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This data article provides detailed guidance to obtain hetero- 

geneous reaction rate expressions and the corresponding ini- 

tial reaction rates and their application. Explanation is pro- 

vided to deal with specific criteria to rule out internal and 

external concentration gradients, so that the usage of intrin- 

sic catalytic data is guaranteed. Overall, the main goal is to 

provide an easy tool to evaluate both aforementioned results 

by simple plug-and-play of available reaction data. 
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Nomenclature 

Roman symbols 

a coefficient in Eq. (1) (mol mol −1 ) 

a v area to volume ratio (m 

2 m 

−3 ) 

b coefficient in Eq. (1); coefficient in Eq. (27) (s −1 , h 

−1 ; dep.) 

C concentration (mol m 

−3 ) 

d diameter (m) 

D diffusion coefficient ( m2 s −1 ) 

k reaction coefficient (dep.) 

kf mass transfer coefficient (m s −1 ) 

K equilibrium coefficient (m 

3 mol −1 ) 

m cat catalyst mass ((k)g cat ) 

M molar mass (g mol −1 ) 

n number of moles (mol) 

n reaction order (-) 

r reaction rate (mol (k)g cat 
−1 s −1 ) 

t time (s, h) 

V molar volume (cm 

3 mol −1 ) 

V reactor volume ((m)L) 

x mole fraction; lumped variable in Eq. (27) (mol mol −1 ; dep.) 

X conversion (mol mol −1 ) 

y defined in Eq. (27) (dep.) 

Greek symbols 

γ activity coefficient (-) 

ε porosity (m 

3 m 

−3 ) 

μ viscosity (Pa s or cp) 

π lumped groups in Eqs. (25) and (26) (dep.) 

ρ density (kg m 

−3 ) 

σ error, confidence interval (dep.) 

τ tortuosity (m m 

−1 ) 

ϕ association parameter [5] (-) 

	 Weisz modulus, see Eq. (5) (-) 

Subscripts 

0 initial 
∗ adsorbed 

A compound A 

b bulk 

cat catalyst 

eff effective 

eq equilibrium 

i compound i 

p particle 

s solute, surface 

tot total 

w volumetric basis 

Superscripts 

obs observed 
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Abbreviations and acronyms 

A compound A, (oleic) acid 

E ester 

M methanol 

W water 

Specifications table 

Subject Chemical Engineering 

Specific subject area Catalysis 

Kinetic modelling of the heterogeneous esterification reaction of oleic acid into 

methyl oleate is performed on UiO-66 metal organic framework catalyst 

Type of data Graph 

Figure 

How data were acquired An amount of oleic acid (0.1 g, 0.139 g and 0.279 g) is dissolved in 1 mL methanol 

in a 1.5 mL GC vial, after which the UiO-66 catalyst is added at 10 mol% relative to 

the initial number of OA moles. The vial is closed and brought to reaction 

temperature (65, 75, 85 °C) in a temperature controlled ( ± 0.1 °C) oil bath (IKA, RET 

basic model) and in less than one minute the desired reaction temperature was 

reached. The stirring bar in the reaction vial is 7 mm long and has a 5 mm 

diameter. The stirring bar in the oil bath is 5 cm long and 1 cm wide. Stirrer speed 

was 600 rpm. Every hour, 8 μL is taken via a microsyringe (Hamilton 10 μL, made 

in Romania). The sample is filtered by a Jin Teng filter (PES, 13 mm/0.22 μm, made 

in China) and it is diluted in 0.5 mL hexane and 0.5 mL isopropanol in the sample 

vial. The reaction mixture is analyzed via injection of 1 μL, taken from the sample 

vial, via an Agilent 7890A GC with 25 μL of methyl heptadecanoate as an internal 

standard. The injection port is at 260 °C, the pressure and total flow rate are 21.849 

psi and 48.73 mL min −1 with a split ratio of 10:1. The GC detector temperature is 

250 °C. The repeatability of the given experimental protocol was checked. 

Blank experiments did not show significant OA conversion. The only product 

detected in the chromatogram for the catalytic experiments is methyl oleate. 

Data format Raw 

Analyzed 

Parameters for data 

collection 

The effects of reaction conditions were examined with 3 different initial oleic acid 

amounts (0.1 g, 0.139 g and 0.279 g) in 1 mL of methanol. Three temperatures 

levels were applied (65, 75 and 85 °C). 

