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Abstract: Background: Protein-protein interaction (PPI) networks are the backbone of all process-
es in living cells. In this work, we relate conservation, essentiality and functional repertoire of a
gene to the connectivity k (i.e. the number of interactions, links) of the corresponding protein in the
PPI network.

Methods: On a set of 42 bacterial genomes of different sizes, and with reasonably separated evolu-
tionary  trajectories,  we  investigate  three  issues:  i)  whether  the  distribution  of  connectivities
changes between PPI subnetworks of essential and nonessential genes; ii) how gene conservation,
measured both by the evolutionary retention index (ERI) and by evolutionary pressures, is related
to the connectivity of the corresponding protein; iii) how PPI connectivities are modulated by evo-
lutionary  and  functional  relationships,  as  represented  by  the  Clusters  of  Orthologous  Genes
(COGs).

Results: We show that conservation, essentiality and functional specialisation of genes constrain
the connectivity of the corresponding proteins in bacterial PPI networks. In particular, we isolated
a core of highly connected proteins (connectivities k≥40), which is ubiquitous among the species
considered here, though mostly visible in the degree distributions of bacteria with small genomes
(less than 1000 genes).

Conclusion: The genes that support this highly connected core are conserved, essential and, in
most cases, belong to the COG cluster J, related to ribosomal functions and the processing of genet-
ic information.

Keywords: Protein-protein interactions, gene essentiality, evolutionary retention index, clusters of orthologous genes, bacterial
genomes, cellular processes.

1. INTRODUCTION
To operate biological activities in living cells, proteins

work in association with other proteins, often assembled in
large complexes. Hence, knowing the interactions of a pro-
tein is important to understand its cellular functions. More-
over, a comprehensive description of the stable and transient
protein-protein interactions (PPIs) within a cell would facili-
tate the functional annotation of all gene products, and pro-
vide  insight  into  the  higher-order  organization  of  the  pro-
teome [1, 2]. Several methodologies have been developed to
detect PPIs, and have been adapted to chart interactions at
the proteome-wide scale. These methods, combining differ-
ent technologies, experiments and computational analyses,
generate PPI networks of sufficient reliability, enabling the
assignment  of  several  proteins  to  functional  categories  [3,
4]. Moreover, the statistical study of bacterial PPIs over sev-
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eral  species  (meta-interactomes)  has  brought  important
knowledge about protein functions and cellular processes [5,
6].

Our aim here is to shed some light on the relationships
among conservation, essentiality and functional annotation
at  the  genetic  level  and connectivities  of  PPI  networks,  at
the protein level. We extend here our previous observations
made on the PPI of E. coli which suggested a strong correla-
tion  between the  connectivity  of  PPI  networks  on  the  one
hand, and codon bias, gene conservation and essentiality on
the other hand [7, 8]. In the next two paragraphs, it is worth
making more precise what is usually meant by gene essen-
tiality  and  gene  conservation.  Individual  genes  in  the
genome differently  contribute  to  the  survival  of  an organ-
ism. According to their known functional profiles and based
on experimental evidence, genes can be divided into two cat-
egories:  essential  and  nonessential  ones  [9,  10].  Essential
genes are not dispensable for the survival of an organism in
the environment it lives in [10, 11]. Nonessential genes are
instead  those  which  are  dispensable  [12],  being  related  to
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functions that can be silenced without compromising the sur-
vival of the organism. Naturally, each species has adapted to
one  or  more  evolving  environments  and,  plausibly,  genes
that  are  essential  for  one  species  may  not  be  essential  for
another one.

