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Abstract: The dose-dependent effects of adipose-derived mesenchymal stem cell-conditioned medium
(ADSC-CM) were compared with those of shockwave (SW) therapy in the treatment of early os-
teoarthritis (OA). Anterior cruciate ligament transaction (ACLT) with medial meniscectomy (MMx)
was performed in rats divided into sham, OA, SW, CM1 (intra-articular injection of 100 µL ADSC-CM
into knee OA), and CM2 (intra-articular injection of 200 µL ADSC-CM) groups. Cartilage grading,
grading of synovium changes, and specific molecular analysis by immunohistochemistry staining
were performed. The OARSI and synovitis scores of CM2 and SW group were significantly decreased
compared with those of the OA group (p < 0.05). The inflammatory markers interleukin 1β, ter-
minal deoxynucleotidyl transferase dUTP nick end labeling and matrix metalloproteinase 13 were
significantly reduced in the CM2 group compared to those in the SW and CM1 groups (p < 0.001).
Cartilage repair markers (type II collagen and SRY-box transcription factor 9, SOX9) expression
were significantly higher in the CM2 group than in the other treatment groups (p < 0.001; p < 0.05).
Furthermore, inflammation-induced growth factors such as bone morphogenetic protein 2 (BMP2),
BMP5, and BMP6 were significantly reduced in the treatment groups, and the CM2 group showed
the best results among the treatments (p < 0.05). In conclusion, ADSC-CM and SW ameliorated
the expression of inflammatory cytokines and inflammation-induced BMPs to protect the articular
cartilage of the OA joint.

Keywords: adipose-derived mesenchymal stem cells; conditioned medium; shockwave; osteoarthritis;
cartilage repair

1. Introduction

Osteoarthritis (OA) is a degenerative joint disease that results in damage to the carti-
lage and subchondral bone and has a significant impact on health care [1]. The pathogenesis
of OA involves whole joint tissues, including the articular cartilage, subchondral bone,
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meniscus, synovial membrane, and infrapatellar fat pad. Many factors can be characterized
for OA, such as synovitis, joint space narrowing, degeneration of articular cartilage and
meniscus, subchondral bone remodeling, inflammation of the infrapatellar fat pad, and
fibrosis [2,3]. The expression of proinflammatory cytokines including interleukin 1β (IL1β)
and tumor necrosis factor α (TNFα) is important in the swollen synovium in OA. These
key factors are accompanied by the increased expression of cytokine receptors and reduced
expression of inhibitory proteins. These cytokines correlate with cartilage damage by
the up regulation of inflammatory or catabolic genes as well as the down regulation of
anti-inflammatory or anabolic genes in articular cartilage [4,5]. Particularly, the expression
of SOX9, type II collagen, matrix metalloproteinases (MMPs), prostaglandin E2 (PGE2),
cytokines, chemokines, reactive oxygen species, and nitric oxide (NO) are affected by
IL1β [6–8]. During OA, inflammation induces the increase in terminally differentiating
chondrocytes and produces high expression of MMP13 to degrade the collagen matrix,
resulting in apoptosis of hypertrophic chondrocytes [9]. The inflammation induced by
BMPs and cytokines of the joint causes a dysregulated expression of catabolic (cartilaginous
matrix proteins) and anabolic proteins (MMPs) to destabilized cartilage homeostasis [10,11].
BMP2 and IL1 are reported to promote the expression of MMP13 in OA chondrocytes [11].
The literature has reported that the source of NO and oxidative stress is the chondrocytes
of osteoarthritic articular cartilage [12]. Therefore, NO, IL1β, and TNFα play a key role
in suppression of glycosaminoglycan and collagen synthesis, expression of MMPs, and
activation of proenzymes in the OA knee [13].

