC stratified by age, with a pooled sensitivity of 85% for ages
50–59 and a sensitivity of 73% for ages 60–69, but did not
compare the diagnostic efficacy of FIT in young people under
5063. In our study, the sensitivity and specificity for the detection
of CRC with the gut microbiota biomarkers were comparable
with non-quantitative FOBT but inferior to FIT data published in
the above-mentioned literature. However, our study not only
emphasizes the use of gut microbiota biomarkers as a promising

non-invasive tool to detect CRC, but we also highlights its use to
distinguish yCRC and oCRC. The potential precision screening
effect of fecal microbiota on yCRC provide a unique opportunity
for clinical practice, which may help early identification of more
individuals with yCRC.

Strengths of our study include multi-center study design,
utilization of both metagenomic and 16S rRNA gene sequencing
for microbial phylogeny and functional analysis, comparison
with other commonly used non-invasive testing methods, as
well as the age-matched assessment. However, whether our
results are consistent between regions with different races still
needs to be verified by other multi-center studies with larger
number of subjects.

In conclusions, our current study reveals the common state
of fecal microbial dysbiosis in yCRC and oCRC populations.
Fecal microbiota-based biomarkers have a robust strength in
distinguishing yCRC from aged-matched control. Although
more clinical validations and mechanism investigations are
needed, our study emphasizes the need to further study the
potential association between the gut microbiota and the risk of
CRC in young people, which may drive the clinical transfor-
mation of microbiota-based strategies into precision screening
and diagnosis.

Methods
Characteristics of the participants and sample collection. In total, 1071 fecal
samples were collected from year 2018 to 2021 in Fudan University Shanghai
Cancer Center, Shanghai, China (Fudan cohort), Tongji University Affiliated Tenth
People’s Hospital, Shanghai (Huadong cohort), China and The Second Hospital of
Shandong University, Shandong, China (Huadong cohort). After inclusion and
exclusion screenings, a total of 1038 eligible subjects were included in our study,
with 728 participants from Fudan cohort and 310 participants from Huadong
cohort. Eligible subjects were randomly divided into training phase, testing phase,
and validation phase (Fig. 1). Each fecal sample was collected in a sterile tube and
then stored at −80 °C prior to microbial analysis. None of the participants were
treated with antibiotics or probiotics one month before enrollment in this study.
For sporadic CRC group, fecal samples were collected preoperatively and partici-
pants were excluded based on the following criteria: the history of familial CRC, the
history of inflammation-associated CRC, the history of irritable bowel syndrome
(IBS), with other coexisting malignant tumors, stool sampling not before colono-
scopy or neoadjuvant therapy before stool sampling. Recruited CRC patients were
divided into two groups according to age: yCRC group, age <50 years old; oCRC
group, age ≥50 years old. For healthy control group, volunteers confirmed as no
gastrointestinal tumors after colonoscopy screening were recruited and were
divided into two groups based on age: yControl group, age <50 years old; oControl
group, age ≥50 years old. The clinical pathological features of CRC including age,
gender, tumor location, tumor size, tumor differentiation, TNM stage, KRAS/
NRAS/BRAF gene mutation status, non-quantitative FOBT, CEA, CA19-9, and
lymphatic/nerve/vascular invasion status were recorded. A chemiluminescent
microparticle immunoassay method was performed to detect CEA and CA19-9 in
preoperative blood samples. Cutoff values recommended for diagnostic purposes
were 37 kU/L for CA19-9 and 5.9 mg/L for CEA. Values above the cutoff con-
centrations were considered positive. A dual-qualitative FOBT method was used
for detecting hemoglobin and transferrin in fecal samples before colonoscopy.
Ethical approval was obtained from the Institutional Review Board of Fudan
University Shanghai Cancer Center, and written informed consent was provided by
all subjects before sampling.

Fecal DNA extraction for microbiome analysis. Genomic DNA of fecal samples
was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s guidelines. DNA integrity and size were verified by
1.0% agarose gel electrophoresis and DNA concentrations were determined using
NanoDrop spectrophotometry (Nano Drop, Germany).

High-throughput 16S ribosomal RNA gene sequencing. 16S ribosomal RNA
(rRNA) gene amplification was performed using the primers (319F: 5′-ACTCC-
TACGGGAGGCAGCAG-3′; 806R: 5′-GGACTACHVGGGTWTCTAAT-3′)
directionally targeting the V3 and V4 hypervariable region of the 16S rRNA gene.
To differentiate each sample and yield accurate phylogenetic and taxonomic
information, the gene products were attached with forward and reverse error-
correcting barcodes. The amplicons were quantified after purification. Then, the
normalized equimolar concentrations of each amplicon were pooled and sequenced
on the MiSeq PE300 sequencing instrument (Illumina) using 2 × 300 bp chemistry
according to the manufacturer’s specifications.
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DNA Library construction and metagenomic sequencing. Sequencing libraries
were constructed by TruSeq Nano DNA LT Library Preparation Kit (Illumina).
DNA was fragmented by dsDNA Fragmentase (NEB) and incubated at 37 °C for
30 min. Library construction began with fragmented cDNA. Blunt-end DNA
fragments were generated by fill-in reactions and exonuclease activity. Provided
sample purification beads were used for size selection. An A-base was then added
to the blunt ends of each strand, preparing them for ligation to the indexed
adapters. Each adapter contained a T-base overhang for ligating the adapter to
the A-tailed fragmented DNA. These adapters contained the full complement
of sequencing primer hybridization sites for single, paired-end, and indexed
reads. Single- or dual-index adapters were ligated to the fragments and the
ligated products were amplified with PCR. After libraries purification, quanti-
fication and quality control, high-throughput sequencing was carried out on the
NovaSeq6000 platform (Illumina) according to the manufacturer’s
specifications.