It  has been argued many times that essential genes are
more  conserved  than  nonessential  ones  [13-17].  The  term
‟conservation” has, however, at least two meanings. On the
one hand, a gene is conserved if orthologous copies of it are
found in the genomes of many species, as measured by the
Evolutionary  Retention  Index  (ERI)  [9,  18].  On  the  other
hand, a gene is (evolutionarily) conserved when it is subject
to a purifying, selective evolutionary pressure, which disfa-
vors  mutations.  A common measure  of  evolutionary  pres-
sure  is  Ka/Ks,  the  ratio  of  the  number  of  non-synonymous
substitutions per non-synonymous site to the number of syn-
onymous substitutions per synonymous site. In this second
meaning, a conserved gene is, in a nutshell, a slowly evolv-
ing gene, a gene that hardly incorporates mutations [13, 19].
To measure the evolutionary pressures exerted on the genes
of  low,  intermediate  and  high  connectivity  bacterial  pro-
teins, we use here Ka/Ks,  and to measure evolutionary pat-
terns of codon bias, we use the Effective Number of Codons
(ENC) plots. The main finding of this work is the presence
of a functional transition in bacterial PPI networks, ruled by
degree connectivity k. The genes of proteins with high con-
nectivities are under selective pressure, conserved, and essen-
tial. Below the transition (k<50), the functional repertoire of
low  connectivity  proteins  is  heterogeneous,  whereas  the
genes of proteins with k>50 mainly belong to the Cluster of
Orthologous Genes (COG) J (related to translation, riboso-
mal  structure  and  biogenesis),  with  just  a  few  interesting
hubs belonging to COGs I (Lipid transport and metabolism),
K (Transcription) and L (Replication, recombination and re-
pair). Moreover, we show here that in the degree distribution
of each bacterial PPI network, there is a ubiquitous trace of
an almost-invariant structure of conserved hubs, essentially
due  to  the  ribosomal  protein  complexes,  mostly  visible  in
the networks of bacteria with small genomes.

2. MATERIALS AND METHODS

2.1.  Bacterial  Dataset  and  Protein-protein  Interaction
Networks

We consider a set of 42 bacterial genomes (that we have
previously  investigated  in  [8]),  shown  in  Table  1.  Nu-
cleotide sequences were downloaded from the FTP server of
the National Center for Biotechnology Information [20]. Th-
ese  genomes  were  chosen  in  order  to  have  a  reasonably
broad coverage of data concerning conservation, essentiality
and selective pressure.

PPIs  are  obtained from the STRING database (Known
and  Predicted  Protein-Protein  Interactions,  https://string
db.org/) [21].We have chosen STRING because of its quite
broad coverage of different bacterial species, useful to ex-
tend to multiple species we studied [7]. In STRING, each in-
teraction is assigned with a confidence level or probability

w, evaluated by comparing predictions obtained by different
techniques  [22-24]  with  a  set  of  reference  associations,
namely the functional groups of KEGG (Kyoto Encyclope-
dia of Genes and Genomes) [25]. In this way, interactions
with high w are likely to be true positives, whereas a low w
possibly corresponds to a false positive. As usually done in
the literature, we consider only interactions with w≥ 0.9, a
threshold that provides a fair balance between coverage and
interaction reliability (see, for instance, the case study on E.
coli reported in reference [7]). We denote the degree (num-
ber of connections) associated to each protein in each PPI
network after the thresholding procedure by k. It is to be not-
ed also that after applying the cut-off, we are left, for each
network,  with  a  number  of  isolated  proteins  (singletons,
with no connections) that grow as n (where n is the number
of proteins in the genome). These isolated proteins are not
considered in the network analysis and are regarded as stem-
ming from statistical  noise or  just  appear isolated because
the PPI data is incomplete.

It  is  known  that  PPIs  of  some  species  in  our  dataset
might be much better known than others (e.g.  E. coli).  To
take into account a potential bias in the dataset, we checked
in Fig. (S1) of the Supplementary Information (bottom pan-
el) that the densities of PPIs are high for small genomes and
tend to be constant and not so different from that of E. coli
in  bacteria  with  bigger  genomes,  among which we collect
here highly investigated pathogens.

The distinction between small and big genomes is a key
emergent point in this work. We divided the set of 42 bacte-
rial genomes into three groups, according to the number n of
their genes: a) n<1000, b) 1000< n<3000 and c) n>3000. In
several figures in the Supplementary Information, we have
addressed the dependence of various network properties on
the size of the genome.

2.2. Gene Conservation
The Evolutionary Retention Index (ERI) [9] is a way of

measuring the degree of conservation of a gene. In the pre-
sent  study,  the  ERI  of  a  gene  is  the  fraction  of  genomes,
among those reported in Table 1,  with at  least  an ortholo-
gous (same COG label) of the given gene. Then, as remind-
ed in the Introduction, a low ERI value is related to a gene
which  is  rather  specific,  common  to  a  small  number  of
genomes;  whereas  high  ERI  is  characteristic  of  highly
shared,  putatively  universal  and  essential  genes.

