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The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between

them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and

determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS), microglia con-

stantly monitor synapses and participate in their pruning during development and possibly also throughout life. Classical

inflammatory cytokines, such as interleukin (IL)-1b and tumor necrosis factor (TNF), are released during neuronal activity

and play a crucial role in regulating the strength of synaptic transmission. Systemically, proper functioning of the immune

system is critical for maintaining normal nervous system function. Disruption of the immune system functioning leads to

impairments in cognition and in neurogenesis. In this review we provide examples of the communication between the

nervous and the immune systems in the interest of normal CNS development and function.

The nervous system is universally perceived as the command cen-
ter of the body. Sensory organs and peripheral nerve fibers moni-
tor the external environment, while chemical changes in the
internal environment are monitored by their receptors in the
brain. The nervous system can therefore be viewed as the master
regulator of homeostasis. In this role, however, it does not act
alone. The immune system, through its tissue-resident and patrol-
ling immune cells, also operates constantly to monitor the inter-
nal environment and maintain overall balance in the body.
Immune cells respond not only to infection, but also to tissue
damage and stress, and in addition they clear cellular debris that
results from physiological cell death.

Although collaboration between the two systems was long
regarded as unlikely because of their separation by the blood–
brain barrier (BBB), it is now known that such collaboration
does occur, and moreover that it is essential for the body’s normal
functioning. It could be argued that the BBB evolved to protect
the nervous system from toxins and pathogens, not to isolate
the brain from other systems. Not only are the immune and the
nervous systems physically connected—there are resident im-
mune cells in the central nervous system (CNS) and peripheral
nerve terminals in immune organs—they also share each other’s
“languages” for their communication. Thus, cells of the nervous
system can use signaling by immune components, such as cyto-
kines and chemokines, to communicate with each other (Stein-
man 2004; McAllister and van de Water 2009; Ben Menachem-
Zidon et al. 2011; Diaz Heijtz et al. 2011; Gabay et al. 2011;
Yirmiya and Goshen 2011), while immune cells possess neu-
rotransmitter receptors and can synthesize neurotransmitter
molecules including acetylcholine, glutamate, dopamine, and
serotonin (Koval et al. 1997; Steinman 2004; Ganea et al. 2006;
Pocock and Kettenmann 2007; Levite 2008; Kong et al. 2010; Pat-
terson 2012).

Despite increasing evidence for amicable relations between
the nervous system and immune cells, most of our knowledge
about neuroimmune interactions comes, not surprisingly, from
studies using models of infection, injury, or autoimmunity (Dant-
zer et al. 2000, 2008; Steinman 2004; Aaltonen et al. 2005; Huang
et al. 2008; O’Connor et al. 2009; Yirmiya and Goshen 2011;

Shechter et al. 2013a). In many of these models, inflammation
is associated with sickness behavior and infiltration of peripheral
immune cells into the CNS with pathological results. Over the
past two decades, however, an accumulating body of research
has pointed to neuroimmune interactions as primarily beneficial,
in that they promote homeostasis of the nervous system (Kipnis
et al. 2004, 2008, 2012; Cohen et al. 2006; Ziv et al. 2006; Bryn-
skikh et al. 2008; Derecki et al. 2010).

Here we present a neurocentric review of the roles played
by immune cells and molecules in supporting the development
and function of the nervous system under normal physiological
conditions.

Brain-resident immune cells—the microglia

When considering brain/immune interactions, one must recog-
nize that the microglia, although a type of immune cell, are a con-
stitutive part of the nervous system (Ransohoff and Cardona
2010). Microglia originate from primordial macrophages in the
yolk sac, which in mice migrate out around E7.5 and invade the
neural tube on E10.5 (Ginhoux et al. 2010; Hooper et al. 2012), be-
fore the BBB is formed.