Mesenchymal stem cells (MSCs) have been investigated for use in cell-based therapy
for early OA in pre-clinical and clinical treatments [14,15]. A pilot study using autolo-
gous bone marrow-derived mesenchymal stem cells on knee OA has shown promising
results [16]. Further studies have shown that stem cells secrete a wide range of specific
factors to induce paracrine effects on other cells or tissues. Therefore, researchers have
used conditioned medium from stem cells, which has potential therapeutic applications in
tissue repair in different organs [17,18]. Adipose-tissue-derived mesenchymal stem cells
(ADSCs) can be easily expanded and extensively cultivated for use in tissue regeneration or
immunomodulation [19,20]. ADSCs can be isolated not only from the abdominal adipose
tissue but also from the infrapatellar fat pad [21,22]. ADSCs respond to the inflammatory
environment through paracrine factors and modulate the expression of immunosuppres-
sive factors in target cells. There are many paracrine factors involved in the production
of signaling in cells, including TGF-β1, IL10, IL2, C–C motif chemokine ligands (CCLs),
NO, fibroblast growth factor (FGF), hepatocyte growth factor (HGF), insulin-like growth
factor 1 (IGF1), vascular endothelial growth factor (VEGF), platelet-derived growth factor
(PDGF), microvesicles, and exosomes [18,23].

Several studies have investigated the mechanisms of conditioned medium (CM) in OA
treatment, and investigators have isolated and characterized ADSCs from human adipose
tissue [17,24,25]. CM was then collected and used to isolate the microvesicles and exosomes.
These extracellular vesicles and CM were used to treat chondrocytes from patients with
OA. The results showed that CM, microvesicles, and exosomes reduced IL1β-induced
inflammatory mediator production, including TNF-α, IL6, PGE2, and NO [24,26]. Addi-
tionally, OA chondrocytes showed significantly decreased activity of MMP and MMP13
expression and increased expression of IL10 and collagen type II after treatment with CM or
extracellular vesicles [24]. The effects of CM alone are similar to those of microvesicles and
exosomes [24]. Moreover, CM can decrease IL1β-induced inflammatory effects in cartilage
and synovium co-culture systems, and reduce the expression levels of NO, MMP13, and
a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) [27]. A
recent study showed that allogeneic canine CM was injected into both elbow joints in dogs
with OA [28]. CM significantly improved the range of motion, and no severe adverse events
were observed. This indicates that CM is a safe, cell-free based therapy and a noninvasive
therapeutic tool for pain management in knee OA [28].
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In this study, pro-inflammatory cytokines and inflammation-induced BMPs were
assessed in the articular cartilage of knee OA after ADSC-CM and shockwave therapy.
The comparison of ADSC-CM treatment and noninvasive shockwave therapy showed that
ADSC-CM down-regulated pro-inflammatory cytokines and inflammatory factors, and up-
regulated the expression of the pivotal cartilage-specific extracellular matrix transcription
factor SOX9 and type II collagen expression in OA articular cartilage. ADSC-CM therapy
may offer several advantages for future clinical translation.

2. Materials and Methods
2.1. Animals for Experiments

Forty Sprague-Dawley rats (8 weeks old, BioLasco, New Taipei City, Taiwan) were
purchased and used for the experiments in this study. The IACUC protocol of the animal
study was approved by the Animal Care Committee of Kaohsiung Chang Gung Memorial
Hospital (IACUC: 2018031602) on March 16, 2019. The animals were cared for at the Center
for Laboratory Animals in the hospital for 1 week before the experiments. All rats were
housed at 23 ± 1 ◦C, humidity at 50 ± 20%, and under light on at 5 am and light off at
5 pm, with a 12-h light and dark cycle as well as supplied food and water.

2.2. Animal Model for Knee OA

The rats were anesthetized using Zoletil (25 mg/kg) (tiletamine–zolazepam, Virbac,
France) and Rompun (5–10 mg/kg) (xylazine-hydrochloride, Bayer, Leverkusen, Germany),
and the left knee of the rat was prepared in a surgically sterile fashion. Through medial
parapatellar mini-arthrotomy, the anterior cruciate ligament fibers were transected with a
scalpel, and medial meniscectomy was performed by excising the entire medial meniscus
to create knee OA. The left knee joint was irrigated, and the incision was closed. Prophy-
lactic antibiotic treatment with ampicillin (25 mg/kg) and pain reduction with ketorolac
(1 mg/kg/day) were administered for 5 days after surgery. After surgery, the animals
were returned to the housing cage (two rats per cage) and were cared for by a veterinary
physician at the Center for Laboratory Animals. The surgical wound and animal activities
were monitored daily.