After model discrimination (based on 67 heterogeneous reaction rate expressions), 

using initial reaction rate analysis, intrinsic kinetic parameters were obtained by 

non-linear parameter estimation, using activity coefficients to account for the 

non-ideal behavior of the reaction mixture. 

Description of data 

collection 

Experimental gas chromatographic data for oleic acid are used to calculate the 

corresponding conversion, which serves as input for the initial reaction rate 

analysis and subsequent non-linear parameter estimation procedure. 

Data source location State Key Laboratory of Advanced Technology for Materials Synthesis and 

Processing, Wuhan University of Technology 

Wuhan 

China 

30 ° 31 ′ 10.5 ′ ′ N, 114 ° 21 ′ 09 ′ 8 ′ ′ E 

Data accessibility With the article 

Related research article S. Chaemchuen, P.M. Heynderickx, F. Verpoort, Kinetic modeling of oleic acid 

esterification with UiO-66: from intrinsic experimental data to kinetics via 

elementary reaction steps, Chem. Eng. J. 394 (2020) 124816. 

https://doi.org/10.1016/j.cej.2020.124816 [1] 

Value of the data 

• The presented data and corresponding data treatment can be put forward by other re-

searchers in order to guarantee the acquisition of intrinsic experimental data for catalytic

reactions. 
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• The presented data can be used as an example to set up typical heterogeneous esterification

reactions by researchers working on catalytic systems with the specific purpose of kinetic

modeling. 
• Data treatment in order to calculate initial reaction rates is explained in detail with example.

This has a high applicability and very easy practicability for users in the research field of

heterogeneous catalysis. 
• Concentration gradients, which might destroy the intrinsic character of the experimental

data, can be ruled out via simple criteria. How to use the data is explained in this manuscript.

. Data description 

This dataset contains 1 Table and 4 Figures in the main text. Table 1 contains the experimen-

al conditions, together with the initial reaction rates and calculated Weisz modulus. Fig. 1 gives
able 1 

xperimental conditions for the esterification of oleic acid (OA) into methyl oleate (MO) using UiO-66 catalyst. 

 M, 0 = 1 mL, rpm = 600 min −1 . r 0 and 	 are the initial reaction rate and the Weisz modulus, given by Eq. (5) . 

Entry T ( °C) C OA,0 (M) n OA,0 (mmol) m cat (mg) r 0 ( μmol g cat 
−1 s −1 ) 	 (10 −3 ) 

1 65 0.318 0.354 10.0 1.58 ± 0.05 0.230 

2 65 0.426 0.492 13.9 1.56 ± 0.10 0.172 

3 75 0.318 0.354 10.0 3.40 ± 0.25 0.426 

4 75 0.426 0.492 13.9 2.03 ± 0.22 0.194 

5 75 0.753 0.988 27.9 1.26 ± 0.21 0.072 

6 85 0.318 0.354 10.0 4.10 ± 0.35 0.455 

7 85 0.426 0.492 13.9 2.97 ± 0.27 0.251 

8 85 0.753 0.988 27.9 1.94 ± 0.16 0.098 

ig. 1. Calculation of the initial reaction rate with Eq. (2) . Blue fields require input data. (a) conversion versus reactime 

ata, (b) initial mass of catalyst and limiting reactant (oleic acid), (c) parameter estimates a and b in Eq. (1) after run- 

ing Solver in Excel R © (optimizing the rssq using calculations in black box), (d) parameter confidence intervals via the 

rocedure, explained in de Levie [2] and (e) the value for te initial reaction rate, according Eq. (2) . Specific details on 

hese calculations can be found in the Supplementary Content of this paper. 
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Fig. 2. Calculation of viscosity of initial reaction mixture with Eq. (9) . 

Fig. 3. Evaluation of Weisz criterion with Eq. (5) (internal concentration criterion). Blue fields require input data and 

the viscosity value is taken from Fig. 2 . (a) Surface concentration calculation, (b) calculation of effective diffusion coeffi- 

cient, according to Eq. (7) , (c) diffusion coefficient, according to Eq. (8) and (d) evaluation of the Weisz-Prater criterion, 

according to the left hand side of Eq. (5) . 

 

 

 

 

 

 

the details for the initial reaction rate calculation, corresponding to entry 6 in Table 1 . Fig. 2

gives the details for the calculation of viscosity of the initial reaction mixture. The evaluation

of Weisz criterion (internal concentration criterion) is given in Fig. 3 and Fig. 4 provides the

information for the evaluation of the Carberry number for the external concentration criterion. 