We also make reference to another notion of gene conser-
vation. Conserved genes are those which are subject to a pu-
rifying, conservative evolutionary pressure. To discriminate
between genes subject to purifying selection and genes sub-
ject to positive selective Darwinian evolution, we use a clas-
sic  but  still  widely used indicator,  the ratio Ka/Ks  between
the number of nonsynonymous substitutions per nonsynony-
mous site (Ka) and the number of synonymous substitutions
per synonymous site (Ks) [19]. Conserved genes are charac-
terized by Ka/Ks < 1. We used Ka/Ks estimates by Luo [15]
that are based on the method by Nej and Gojobori [26].
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Table 1. Summary of the selected bacterial dataset. Organism name, abbreviation, class, RefSeq, STRING code, size of genome (num-
ber of genes n). Genomes annotated in the Database of Essential Genes (DEG) are highlighted with bold fonts. Classes are:Alphapro-
teobacteria(1), Betaproteobacteria(2), Gammaproteobacteria(3), Epsilonpro- teobacteria(4), Actinobacteria(5), Bacilli(6), Bacteroide-
tes(7), Clostridia(8), Deinococci(9), Mollicutes(10), Spirochaetales(11), Aquificae(12), Cyanobacteria(13), Chlamydiae(14), Fu- sobac-
teria(15), Thermotoga(16).

Organisms Abbr. Class Ref Seq STRING n
Mycoplasma genitalium G37 myge 10 NC 000908 243273 475

Buchnera aphidicola Sg uid57913 busg 2 NC 004061 198804 546
Mycoplasma pneumoniae M129 mypn 10 NC 000912.1 272634 648

Mycoplasma pulmonis UAB CTIP mypu 10 NC 002771 272635 782
Chlamydia trachomatis D/UW-3/CX chtr 14 NC 000117.1 272561 894

Treponema pallidum Nichols trpa 11 NC 000919.1 243276 1036
Helicobacter pylori 26695 hepy 4 NC 000915 85962 1469

Aquifex aeolicus VF5 aqae 12 NC 000918 224324 1497
Campylobacter jejuni caje 4 NC 002163 192222 1572

Haemophilus influenzae Rd KW20 hain 3 NC 000907.1 71421 1610
Streptococcus pyogenes NZ131 stpy 6 NC 011375 471876 1700

Francisella novicida U112 frno 3 NC 008601 401614 1719
Thermotoga maritima MSB8 thma 16 NC 000853.1 243274 1858

Neisseria gonorrhoeae FA 1090 uid57611 nego 2 NC 002946 242231 1894
Fusobacterium nucleatum ATCC 25586 funu 15 NC 003454.1 190304 1983

Brucella melitensis bv. 1 str. 16M brme 1 NC 003317.1 224914 2059
Porphyromonas gingivalis ATCC 33277 pogi 7 NC 010729 431947 2089

Streptococcus sanguinis stsa 6 NC 009009 388919 2270
Vibrio cholerae N16961 vich 3 NC 002505 243277 2534

Staphylococcus aureus N315 stau 6 NC 002745.2 158879 2582
Deinococcus radiodurans R1 dera 9 NC 001263.1 243230 2629

Agrobacterium tumefaciens (fabrum) agtu 1 NC 003062 176299 2765
Xylella fastidiosa 9a5c xyfa 3 NC 002488 160492 2766

Staphylococcus aureus NCTC 8325 stau 6 NC 007795 93061 2767
Listeria monocytogenes EGD-e limo 6 NC 003210.1 169963 2867

Synechocystis sp. PCC 6803 sysp 13 NC 000911.1 1148 3179
Burkholderia thailandensis E264 buth 2 NC 007651 271848 3276

Sinorhizobium meliloti 1021 sime 1 NC 003047.1 266834 3359
Burkholderia pseudomallei K96243 bups 3 NC 006350 272560 3398
Ralstonia solanacearum GMI1000 raso 2 NC 003295.1 267608 3436

Clostridium acetobutylicum ATCC 824 clac 8 NC 003030.1 272562 3602
Caulobacter crescentus cacr 1 NC 011916 565050 3885

Mycobacterium tuberculosis H37Rv mytu 5 NC 000962.3 83332 3936
Escherichia Coli K-12 MG1655 esco 3 NC 000913.3 511145 4004

Shewanella oneidensis MR-1 shon 3 NC 004347 211586 4065
Bacillus subtilis 168 basu 6 NC 000964 224308 4175