2.3. Study Design

Forty rats were randomized into five groups, as shown in Figure 1. In the sham
group, rats did not undergo surgery or receive treatment. Rats in the OA group underwent
anterior cruciate ligament transection (ACLT) and medial meniscectomy (MMx) of the left
knee to create knee OA. In the SW group, the left knees of OA rats were treated with SW
(0.25 mJ/mm2 with 800 impulses, 4 Hz) at one-week post-surgery. In the CM1 group, the
rats received intra-articular injection of 100 µL ADSC-CM into the OA knee at one and
three weeks post-surgery. In the CM2 group, the rats received intra-articular injection of
200 µL ADSC-CM at one- and three-weeks post-surgery.

2.4. Shockwave Application

The SW group animals received SW treatment using an SW device DUOLITH SD1
(STORZ MEDICAL AG, Tägerwilen, Switzerland). A shockwave was applied to the
subchondral bone of the medial tibial condyle of the left knee at 0.5 cm below the joint
line and 0.5 cm from the medial skin surface [29]. Each knee received 800 pulses of SW at
0.25 mJ/mm2 energy flux density of 4 Hz. After SW therapy, the animals were returned to
their housing cages for routine care and observation.
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Figure 1. The study design. The graph displays the study design of the experiment including knee surgery (osteoarthritis;
OA), shockwave (SW) application, 100 and 200 µL adipose-derived mesenchymal stem cells-conditioned medium (ADSC-
CM) injections at 1- and 3-weeks post-surgery, respectively, and sacrifice of animals at 6 weeks post-surgery. Eight rats were
used for each group.

2.5. Isolation of Rat Adipose-Derived MSCs

Preparation of rat adipose-derived MSCs (ADSCs) was performed as described in our
previous study [29,30]. Briefly, rat ADSCs were isolated from subcutaneous adipose tissues
of SD rats at 8 weeks of age. The adipose tissue was minced into one-gram pieces and
digested in 3 mL of 0.1% collagenase type I buffer (GIBCO, Waltham, MA, USA) at 37 ◦C
for 2 h. After digestion, 3 mL of Dulbecco’s modified minimal essential medium (DMEM)
containing 10% fetal bovine serum (ThermoFisher Scientific, Cleveland, OH, USA) was
added. The cell mixture was filtered through a 100 µm filter (BD Biosciences, San Jose, CA,
USA) to remove aggregates. The filtrate was centrifuged at 2000 rpm for 5 min at 25 ◦C,
and the pellet was suspended in 1 mL of lysis buffer (Promega, Waldorf, Germany) for
10 min. The mixture was washed with 10 mL of 1% antibiotic-antimycotic mixture in PBS
and centrifuged at 2000 rpm for 5 min. Finally, the cell pellet was suspended in complete
medium (DMEM with 20% fetal bovine serum, 1% antibiotic antimycotic solution) in a
25 cm2 culture flask and maintained in an incubator supplied with a humidified atmosphere
of 5% CO2 at 37 ◦C. The rat ADSCs were passaged three times. The third passage of ADSC
was observed for the cell morphology and identification of the cell markers. Finally, the
ADSCs were used for conditioned medium preparation.

2.6. ADSC Phenotyping

The method for the identification of rat ADSCs was performed as described in our
previous study [29,30]. The spindle-shaped rat ADSCs were cultured after three to five
passages, and the specific surface markers were characterized by flow cytometry (BD
LSRII, San Jose, CA, USA). Cells were incubated with specific antibodies conjugated with
fluorescein isothiocyanate (FITC) or phycoerythrin (PE) against the indicated markers
including CD29, CD45, CD90, CD106, RT1a, and RT1b [29].
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2.7. Production of ADSC-CM and Intra-Articular Injection of ADSC-CM

The third passage of rat ADSCs was cultured in a T75 flask at a density of
2 × 104 cells/cm2. After culturing to 80–90% confluence, ADSCs were washed twice
with 1 × PBS buffer and then cultured with serum-free DMEM/F12 (GIBCO, Waltham,
MA, USA). ADSCs were then incubated for 48 h with 12 mL serum-free DMEM/F12
at 37 ◦C and 5% CO2. The fresh serum-free DMEM/F12 with no cells was used as a control.
After 48 h, the medium was collected and centrifuged for 5 min at 1200× g to remove
cell debris. The supernatant was transferred to an Amicon Ultra 15 filter (3 kDa cut-off
membranes) (Millipore, Bedford, MA, USA) and centrifuged at 4000× g for 40 min at 4 ◦C.
Filters were flushed repeatedly with the supernatant, and concentrated ADSC-CM was
stored at −80 ◦C. We repeated the procedure as described above and collected about 20 mL
concentrated ADSC-CM as one batch and a total of four different batches were collected.
Finally, the ADSC-CM was divided equal amounts into 20 tubes for each batch and using
for the experiments. The intra-articular injections of ADSC-CM from different batches
were preceded in the CM1 and CM2 groups (two rats per batch; eight rats per group). One
hundred microliters of ADSC-CM in the CM1 group and 200 µL of ADSC-CM in the CM2
group were intra-articularly injected into the left rat knee by ultrasound guidance [30].