There are 7 additional Figures in Supplementary Content, analogous to Fig. 1 , corresponding

to the entries 1–5, 7 and 8 in Table 1 . 

2. Experimental design, materials and methods 

First, this data paper explains how to obtain initial reaction rates from conversion versus

reaction time data. Secondly, criteria for internal and external mass concentration gradients are
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Fig. 4. Evaluation of Carberry number with Eq. (6) (external concentration criterion). Blue fields require input data and 

other input is taken from Figs. 2 and 3 . 
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iven with explanation how to deal with them. Thirdly, details on heterogeneous catalytic rate

xpressions and corresponding initial reaction rate analysis from experimental data are given. 

A reaction rate is maximal at zero conversion, i.e., the change in moles versus reaction time is

ighest at the beginning of the experiment. From an empirical relation between the conversion

f the limiting reactant and time (in h), see Eq. (1) , the initial reaction rate, r 0 (in mol kg cat 
−1

 

−1 ), is given by Eq. (2) : 

X A = a · ( 1 − exp ( −b · t ) ) (1)

r A, 0 = 

ab 

3600 
· n A, 0 

m cat 
(2)

Parameters a and b are estimated via the Excel R © Solver function, minimizing function S given

y Eq. (3) , and the confidence intervals are obtained via the procedure explained in de Levie [2] .

S ( a, b ) = 

∑ 

i 

(
X A − X A,calc 

)2 → min 

( a,b ) 
(3)

The error on the reaction rate is obtained via Eq. (4) : 

σr A, 0 
= r A, 0 ·

√ 

( σa /a ) 2 + ( σb /b ) 
2 (4)

On a side note, sometimes polynomial expressions are used to model the conversion versus

eaction time data. In this case, the possibility exists that negative values for the first order

erm, corresponding to the initial reaction rate, are obtained. This is physically not acceptable

nd, therefore, expression (1) is preferred [3 , 4] . 

After the calculation of the initial reaction rate, the criteria for internal and external concen-

ration gradients, given in Eqs. (5) and (6) , can be evaluated [5] : 

	 = 

(
n + 1 

2 

)
·

r obs 
A,w 

ρcat 

D A,e f f C A,s 
·
(

d p 

6 

)2 

< 0 . 08 (5)

Ca = 

C A,b − C A,s 

C A,b 

= 

r obs 
A,w 

ρcat 

k f a v C A,b 

< 

0 . 05 

n 
(6)

It can be observed that Eqs. (5) and (6) directly rely on the value of the observed reac-

ion rate, which has to be evaluated at its highest value in order to have proper validation. In

qs. (5) and (6) the value for the observed reaction rate is expressed in mol m cat 
−3 s −1 , so that

orrection for the density ( ρcat ) is required. 
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Eq. (5) requires the input of the diffusion coefficient, see Eqs. (7) and (8) ; the former is the

well-known Wilke and Chang correlation [6] : 

D A μM 

T 
= 

7 . 4 · 10 −8 ( ϕ S M S ) 
1 / 2 

V 0 . 6 
A 

(7) 

D A,e f f = D A ·
ε 

τ
(8) 

The viscosity of the mixture (component A and solvent) is given by the Grunberg-Nissan

mixing rule for liquid mixture [7] , see Eq. (9) : 

ln μM 

= 

n ∑ 

i =1 

x i ln μi (9) 

The molar volume of the limiting reactant, V A , can be found online or it can be estimated

from group-contributive methods [8 , 9] . Effective diffusivities are then obtained with Eq. (8) , with

ε and τ the catalyst porosity and tortuosity. 

Thus far, initial reaction rates are obtained and together with physical properties of the cat-

alytic system, such as the viscosity of the solvent and the diffusion coefficient of the limiting

reactant, the intrinsic character of the kinetic data are evaluated. 

Lastly, the specific reaction rate expression is based on the Hougen-Watson formalism, us-

ing the Langmuir adsorption isotherm approach. The underlying assumptions may not always

be completely fulfilled, but it is generally accepted that this approach is the most suitable and

reliable way of rationalizing observed catalytic rate data [10 , 11] . 

The model for esterification reaction, as described in [1] considers the adsorption of oleic acid

(A) and then methanol (M) reacts with the oleic acid adsorbate, see Eqs. (10) and (11) . Surface

reaction (11) addresses one additional active site to give the ester product (E) and water (W),

both adsorbed on the catalyst surface, see Eqs. (12) and (13) . 