Microglia serve important functions during embryonic de-
velopment—not only in clearing the apoptotic debris resulting
from the intensive cell turnover, but also in promoting neuronal
apoptosis (Marin-Teva et al. 2004; Sierra et al. 2010; Wang et al.
2012). A more subtle yet equally important function of the micro-
glia in shaping neuronal circuitry is the pruning of synaptic
spines. Microglia engulf presynaptic termini, contributing to the
adult cortical architecture (Paolicelli et al. 2011; Schafer et al.
2012). This synaptic pruning is dependent on components of
the complement system, which is one of the immune system’s
activating pathways. Synaptic pruning by microglia was first dem-
onstrated in the developing lateral geniculate nucleus (LGN)
(Stevens et al. 2007). Barres, Stevens, and colleagues (Stevens
et al. 2007) showed that the entire classical complement cascade
is up-regulated when ocular input segregation occurs during
early postnatal development. Neuronal-derived C1q activates a
signaling cascade that ultimately culminates in activation of the
C3R complement receptor on microglia, and these cells then pref-
erentially engulf inactive synapses (Schafer et al. 2012). Genetic
deletion of any of the components of this complement cascade
leads to deficits in ocular dominance territories in the LGN.
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Another signaling system that participates in synaptic prun-
ing by microglia requires the neural cell-secreted chemokine
CX3CL1 (fraktalkine) and its cognate receptor on microglia.
Fraktalkine is enriched in the brain compared to any other organ
in the body (Harrison et al. 1994), while its receptor, CX3CR1, is
strongly expressed on microglia (Gautier et al. 2012), underlying
the importance of this signaling pathway in the brain.
Furthermore, CX3CR1-deficient mice show deficits in hippocam-
pal synaptic pruning during early postnatal development (P15).
However, these deficits are apparently resolved by adulthood
through other mechanisms as yet unknown (Paolicelli et al.
2011). Moreover, CX3CR1-deficient microglia demonstrate de-
layed recruitment to the developing barrel cortex, with a corre-
sponding delay in maturation of the postsynaptic compartment
in terms of the AMPA/NMDA receptor ratio as well as the subunit
composition of NMDA receptors (Hoshiko et al. 2012). Although
these developmental aspects appear to achieve resolution, adult
CX3CR1-knockout mice still exhibit deficits indicative of mal-
functioning circuitry. Rogers et al. (2011) showed that these
mice demonstrate impaired learning, probably accompanied by
an inability to achieve long-term potentiation (LTP) in the hip-
pocampus. The authors also showed that, compared with wild-
type controls, the proinflammatory cytokine interleukin (IL)-1b
in the CX3CR1-knockout mouse hippocampus is significantly in-
creased. Increased IL-1b levels might be a cause of the impaired
LTP, since administration of the IL-1 receptor antagonist IL-1Ra re-
stored LTP in hippocampal slices from these mutant mice.

It is not clear whether the process of synapse engulfment is
maintained in adulthood, but “resting” microglial processes have
been shown to continuously contact synapses (Nimmerjahn
2005; Wake et al. 2009; Tremblay et al. 2010). The probability of
contact is activity-dependent, with inactive synapses being con-
tacted less frequently (Wake et al. 2009). A different study indicat-
ed that microglia may also preferentially contact smaller synapses
that are subsequently lost (Tremblay et al. 2010). Studies in vitro
(Aarum et al. 2003; Butovsky et al. 2006) have shown that micro-
glia, or their conditioned media, are beneficial for neurogenesis,
the differentiation of neural progenitor cells into neurons, or for
both. Further study is needed, however, in order to investigate
the in vivo relevance of these findings. Mice deficient in
CX3CR1 signaling show deficits in adult neurogenesis in the den-
tate gyrus (Paolicelli et al. 2011), indicating that communication
between neurons and microglia is necessary for maintaining ho-
meostatic functioning of the neurogenic niche.

Immune molecules provide a service to the brain

Neuronal expression of the major histocompatibility complex
class I (MHCI) was first shown by the group led by Carla Shatz in
1998 (Corriveau et al. 1998). Prior to that, the prevailing view
was that neurons were among the few cell types in the body that
do not express MHCI, a complex molecule responsible for the cell-
specific signature of its expressed proteins and thus crucial for the
immune system to separate self from nonself. Several isotypes of
this molecular complex are now known to be expressed by neu-
rons in the thalamus, hippocampus, cortex, and cerebellum,
along with the accessory molecules CD3z and b2-microglobulin.
MHCI staining appears as puncta at synapses and colocalizes
with postsynaptic density protein 95 (PSD95) (Goddard et al.
2007; Datwani et al. 2009). Knockout MHCI (KbDb2/2) mice ex-
hibit a phenotype similar to that of the C1q-deficient mice, show-
ing reduced segregation of ocular inputs in the LGN (Datwani
et al. 2009). Compared to wild-type controls, MHCI knockout
neurons also show enhanced synaptic plasticity and increased ex-
citability, and exhibit higher frequency of miniature excitatory

postsynaptic currents (mEPSCs) in the hippocampus, as well as
heightened LTP and decreased long-term depression (LTD) (Huh
et al. 2000; Goddard et al. 2007). All of these findings point to
an important role for the molecules originally defined as “im-
mune” in higher brain function. In vivo, KbDb2/2 mice show su-
perior motor learning, probably as a result of decreased threshold
for LTD at the inhibitory synapses of parallel fibers (McConnell
et al. 2009). An interesting finding was that PirB, a known receptor
for MHCI in the brain, is also expressed on neurons, and that
PirB-deficient mice show increased plasticity in the visual cortex,
raising speculation about neuron–neuron signaling through
MHCI/PirB-modulating neuronal activity (Syken et al. 2006).