Salmonella enterica serovar Typhi saen 3 NC 004631 209261 4352
Bacteroides thetaiotaomicron VPI-5482 bath 7 NC 004663 226186 4778

Sphingomonas wittichii RW1 spwi 1 NC 009511 392499 4850
Pseudomonas aeruginosa UCBPP-PA14 psae 3 NC 008463 208963 5892

Mesorhizobium loti MAFF303099 melo 1 NC 002678.2 266835 6743
Rickettsia prowazekii str. Madrid E ripr 1 NC 000963.1 272947 8433

2.3. Gene Essentiality
We  used  the  Database  of  Essential  Genes  (DEG,

www.essentialgene.org) [15], which classifies a gene as ei-
ther essential or nonessential, on the basis of a combination

of  experimental  evidence  (null  mutations  or  transposons)
and  general  functional  considerations.  DEG  collects
genomes from Bacteria, Archaea and Eukarya, with differ-
ent  degrees  of  coverage  [27,  28].  Of  the  42  bacterial
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genomes we considered, only 23 are covered-in total or par-
tially-by DEG, as indicated in Table 1.

2.4. Ka/Ks

Ka/Ks  is  the  ratio  of  nonsynonymous  substitutions  per
nonsynonymous site (Ka) to the number of synonymous sub-
stitutions per synonymous site (Ks) [19]. This parameter is
widely accepted as a straightforward and effective way of se-
parating  genes  subject  to  purifying  evolutionary  selection
(Ka/Ks < 1) from genes subject to positive selective Darwi-
nian evolution (Ka/Ks  >  1).  There are different methods to
evaluate  this  ratio,  though  the  alternative  approaches  are
quite consistent among themselves. For the sake of compari-
son,  we  have  used  here  the  Ka/Ks  estimates  by  Luo  et  al.
[15], which are based on the Nej and Gojobori method [26].
It must be noted that each genome has a specific average lev-
el of Ka/Ks [7]. Average values of Ka/Ks are shown for low,
intermediate, and high connectivity bins of genes.

2.5. ENC Plot
The ENC-plot is a well-known tool to investigate the pat-

terns of synonymous codon usage in which the ENC (Effec-
tive Number of Codons) values are plotted against GC3 Gua-
nine and Cytosine Content at the third codon position. The
formula  of  ENC  values  expected  under  the  hypothesis  of
pure mutational bias (no selection) is given by:

(1)

where s represents the value of GC3 [29]. When the corre-
sponding points fall near the expected neutral curve, muta-
tions that enforce the typical mutational bias of the species
are the main factor affecting the observed codon diversity.
Whereas when the corresponding points fall considerably be-
low the expected curve,  the  observed codon usage bias  of
the species is mainly affected by natural selection. To quanti-
tatively represent the balance between mutational bias and
selective natural pressure, we parametrise the ENC formula
to be used in non-linear fits to the experimental data:

(2)

ENC plots of genes corresponding to low, intermediate
and high connectivity proteins are shown in Fig. (S5) of the
Supplementary Information. The best-fit parameters for the
three groups of genes are collected in Table S1.

2.6. Clusters of Orthologous Proteins
We use the functional annotation given in the database

of  orthologous  groups  of  proteins  (COGs)  from  Koonin’s
group,  available  at  http://ncbi.nlm.nih.gov/COG/  [30,  31].
We consider 15 functional COG categories Table 2, exclud-
ing the generic categories R and S for which functional anno-
tation is either too general or missing.