A + ∗ � A 

∗ (10) 

A 

∗ + M + ∗ � E ∗ + W 

∗ (11) 

E + ∗ � E ∗ (12) 

W + ∗ � W 

∗ (13) 

If the surface reaction (11) is rate determining, the overall reaction rate is given by

Eq. (14) and relations (10), (12) and (13) provide the required equilibrium relations (15) to (17)

to solve for the adsorbates: 

r = k s C A ∗C M 

C ∗ − k ′ s C E ∗C W 

∗ (14) 

K 1 = 

C A ∗

C A C ∗
(15) 

K 2 = 

C E ∗

C E C ∗
(16) 

K 3 = 

C W 

∗

C W 

C ∗
(17) 

Together with the active site balance, see Eq. (18) , the esterification reaction rate expression,

Eq. (19) , can be established, taking into account non-ideality of the liquid phase, where concen-

tration (C) is replaced by activity (a): 

C ∗ + C A ∗ + C E ∗ + C W 

∗ = C tot (18) 
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r = 

k s K 1 C 
2 
tot 

( 1 + K 1 a A + K 2 a E + K 3 a W 

) 2 
·
(

a A a M 

− a E a W 

K eq 

)
(19)

Activity coefficients, γ , link concentration to the compounds’ activity, via a = γ •C. They are

alculated based on the composition of the reaction mixture [12] . 

Oleic acid is the limiting reagent, so the concentrations (to be converted into activities) can

e written as Eqs. (20) to (22) : 

C A = C A, 0 · ( 1 − X ) (20)

C M 

= C M, 0 − C A, 0 · X (21)

C E = C W 

= C A, 0 · X (22)

The initial rate is evaluated at zero conversion, X = 0, so that Eq. (19) is replaced by Eq. (23) :

r 0 = 

k 5 K 1 C 
2 
tot (

1 + K 1 a A, 0 

)2 
· a A, 0 a M, 0 (23)

Eq. (23) can be linearized by taking the square root of both sides and subsequent inversion,

nd after rearranging terms, Eq. (24) is obtained with substitutions (25) and (26): 

C tot √ 

r 0 
·
√ 

a A, 0 a M, 0 = π1 + π2 · a A, 0 (24)

π1 = 

1 √ 

k 5 K 1 

(25)

π2 = 

√ 

K 1 

k 5 
(26)

All Hougen-Watson expressions can be transformed into a linear function as presented in

qs. (23) and (24) . The latter is a linear relation and the initial data can be evaluated very quickly

n Excel R © via the ‘linest’ function. This function deals with linear regression models such as

iven in Eq. (27) : 

y = b 0 + 

n ∑ 

i =1 

b i x i (27)

The parameters b , representative for the lumped parameters π in Eq. (24) , should be positive

nd significant in order to generate valid models able to describe the data set. If a parameter bj

j = 0…n) is not significantly different from 0, it must be set to zero. In this case, the considered

odel can describe the whole data set, but in the original model the corresponding parameter

hould be set to zero. In the case that a parameter bj is significantly negative, this model will not

ake physical sense (kinetic parameters cannot have negative value) and it should be discarded

rom the list for the current data. Hence, the given transformation procedure can be successfully

sed for model discrimination, as described in previous reports [4 , 10] . 

It can be added that the correct input of the initial reaction rate, as determined via

q. (2) from raw experimental conversion versus reaction time data, is required to evaluate the

nitial reaction rate analysis as a discrimination tool via Eq. (24) . 
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3. Data and results 

For the calculation of the initial reaction rate, Eq. (2) is used based on the conversion versus

reaction time data fitting with Eq. (1) , as shown in Fig. 1 . This calculation requires only the data

(reaction time, conversion), together with initial mass of limiting reactant and the catalyst mass.

Note that the variance for coefficients A and B, taken as the confidence interval after estimation,

is obtained via an in-house built protocol, following reference [2] , because Excel R © only has built-

in parameter estimation without providing the corresponding confidence intervals. 

The mass of the limiting reactant (oleic acid) and the volume of solvent (methanol) is taken

as input for the calculation of the mixture viscosity, see Fig. 2 , at the given temperature. If re-

quired, temperature dependency per compound should be done in advance. 

Fig. 3 shows the evaluation of Weisz criterion to rule out internal concentration criterion via

Eq. (5) . The effective diffusivity is calculated using Eqs. (7) and (8) . 

Fig. 4 shows the evaluation for the possible absence of external concentration gradient ac-

cording to the Carberry number calculation. Note that this criterion needs to be satisfied in

order to calculate the surface concentration based on bulk properties, see Fig. 3 . 
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