2.8. OARSI Score

The degenerative changes in the cartilage were graded histologically using the Os-
teoarthritis Research Society International (OARSI) cartilage OA grading system via
safranin-O staining [30,31]. The scores were obtained on a scale of 0 to 24 by multiplying
the index of grades with stages [30].

2.9. Synovitis Scoring

The tissue was stained with hematoxylin and eosin to evaluate synovitis score via as-
sessing thickening of the synovial lining, cellular hyperplasia, and infiltration into the joint
cavity and synovium. The three features of synovitis were measured for histopathological
assessment, and the score ranks were defined as follows: (1) 0 to 1 indicates no synovitis;
(2) 2 to 4 is low-grade synovitis; and (3) 5 to 9 is high-grade synovitis [30].

2.10. Histopathological Examination

The left rat knees were subjected to histopathological examination. The harvested
left knee specimens were fixed in 4% PBS-buffered formaldehyde at 4 ◦C for 2 days and
decalcified in 10% PBS-buffered EDTA at 4 ◦C for one month. The decalcified per knee
of animal specimens were fixed and subjected to paraffin wax embedding and dissection
into 5 µm-thick sections. The one specimen section of knee per animal was stained with
hematoxylin-eosin, Safranin-O and immunohistochemical stain (total 8 animals for 8 slide
sections in one molecular marker). The degenerative changes in the cartilage were graded
histologically using OARSI scores for the assessment of cartilage structure, cartilage cells,
and tidemark integrity.

2.11. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling Assay

The specimen sections were analyzed for apoptosis by terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay. TUNEL activity was measured using
in situ cell death detection kits (Roche Diagnostic, Penzberg, Germany), according to the
manufacturer’s instructions, to identify apoptotic cells in the tissue [32]. The specimens
were incubated with peroxidase-conjugated anti-digoxigenin antibody (Roche Diagnostics,
Penzberg, Germany). Staining was performed, and a peroxidase substrate (Sigma-Aldrich,
Saint Louis, MO, USA) was used to present the color of the TUNEL reaction.

2.12. Immunohistochemical Analysis

The specimen sections were analyzed by immunohistochemical methods to deter-
mine the level of IL1β (Abcam, San Francisco, CA, USA, Ab-9787, 1:200), MMP13 (Abcam,
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ab75606, 1:100), type II collagen (Santa Cruz Biotechnology, CA, USA, Sc-52658, 1:100),
SOX9 (Abcam, ab26416, 1:100), BMP2 (Abcam, ab6285, 1:100), BMP5 (ThermoFisher Scien-
tific, Cleveland, OH, USA, PA5-97037, 1:100), and BMP6 (ThermoFisher Scientific, Cleve-
land, OH, USA, PA5-75427, 1:100). The harvested specimens were fixed in 4% PBS-buffered
formaldehyde for 2 days and decalcified in PBS-buffered 10% EDTA solution for one
month. Decalcified paraffin-embedded samples were cut into 5-µm-thick sections and
transferred onto polylysine-coated slides. Sections of the specimens were immunostained
with antibodies to identify the protein markers. The immunoreactivity of the specimens
was demonstrated using a horseradish peroxidase (HRP)-3′-,3′-diaminobenzidine (DAB)
cell and tissue staining kit (R&D Systems, Minneapolis, MN, USA). The immunolabeled
positive cells were quantified from five areas in three sections of the same specimen using a
Zeiss Axioskop 2 plus microscope (Carl Zeiss, Berlin, Germany). All images were captured
using a Cool CCD camera (SNAP-Pro c.f. Digital kit; Media Cybernetics, Carlsbad, CA,
USA), and data were analyzed using Image-Pro® Plus image analysis software (Media
Cybernetics, Carlsbad, CA, USA).