3. RESULTS AND DISCUSSION
Degree Distribution of PPI Networks. We start by study-

ing the degree distributions P (k) observed in bacterial PPIs.
We first recall that such distribution was found to be scale-
free  in  E.  coli  [7,  32-34],  meaning  that  the  corresponding
PPI  network  features  a  large  number  of  poorly  connected
proteins and a relatively small number of highly connected
hubs.  In  order  to  assess  the generality  of  this  observation,
we compute P (k) for each genome in Table 1 (plots are re-
ported in Figs. (S3 and S4) of the Supplementary Informa-
tion). Note that, despite the fact that PPI networks of differ-
ent bacteria have different sizes and densities, their average
connectivity and the support of their P(k) are very similar.
Thus, we can superpose all the considered bacterial degree
distributions  without  the  need  to  normalise  the  support  of
each P (k). When doing so, we observe two distinct regimes
(Fig. 1). For low values of k < 40, the distribution is approxi-
mately scale-free: P(k) k−γ (γ = 2.48). This scaling behaviour
is consistent with previous studies on the genomes of yeast,
worms and flies [35] and on co-conserved PPIs in some bac-
teria  [36].  The scale-free nature of  bacterial  PPIs  is  still  a
matter of debate, and a rough discussion of the origin of this
feature is out of the scope of this paper. In this work, we gen-
erally  confirm that,  as  said  above,  there  is,  as  expected,  a
large number of poorly connected proteins and a small num-
ber of hubs. Remarkably, for higher values of k, the distribu-
tion deviates from a power law, and a bump with a Gaus-
sian-like shape emerges.
Table 2. Functional classification of COG clusters.

COG ID Functional Classification
Information Storage and Processing

J Translation, ribosomal structure and biogenesis KTranscription
L Replication, recombination and repair

Cellular Processes and Signaling
D Cell cycle control, cell division, chromosome partitioning T Sig-

nal transduction mechanisms
M Cell wall/membrane/envelope biogenesis N Cell motility
O Post-translational modification, protein turnover, chaperones

Metabolism
C Energy production and conversion
G Carbohydrate transport and metabolism
E Amino acid transport and metabolism
F Nucleotide transport and metabolism
H Coenzyme transport and metabolism
I Lipid transport and metabolism
P Inorganic ion transport and metabolism

This feature, visible for k 40 may be due to the contribu-
tion of proteins be- longing to large complexes [37]. From
the  whole  set  of  observations  presented  in  this  paper,  the
bump in the P (k) is due to the complexity of ribosomal inter-
actions. Indeed, if one recalculates the degree distribution of
a dataset in which the ribosomal proteins are removed, the
bump is not present (Fig. (1), empty dots). Moreover, if we
consider the separate contribution of essential and nonessen-

http://ncbi.nlm.nih.gov/COG/
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tial genes to the P (k) (for DEG-annotated genomes), we see
that the bump is present only in the degree distribution of es-
sential genes. It is to be noted also that the degree distribu-
tions for essential and nonessential genes are well separated
and the average degree is systematically higher for essential
genes than for nonessential ones, consistently with previous
findings [35]. Remarkably, we have shown in a previous pa-
per [8] that the number of essential genes in bacteria is close
to 500 and does not depend on the size of the genome. To
correctly interpret the emergence of the bump in the average
P (k) in Fig. (1), it is worth pointing out the distinction be-
tween  small  and  not  so  small  genomes.  In  the  small
genomes, almost all the genes are essential, and among the
essential genes, those belonging to COG J (functions related
to translation and ribosomal structure and biogenesis) play a
major  and  ubiquitous  role.  In  (Fig.  S2),  we  have  checked
that the bump that emerges in Fig. (1) as a feature of essen-
tial and conserved genes is quite visible in the P(k) of small
genomes,  whereas,  there  seems a  confusion in  the  case  of
bigger genomes. This might be interpreted as a dilution ef-
fect;  in the networks of bigger genomes, there are a lot of
specific interactions besides the essential ones. Then, averag-
ing P (k) over small, intermediate and big genomes (Fig. S2
in Supplementary Information), we can safely interpret the
bump as an emerging feature due to a core of highly connect-
ed proteins (connectivities k≥40), which is mostly contribut-
ed, in the average, by degree distributions from PPIs of bac-
teria with small genomes Figs. S2-S4. From all the consider-
ations above, we exclude that this bump, observed here for
the first time, could emerge just because that part of the PPI
is  much  more  investigated  than  other  subnetworks.  It  is
there because the ribosome is there, in all bacteria Table 3.

Fig. (1). Probability distribution P (k) for the number of connec-
tions k of each protein averaged over the bacterial species consid-
ered in Table 1 (full dots), compared with the degree distribution af-
ter removal of the proteins corresponding to genes in COG J, relat-
ed to translational processes (empty dots). Inset: P (k) for essential
(E)  and  nonessential  (NE)  genes,  averaged  over  DEG-annotated
genomes. Note that the average degree is higher for essential genes
than for nonessential ones, and the two probability distributions are
quite distinct. The region of the curve for low k can be well approxi-
mated by a power law [38]. (A higher resolution / colour version of
this figure is available in the electronic copy of the article).