Another class of immune molecules involved in the proper
functioning of the nervous system is represented by cytokines.
The source of cytokine secretion was originally traced to immune
cells, which employ these molecules as messengers, triggers, and
effectors of immune responses. Despite their great functional
diversity, cytokines in the nervous system have earned an un-
fortunate reputation through their observed association with in-
flammation or sickness behavior (Kelley et al. 2003; Dantzer
et al. 2008; Godbout et al. 2008; Huang et al. 2008). Studies in-
vestigating the role of inflammation in aging or pathology—
e.g., inflammation/infection, neurodegeneration, depression—
are numerous and have been reviewed extensively by others
(Lucin and Wyss-Coray 2009; von Bernhardi et al. 2010; Kohman
and Rhodes 2013; McCusker and Kelley 2013). On the other
hand, the literature regarding the role of cytokines in homeostat-
ic brain function is slower to accumulate. Several studies have
shown, however, that cytokines such as tumor necrosis factor
(TNF) and IL-1b, once considered to be purely inflammatory, are
produced in the brain under normal conditions and are crucial
for normal synaptic functioning (Wolf et al. 2008; Goshen and
Yirmiya 2009; Ben Menachem-Zidon et al. 2011; Yirmiya and
Goshen 2011).

TNF signaling through the TNF receptor TNFR1 (but not
through TNFR2) modulates synaptic strength by changing the
expression of AMPA receptors (AMPAR) in the postsynaptic com-
partment (Dummer et al. 2002). TNFR1-knockout neurons exhibit
decreased expression of AMPAR and correspondingly decreased
postsynaptic transmission. On the other hand, exogenous appli-
cation of TNF was found to increase AMPAR expression, as well
as the frequency and amplitude of mEPSCs (Beattie et al. 2002;
Stellwagen and Malenka 2006). Subsequently, glia-secreted TNF
was identified as an important factor in mediating synaptic scal-
ing (Stellwagen and Malenka 2006). Following the blockade of
neuronal activity by application of the neurotoxin tetrodotoxin,
postsynaptic compartments become more sensitive and the fre-
quencies of mEPSCs are increased. In neurons cultured with
TNF-knockout astrocytes, however, this effect is not observed
(Stellwagen and Malenka 2006). Moreover, in monocular depriva-
tion (an in-vivo model of visual plasticity), TNF-knockout mice
display the expected diminished responses to the deprived eye,
but not the correspondingly increased responses to the open eye
(Kaneko et al. 2008). TNF also seems to play a role in adult hip-
pocampal neurogenesis. Iosif and colleagues (2006) showed that
progenitors in the subgranular zone express both TNF and its re-
ceptors TNFR1 and TNFR2, and that their genetic knockout differ-
entially affects adult neurogenesis: signaling through TNFR1
seems to act as a negative regulator of neurogenesis, as its deletion
results in an increase in the number of newly produced neurons,
whereas TNFR2 signaling is a positive regulator, as indicated by
the drop in neurogenesis following its deletion.

IL-1b, another proinflammatory cytokine, is up-regulated
during LTP induction in hippocampal slices and is evidently nec-
essary for the maintenance of this potentiation, since application
of the IL-1b receptor antagonist, IL-1Ra, leads to unsustained LTP
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(Schneider et al. 1998). Moreover, expression of a related protein,
IL-1a, when signaling through the same receptor, is even more ro-
bustly up-regulated during LTP protocols (Ross et al. 2003). The
importance of signaling through the IL1 receptor for learning
was validated in vivo using several transgenic mouse models
with impaired or reduced signaling in this pathway (Avital et al.
2003; Goshen et al. 2007; Spulber et al. 2009). These transgenic
mice were found to exhibit impairments in various learning tasks,
such as Morris water maze. IL-1R signaling is also evidently impor-
tant during development, since treatment in utero with the re-
ceptor antagonist Il-1Ra leads to cognitive deficits in adulthood
(Goshen et al. 2007). On the other hand, studies investigating
the consequences of overexpression or direct injection of IL-1b
in the brain (Matsumoto et al. 2004; Moore et al. 2009) concluded
that an excess of IL-1b leads to memory deficits. Similarly, exoge-
nous application of large amounts (e.g., 10 ng/mL) of IL-1b in vi-
tro results in decreased synaptic strength and LTD induction
(Ikegaya et al. 2003; Ross et al. 2003). Unfortunately, these last
findings have little physiological significance, because concentra-
tions of IL-1b in the brain, even during inflammation, are in the
pg/mL range (Denes et al. 2011).