2.13. Statistical Analysis

SPSS (version 26.0, SPSS Inc., Chicago, IL, USA) was used for statistical analysis.
Kruskal–Wallis test is a non-parametric method for analyzing two or more independent
samples. In this study, using Dunn-Bonferroni nonparametric comparison for post hoc
which the Kruskal–Wallis test was significant. All statistical significance was set at p < 0.05,
0.01, and 0.001.

3. Results
3.1. ADSC-CM Protected the Extracellular Matrix and Chondrocytes of the Articular Cartilage in
Rat Knee OA

The experimental design is shown in Figure 1. The ADSC-CM and SW therapy
groups were compared with the sham and OA groups (Figure 2). Pathological changes
in the articular cartilage of the tibia in rat knee OA were observed, including loss of
extracellular matrix and the formation of fibrosis in the hyaline cartilage (Figure 2A, OA
group). After ADSC-CM and SW treatment, the damage to hyaline articular tissue was
obviously improved, as shown by safranin-O staining (Figure 2A, SW, CM1, and CM2
groups). For the OARSI cartilage scores, the CM2 and SW groups showed significant
improvement in the repair of hyaline cartilage as compared with the OA group (Figure 2B;
p < 0.05). In addition, among the treatment groups, the improvement in the articular
cartilage in the SW and CM2 groups was better than that of the CM1 group (p < 0.01).
Furthermore, the results showed that CM2 improved the loss of extracellular matrix and
articular chondrocytes than CM1 in trends but no significance.

3.2. The Improvement of Synovitis in Knee OA

Synovitis of the rat joint was measured after the treatment (Figure 3). The enlarge-
ment of the lining cell layer and infiltration of mononuclear cells and neutrophils were
improved in the synovial membrane of the knee after treatment (Figure 3A, white arrow).
The SW (4.33 ± 0.422, p < 0.001), CM1 (5.66 ± 0.422, p < 0.05), and CM2 (4.00 ± 0.931,
p < 0.05) groups showed significant improvement in synovitis compared with the OA
group (7.33 ± 0.558) (Figure 3B). Among the treatment groups, the CM2 and SW groups
showed better improvement in trends than the CM1 group but no significance.
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3.3. ADSC-CM Down-Regulates the Inflammatory Molecular Factors in the OA Knee

Inflammatory cytokines that induce MMPs are important for living chondrocytes and
the composition of articular cartilage of the knee. In the study, the inflammatory cytokine
IL1β, apoptotic cells, and MMP13 in OA rat knees were assessed after treatment (Figure 4).
The expression of IL1β was significantly reduced in the SW (6.74 ± 0.532, p < 0.05), CM1
(4.77± 0.498, p < 0.001), and CM2 (3.76± 0.264, p < 0.001) groups compared with that in the
OA group (10.823 ± 0.583) (Figure 4A). In addition, the CM2 (3.76 ± 0.264, p < 0.05) group
showed the greatest reduction in the expression of ILβ compared to SW (6.74 ± 0.532)
and CM1 (4.77 ± 0.498, p < 0.05) groups. The cell death marker, TUNEL activity, was
measured (Figure 4B). The TUNEL activity was reduced in the SW (3.98 ± 0.341, p < 0.01),
and CM2 (4.07 ± 0.245, p < 0.01) groups compared with that in the OA (7.38 ± 0.46) group.
Furthermore, the SW (3.07 ± 0.541, p < 0.05), CM1 (2.11 ± 0.094, p < 0.001), and CM2
(1.77 ± 0.221, p < 0.001) groups showed significantly reduced expression of MMP13 as
compared with the OA (5.57 ± 0.392) group (Figure 4C).
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Figure 3. Evaluation of histological changes in the synovium membrane of rats with osteoarthritis (OA) after treatments.
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medium groups are indicated as CM1 and CM2, respectively.
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Figure 4. Apoptosis and physiological turnover of cartilage extracellular matrix factors in OA treatments. (A) Immunohisto-
chemical analysis for IL1β in the experiments (×400 magnification). The data show the percentage of IL1β expression in the
articular cartilage of the tibia for each group in the left panel. (B) The activity of TUNEL (×400 magnification). (C) The
expression level of MMP13 (×400 magnification). * p < 0.05, ** p < 0.01 and *** p < 0.001 as compared with the OA group.
# p < 0.05 as compared with the SW group. Eight rats were used for each group.
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3.4. ADSC-CM Up-Regulated Key Molecular Factors for Chondrogenesis and Extracellular
Matrix in the Articular Cartilage of OA Knees