3.1. PPI Connectivity and Gene Conservation
We now investigate whether the connectivity k of a pro-

tein  in  a  PPI  network  drives  a  transition  in  the  degree  of
conservation  (as  measured  by  ERI)  of  the  corresponding
genes. Fig. (2) displays the average value and the spread of
ERI in genes relative to bins of proteins that are iso-connect-
ed in the PPIs of different species. As a general feature, we
observe that, on average, the genes of highly connected pro-
teins are highly conserved among the bacterial  species we
consider that constitute a reasonably wide sample of differ-
ent evolutionary adaptations. The same Fig. (2) shows that if
k 50, then the ERI highly fluctuates between different sam-
ples  of  proteins  with  the  same  k,  in  different  species.  For
high  connectivities  (above  k  =  50),  the  ERI  is  close  to  1,
with a drastic drop in the fluctuation (as shown in the inset).
This  observation  points  to  the  existence  of  an  almost-in-
variant  structure  of  conserved hubs,  in  each bacterial  PPI,
sustained by highly conserved genes. We can conclude, as a
rule of thumb, that a protein with connectivity degree of 40
or more is  likely to be coded by a gene shared by at  least
80% of the species in a generic pool of bacteria. At the mo-
ment, we do not have a general explanation for this apparent
threshold. Let us just propose, as a heuristic observation, the
existence of an almost-critical value of connectivity to be set
between 40 and 50, that corresponds to the connectivity of
the core of proteins specifically involved, as we have allud-
ed to in the previous paragraph, to the ubiquitous ribosomal
functions Tables 4 and 5.

Fig. (2). Average ERI values of bacterial genes as a function of the
degrees  k  of  the  corresponding  proteins,  for  all  the  considered
genomes. Error bars are standard deviations of ERI values associat-
ed to a given k value. Inset: amplitude of the error bar (∆ERI) as a
function of k.

3.2. Evolutionary Pressure and PPI Connectivity
We  then  look  at  the  evolutionary  pressure  exerted  on

genes  whose  proteins  have  different  connectivities.  The
graph in Fig. (3) shows the ratio Ka/Ks for groups of genes
binned by the connectivity k of the corresponding proteins,
for all the 42 bacterial species in Table 1. As is well known,
this ratio Ka/Ks provides a straightforward indication of the
balance  between  a  positive  driving  Darwinian  selection
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(when the numerator prevails) and a purifying, stabilising se-
lection (acting against change in genes for which the denomi-
nator prevails).

Fig. (3). (Ka/Ka) of groups of genes corresponding to proteins with
different connectivity degrees k. As in the following Fig. (4) and in
Fig. S5, low connectivities are shown in red, intermediate in green
and high connectivities in blue. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).

We see that the more connected proteins correspond to
genes  that  are  subject  to  an  increasing  purifying  evolutio-
nary pressure. Indeed, the ratio (Ka/Ks) is less than 1 in all
bins of connectivity and systematically decreases as a func-
tion of k. A decreasing ratio generally indicates an increas-
ing role of purifying, conservative, Darwinian, evolutionary
pressure on the corresponding set of genes. This is a reason-
able result, pointing out that the groups of genes that support
conserved  structures  of  connectivity  in  the  PPIs  are  more
constrained, in evolution than the genes of less interacting
proteins.

To add evidence to this observation, we have also consid-
ered ENC plots for sets of genes binned by the connectivi-
ties of the corresponding proteins. Interestingly, the ENC da-
ta in Fig. (S5) of Supplementary Information are fully consis-
tent with those in Fig. (3). In the ENC plots, the points asso-
ciated with low connectivity proteins (red) are closer to the
so-called Wright’s profile (represented there as solid black li-
nes) than those associated to proteins with intermediate and
high connectivities (green and blue lines). Fig. (4) stresses
this observation in a more quantitative way by showing that
in the ENC plots, the average distance from Wright’s profile
monotonously  increases  with  k.  Overall,  the  above  results
clearly indicate that codon bias and GC content of high con-
nectivity genes are more under selective Darwinian pressure
than  genes  coding  for  low-connectivity  proteins,  in  which
the rate of accepted mutations is mainly ruled by neutral mu-
tational bias. These observations point out that the almost-in-
variant structure of protein hubs we alluded to in the previ-
ous paragraph,  is  supported by an underlying set  of  genes
that are under strong mutational control; an expected result,
perhaps, but clearly seen, here, as a general feature associat-
ed with ribosomal ubiquitous and conserved functions.