The recombination activating gene (RAG) products Rag1 and
Rag2 mediate V(D)J recombination, a vital process that takes place
in the primary lymphoid tissues of the bone and thymus and is re-
sponsible for diversity of T and B cell receptors (Mombaerts et al.
1992). Intriguingly, Rag1 is expressed in the brain both pre- and
postnatally, whereas Rag2 seems not to be expressed in the CNS
(Chun et al. 1991). Rag1 is critical for V(D)J recombination in lym-
phocytes (Chun et al. 1991), and Rag1-deficient mice are virtually
devoid of mature lymphocytes (T and B cells) (Mombaerts et al.
1992). The functions of Rag1 in the immune system and in the
brain are apparently not similar; in fact, its function in the ner-
vous system remains unclear. Nevertheless, both Rag1-deficient
and Rag2-deficient mice exhibit cognitive impairments in several
social and learning tasks, as well as in adult neurogenesis (Wolf
et al. 2009; McGowan et al. 2011). This finding points to a role
for the peripheral adaptive immune system in supporting brain
function, rather than suggesting a role for Rag1 in the mainte-
nance of CNS homeostasis.

Members of the Toll-like receptor (TLR) family were recently
shown to be expressed in the nervous system by all major cell
types (Okun et al. 2011). TLRs are a class of pattern recognition re-
ceptors expressed on virtually all immune-cell types and known to
recognize not only conserved molecular patterns found on path-
ogens but also endogenous danger signals. Studies on mice defi-
cient in various TLRs have shown that TLR signaling can affect
the proper functioning of the nervous system both positively
and negatively, though it is not yet possible to conclude whether
such maintenance of nervous system activity is a function of sig-
naling in the brain, in the periphery, or both. For example, TLR2-
knockout mice show impaired differentiation of neural progeni-
tors in the hippocampus, where more neural progenitor cells
differentiate into astrocytes than into neurons, pointing to TLR2
as supportive of adult neurogenesis (Rolls et al. 2007). On the
other hand, TLR4 signaling seems to be a negative regulator of
neurogenesis, as TLR4-deficient mice exhibit increased neural
progenitor proliferation in the hippocampus, as well as skewed
neuronal differentiation (Rolls et al. 2007). Investigation of the
role of TLR3 signaling in cognitive function revealed that TLR3-
knockout mice show generally better memory performance and
less anxiety than their wild-type counterparts (Okun et al.
2010), suggesting that TLR3 signaling may also be a negative reg-
ulator of plasticity and learning. All in all, the possible roles of
TLRs in supporting nervous system homeostasis are only now be-
ginning to be explored, and more detailed studies are necessary in
order to understand the specifics of their functioning.

Brain support by the peripheral immune system

As indicated by the phenotypes of Rag1- and Rag2-knockout mice,
as well as by the plethora of studies of cognitive performance dur-
ing infection, the state of the peripheral immune system can
greatly influence nervous system functioning.

Adult neurogenesis is a process that has been investigated in
the context of numerous types of immune system disruptions.
The regulatory presence of an adaptive immune system is neces-
sary for maintenance of adult neurogenesis. Mice with severe
combined immunodeficiency (SCID) and nude mice, which are
deprived, respectively, of all lymphocytes and of T cells, show im-
pairments in neurogenesis, and T-cell replenishment in these
mice rescues their phenotype (Ziv et al. 2006). Interestingly, trans-
genic mice with T cells specific for the auto-antigen myelin basic
protein exhibit increased neurogenesis, whereas neurogenesis in
transgenic mice with T cells specific for an irrelevant antigen (ov-
albumin) is decreased (Ziv et al. 2006). These observations suggest
that specific interactions between the nervous and immune sys-
tems contribute to normal brain function. Mast cells, an immune
cell classically associated with allergic responses, are also impor-
tant for supporting adult neurogenesis (Nautiyal et al. 2008,
2012). Mast cells are resident in and around the hippocampus
and secrete serotonin. From this location they appear to play a
role in maintaining the neurogenic niche, since treatment with
fluoxetine, a selective inhibitor of serotonin reuptake, abolishes
the differences in neurogenesis between mice deficient in mast
cells and their heterozygotic littermates (Nautiyal et al. 2008).