The expression of SOX9 and type II collagen was measured after treatment (Figure 5).
The expression level of SOX9 was significantly increased in the SW (8.12 ± 0.409, p < 0.05),
and CM2 (8.73 ± 0.600, p < 0.01) groups compared with that of the OA (5.50 ± 0.500) group.
In addition, the expression of type II collagen was increased in the treatment groups and
CM2 (32.61 ± 1.992, p < 0.001) was significantly increased by compared with the OA group
(14.06 ± 1.533) (Figure 5B).
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3.5. ADSC-CM Modulated the Expression of BMP2, BMP5, and BMP6 in the OA Knee
Articular Cartilage

Inflammation-induced BMPs are harmful to the articular cartilage during OA devel-
opment. In the current study, the expression of BMP2, BMP5, and BMP6 was measured in
the knee OA with and without treatment (Figure 6). The expression level of BMP2 was sig-
nificantly higher in the OA group than in the sham group (Figure 6A). After treatment, in
the SW (8.51 ± 0.424, p < 0.05), CM1 (8.57 ± 0.303, p < 0.05), and CM2 (6.15 ± 0.546,
p < 0.01) groups, BMP2 was significantly reduced as compared with that in the OA
(12.91 ± 0.967) group, and the CM2 group showed the greatest reduction in the expression
of BMP2. In addition, BMP5 was induced in the OA (7.67 ± 0.399) group and reduced
after treatment in the SW (3.66 ± 0.359, p < 0.001), CM1 (3.61 ± 0.510, p < 0.001), and
CM2 (2.41 ± 0.357, p < 0.001) groups. Finally, BMP6 was significantly reduced in the SW
(2.88 ± 0.104, p < 0.001), CM1 (3.86 ± 0.302, p < 0.05), and CM2 (2.96 ± 0.242, p < 0.001)
groups compared with that in the OA (5.03 ± 0.227) group.
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Figure 6. Immunohistochemical analysis for (A) BMP2, (B) BMP5, and (C) BMP6 (×400 magnification), and the percentage
of BMP2, BMP5, and BMP6 expression in the articular cartilage of the tibia for each group is shown on the left. The 100 and
200 µL adipose-derived mesenchymal stem cells-conditioned medium groups are indicated as CM1 and CM2, respectively.
SW indicates shockwave. * p < 0.05, ** p < 0.01, and *** p < 0.001 as compared with the osteoarthritis (OA) group. Eight rats
were used for each group.

4. Discussion

In this study, ADSC-CM modulated the inflammatory factors and inflammation-
induced BMPs, such as BMP2, BMP5, and BMP6, to prevent damage to the articular
cartilage in rat knee OA. In addition, ADSC-CM had a dose-dependent effect and was com-
pared with noninvasive SW therapy in the treatment of knee OA. The results demonstrated
that the expression of inflammatory cytokines (IL1-β), apoptosis activity (TUNEL), and
markers for OA (MMP13) were induced in knee OA, and were reduced after ADSC-CM and
SW therapy. The expression of cartilaginous-specific markers, SOX9 and type II collagen
was significantly improved in the articular cartilage of OA rat knees following ADSC-CM
and SW treatments.

ADSCs are a type of MSC that are prepared and cultured from adipose tissues and can
differentiate into different cell lineages [33]. ADSCs have typical mesenchymal markers
including CD13, CD29, CD44, CD63, CD73, CD90, and CD105, and are negative for
hematopoietic antigens, CD14, CD31, CD45, and CD144 [34–36]. ADSCs can self-renew and
differentiate multidirectionally and secrete biological factors, including cytokines, growth
factors, exosomes, RNA, and DNA [33,37]. ADSCs have been widely used in clinical
applications, tissue engineering, and regenerative medicine [38,39]. However, researchers
have revealed that ADSCs cannot survive for a long time when implanted into the human
body [40,41]. In addition, the therapeutic effects of ADSCs may be due to their secretome
derivatives [27,40]. Therefore, ADSC-CM is considered advantageous over cells because it
is easy to prepare, does not require expanding passages, does not undergo spontaneous
transformation, is easily handled and stored, and is a quickly available product.