Sequencing data analysis
As for 16S rRNA gene sequencing data. The raw data of 16S rRNA gene sequencing
were analyzed using QIIME2 platform (v2020.2). In briefly, DADA2 plugin was
used to filter the sequencing reads and to construct ASVs feature table. The tax-
onomy information of ASVs were assigned against the Silva Database (https://
www.arb-silva.de) (v138.1) (download code: qiime2 rescript get-silva-data–p-ver-
sion ‘138.1’–p-target ‘SSURef_NR99’) using classify-sklearn algorithm by feature-
classifier plugin. A phylogenetic tree was generated using FastTree [QIIME2
platform (v2020.2)] and Mafft [QIIME2 platform (v2020.2)] alignment by phylo-
geny plugin. Alpha and beta diversity analyses were conducted using diversity
plugin. Bacterial diversity was presented by observed count of ASVs and Shannon
index. PCoA was conducted to display distance among samples. To assess the
effects of different phenotypes on gene profiles among groups, PERMANOVA was
performed.

As for metagenomic sequencing data. Raw sequencing reads were processed to
obtain valid reads for further analysis. First, sequencing adapters were removed
from sequencing reads using cutadapt (v1.9). Secondly, low-quality reads were
trimmed by fqtrim (v0.94) using a sliding-window algorithm. Thirdly, reads
were aligned to the host genome using bowtie2 (v2.2.0) to remove host con-
tamination. Once quality-filtered reads were obtained, they were de novo
assembled to construct the metagenome for each sample by IDBA-UD (v1.1.1).
All coding regions (CDS) of metagenomic contigs were predicted by Meta-
GeneMark (v3.26). CDS sequences of all samples were clustered by CD-HIT
(v4.6.1) to obtain unigenes. Unigene abundance for a certain sample were
estimated by transcripts per kilobase million (TPM) based on the number of
aligned reads by bowtie2 (v2.2.0). The lowest common ancestor taxonomy of
unigenes were obtained by aligning them against the NCBI NR database by
DIAMOND (v0.9.14). Similarly, the functional annotation (GO [http://
geneontology.org/] and KEGG [https://www.kegg.jp/]) of unigenes were
obtained. In order to obtain the species-level information, the clean reads were
aligned to the suggested database (v202003) using Kraken2 software (v2.1.1) and
Braken software (v2.5). The database can be freely download from the Kraken2
website (https://ccb.jhu.edu/software/kraken2/index.shtml?t=downloads).

Biomarker identification and POD construction. Based on ASVs frequency
profile, the frequency profile at family-level and genus-level were selected for
further analysis. A five trials of tenfold cross-validation was conducted to identify
optimal microbial biomarkers using a machine learning method (random forest,
RF), and the cut-off point was selected by the mean of minimum cross-validation
error. The top most discriminatory biomarkers were selected by mean decrease
accuracy (a feature importance score in random forest model), and they were
considered as the optimal set with minimum error. The POD index was calculated
according to the article published previously64. In brief, POD index was considered
as the ratio that a sample could be predicted as CRC and that of healthy controls
from the number of randomly generated decision trees in random forest model.
The identified optimal set of biomarkers was finally used for the calculation of POD
index for both the training cohort (70% of the Fudan cohort), testing cohort (30%
of the Fudan cohort) and independent cohort (Huadong cohort). Receiver oper-
ating curve (ROC) and area under curve (AUC) were used to evaluate the strength
of the constructed models.

Statistical analyses. Comparison between quantitative data was conducted using
the unpaired Student’s t-test, Mann–Whitney U-test, or Dunnett’s t-test, where
appropriate. The associations between the clinical characteristics were performed
by Pearson’s Chi-square test or Fisher’s exact test. Linear discriminant analysis
effect size (LEfSe, https://huttenhower.sph.harvard.edu/galaxy/) was used to iden-
tify taxonomic and functional features which are differentially abundant between
cases and controls. To evaluate and deconfound the effects of age and gender,
multivariate association with linear models algorithm (MaAsLin2, http://
huttenhower.sph.harvard.edu/maaslin) was used for multivariable association
testing between phenotypes and microbial taxonomy or functional characters with
default parameters. A tenfold cross-validation was conducted on a random forest

model to identify optimal microbial markers. Receiver operating characteristic
(ROC) curve was used to evaluate the performance of multivariable that differ-
entiate between certain groups. Spearman correlation analysis was performed to
analyze the correlation between the gut microbiota and functional characters.
Procrustes analysis and Mantel test were used to evaluate the association between
16S data and metagenome data. All P values were two-tailed and P values of 0.05 or
less were considered to be statistically significant. All data were analyzed by the
Graph Pad Prism 8.0 software (Graph Pad software, lnc., San Diego, CA, USA), R
version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria, http://
www.R-project.org/) and Microsoft Excel (Microsoft Corporation, Seattle,
WA, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
16S rRNA gene sequences data and the metagenomic sequences data that support the
findings of this study are publicly available at the NIH National Center for Biotechnology
Information Sequence Read Archive (SRA) with BioProject ID PRJNA763023. Individual
accession codes are provided in Supplementary Data 3. Used databases are Silva Database
(https://www.arb-silva.de) (v138.1) (download code: qiime2 rescript get-silva-data–p-
version ‘138.1’–p-target ‘SSURef_NR99’), NCBI NR database (https://
www.ncbi.nlm.nih.gov/), GO (http://geneontology.org/), and KEGG (https://
www.kegg.jp/). The remaining data are available within the Article, Supplementary
Information, or Source Data file. Source data are provided with this paper.
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