Immune deficiency in mice is often accompanied by cogni-
tive impairment (Kipnis et al. 2004, 2012; Cohen et al. 2006; Ziv
et al. 2006; Brynskikh et al. 2008; Lewitus and Schwartz 2009; Der-
ecki et al. 2010; Bailey et al. 2011; Gadani et al. 2012; Nautiyal
et al. 2012; Baruch et al. 2013; Radjavi et al. 2013). As with neuro-
genesis, replenishment of the immune system by adoptive trans-
fer of wild-type splenocytes or by bone marrow reconstitution
also improves the learning ability of SCID and nude mice in
MWM, Barnes maze and radial arm water maze (Brynskikh et al.
2008; Ron-Harel et al. 2008; Derecki et al. 2010; Bailey et al.
2011). We have recently identified the meningeal membranes sur-
rounding the brain as an important site of the immune response
that occurs during learning (Derecki et al. 2010). When mice are
exposed to a learning task, T cells migrate to the meninges and
become activated there. In wild-type mice these T cells acquire a
“Th2-like” phenotype (regarded as anti-inflammatory) and ex-
press high levels of IL-4. Moreover, the myeloid cells in the menin-
ges become skewed toward an M2 (or alternatively activated,
also regarded as tissue building and anti-inflammatory) pheno-
type. Interference with the migration of T cells, or genetic deletion
of IL-4, results in a proinflammatory M1 (classically activated and
inflammatory [Yirmiya and Goshen 2011]) skew of the myeloid
cells in the meninges (Belmaker and Agam 2008; Derecki et al.
2010). In view of these findings, it is tempting to speculate that
the adaptive immune system supports cognition by keeping the
meningeal innate system in check and preventing inflammation
in response to learning-associated stress (Fig. 1). Schwartz and col-
leagues have also identified the choroid plexus as an important
site of neuroimmune interactions (Baruch et al. 2013; Shechter
et al. 2013b). Interestingly, the T cell repertoire in the choroid
plexus seems to be enriched in CNS-reactive cells (Baruch and
Schwartz 2013), leading to the idea that autoimmune cells are
important in modulating the nervous system milieu to support
homeostasis (Kipnis et al. 2012; Shechter et al. 2013a). This argu-
ment is also supported by the fact that transgenic mice with CNS-
antigen specific T cells also show enhanced cognition, in addition
to neurogenesis in subgranular and subventricular zones (Ziv
et al. 2006).
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Concluding remarks

This review presents evidence for the numerous points of com-
munication between the nervous and the immune systems, and
focuses on the consequent implication that a normal functioning
immune system is critical in supporting cognitive function. The
relationship between these systems, however, is a mutual one.
All of the body’s immune organs are innervated to some degree,
and unimpaired neurotransmission is essential for both initia-
tion and termination of immune responses. For example, sympa-
thetic innervation of the bone marrow is required for recruitment
of immune cells from the hematopoietic reservoir during in-
fection (Katayama et al. 1990; Spiegel et al. 2007; von Bernhardi
et al. 2010). On the other hand, neuronal control through the
vagus nerve serves to suppress inflammation in response to en-
dotoxin (Borovikova et al. 2000; Steinman 2004; Pavlov and
Tracey 2012). Therefore even when it appears that the nervous
system is merely a victim of a flared immune system, the two
systems maintain a constant dialogue in the attempt to restore
homeostasis.

Although numerous studies now support connections be-
tween the nervous and immune systems in models of infection
and injury (Steinman 2004; Aaltonen et al. 2005; Yirmiya and
Goshen 2011; Benach et al. 2012), large gaps remain with regard
to how the two systems interact under normal homeostatic con-
ditions. Most of the evidence for immune support in learning
comes from whole-body knockout of certain molecules, making
it difficult to distinguish cell-specific or developmental effects.
Moreover, more research needs to be devoted to maintenance of
the physiological concentrations of tested molecules so that con-
clusions can be drawn about phenomena in vivo. It often happens
that the changes occurring in the body during development or
learning are so subtle, and the conditions under which processes
are modeled in vitro so extreme, that the relevance of conclusions
obtained from in vitro studies is questionable.
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