Here, we verified rat ADSCs and cultured them to retain the CM for the experiments.
The ADSC-CM and SW, which is a noninvasive acoustic wave that promotes tissue regen-
eration, were compared for the treatment of rat knee OA. ADSC-CM and SW therapy have
been reported to have chondroprotective effects to reduce the expression of IL1β-induced
MMP13 and increase the expression of type II collagen in OA chondrocytes in animal
models [42–44]. Our results showed that ADSC-CM and SW therapy reduced damage
to the articular cartilage and synovitis in rat knee OA (Figures 2 and 3). In addition,
ADSC-CM was better at reducing the expression of IL1β and MMP13 than SW therapy
(Figure 4). The results of this study suggest that ADSC-CM is an alternative efficient
method for articular cartilage protection [45]. Synovitis is a condition of inflammation of
the synovial membrane. Swelling, stiffness, and pain occur in the knee and further induce
knee osteoarthritis [46]. When the synovial membrane is inflamed, neutrophils, fibroblast-
like synoviocytes, and macrophage-like synoviocytes are activated and infiltrate into the
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inflamed membrane [47]. Studies have reported that ADSC-CM regulates the expression
of pro-inflammatory cytokines CXCL1, IL1β, and IL6 as well as the anti-inflammatory
cytokine IL10 in the treatment of inflammatory diseases [42,48]. Therefore, ADSC-CM has
anti-inflammatory effects and modulates inflammation in the synovial membrane of OA
through regulation of the immune response in immune cells such as macrophages and
neutrophils [25,42,49].

BMPs are reported to play an important role in the repair of articular cartilage; how-
ever, the harmful effects of over-induction of BMPs have also been reported in inflammatory
joint disease [9,50]. The expression profiles of BMP2, BMP5, and BMP6 were observed
to increase in knee OA and decrease after ADSC-CM and SW treatments (Figure 6). In
addition, the expression of BMP2, BMP6, and BMP7 is increased in the osteoarthritic car-
tilage of humans and animals, and cultured OA chondrocytes [50–52]. In our study, the
expression of IL1, MMP13, BMP2, BMP5, and BMP6 in the rat OA knee was higher than
that of the sham control and reduced to sham levels after ADSC-CM and SW treatments
(Figures 4 and 6). Furthermore, ADSC-CM and SW therapy enhanced the expression of
SOX9 and type II collagen in the knee OA (Figure 5). Endogenous BMPs can stimulate pro-
teoglycan synthesis and are involved in the homeostasis and maintenance of joint integrity
during injury. However, severe inflammation (for example, excessive IL1) induced high
expression of endogenous BMPs, which might disrupt the balance in cartilage homeosta-
sis [4,9,52]. The study showed that ADSC-CM was more effective than SW in modulating
the expression of catabolic and anabolic factors in the rat knee OA (Figures 4–6). However,
the detailed mechanism by which endogenous BMPs modulate cartilage homeostasis in
OA is still unclear. Further studies may display clearly defined functions and signaling
pathways of these fascinating growth factors in OA progression, repair, and treatment.

The limitations of this study are as follows: First, the study was a small animal
experiment, and the results would be different from those of large animal or human clinical
trials. Second, the pathological changes in rat knee OA might be different from those in
human knee OA and require further investigation. Third, there are different methods for
the preparation of ADSC-CM, which may result in different contents of growth factors,
secretomes, extracellular vesicles, DNA, and RNA. The products for GMP grade ADSC-CM
should be considered and further established. Fourth, the brands of the shockwave devices
on the market and their effects on knee OA might also be different. Fifth, the dosage of
ADSC-CM and shockwave were based on previous animal studies and may not be the
optimal doses for human clinical treatment. Sixth, ADSC-CM from rats is different from
that of humans.

5. Conclusions

In the study, rat ADSC-CM and SW therapy can protect against the loss of extracellular
matrix in the articular cartilage and improve synovitis in knee OA. In addition, rat ADSC-
CM and SW therapy reduced the expression of IL1β, TUNEL activity, and MMP13, and
promoted the expression of SOX9 and type II collagen in the articular cartilage of the knee
OA. The harmful, inflammation-induced BMP2, BMP5, and BMP6 are modulated after
treatments. Furthermore, a two-fold dosage of rat ADSC-CM was better than one dosage
of rat ADSC-CM and SW therapy in the treatment of knee OA. Taken together, this study
provides significant findings regarding ADSC-CM in comparison with SW therapy for the
treatment of knee OA for future clinical trials.
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