Fig. (4). ENC plot and connectivity. Each point in this graph repre-
sents a group of genes, characterised by the average connectivity k
of the corresponding proteins in the PPI network and by the aver-
age euclidean distance d, in the ENC plot, from Wright’s theoreti-
cal curve. Different groups of genes are represented with different
colors as a function of k. As shown in the previous Fig. (3), red cor-
responds to low connectivities, green to intermediate and blue to
high connectivities (Fig. S5). The distance from the curve clearly
increases with k. Wright’s curve corresponds, in the ENC plot, to
pure mutational bias (Eq. 1), then higher connectivities of the pro-
teins  imply  bigger  evolutionary  selective  pressure  on  the  corre-
sponding group of genes. (A higher resolution / colour version of
this figure is available in the electronic copy of the article).

PPI and Essentiality. To further investigate the relation-
ship  between  gene  essentiality  and  protein  connectivities,
we consider DEG-annotated genomes and classify interac-
tions between proteins (links) making reference to the essen-
tiality of the corresponding genes. We distinguish three sets
of links:|ee| (linking proteins from two essential genes), | |
(from  two  nonessential  genes)  and  |e |  (from  an  essential
gene and a nonessential one). We then compute the density
of these sets of links respectively as:

(3)

where E and NE denote the number of essential and no-
nessential genes, respectively (self-connection are excluded
in our analysis). The denominator is the maximum possible
value of the numerator, corresponding to the fully-connected
graph.  Such  densities  are  then  compared  with  the  overall
density of the network-restricted to genes classified as either
essential or nonessential:

(4)

We use  the  ratios   to  assess
the level of connectivity of the subnetworks with respect to
the overall connectivity. Table 3 shows that subnetworks of
essential genes are far denser than the overall networks, and
that,  in  general,  essential  and  nonessential  genes  tend  to
form network components  that  are weakly interconnected.
This happens because many essential genes encode for ribo-
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somal proteins, which in turn are localised in the ribosomal
complex where they have a high probability of interacting
[39] Table 3 of [8], which shows approximately 25% of es-
sential genes fall into COG J. Figs. (S6 and S7) of the Sup-
plementary  Information  collect  the  superposed  adjacency
matrices of the |ee| (red dots), |e | (violet dots) and | | (blue
dots)  subnetworks  that  display  such  network  features  for
each  individual  species.  These  graphs  confirm  the  domi-
nance of the interactions between the proteins of  essential
genes (red dots) in the small genomes. The adjacency matri-
ces of bacteria with intermediate and big genomes are domi-
nated  by  interactions  involving  proteins  supported  by  no-
nessential genes (blue dots).

PPI  Connectivity  and  Functional  Specialisation.  For
each  PPI  network,  we  define  the  conditional  probability
(Bayes’ theorem) that a protein with degree k belongs to a
given COG as:

(5)

where P (k) is the degree distribution in the PPI network,
P (COG) is the frequency of that COG in the proteome, and
P (k COG) is the degree distribution restricted to that COGs.
Fig. (5) shows the COG spectrum as a function of k over all
the bacteria here considered. Interestingly, we again note a
marked transition. Below k 40, the COG spectrum is quite
heterogeneous:  genes  corresponding  to  proteins  with  low
connectivity  are  spread  over  several  COGs,  which  corre-
spond to different functions (Table 2).

Fig. (5). Probability distribution P (COG k) of belonging to a given
COG for proteins with degree k, overall considered genomes. Pro-
teins with low connectivity have a very heterogeneous COG com-
position, whereas those with high k basically belong only to COG
J. (A higher resolution / colour version of this figure is available in
the electronic copy of the article).

Fig. (6). Heat map of the connectivity degree of the protein as dis-
tributed over the COG J genes with ERI=1, in each species. Genes
are sorted by decreasing average degree. We note that those genes
which correspond to degrees bigger than 40 are conserved for all
species. Details of these genes are in Table 5. (A higher resolution /
colour version of this figure is available in the electronic copy of
the article).

The transition shows that proteins with more than 40 in-
teractions are likely to be coded by genes belonging to COG
J. There are yet a handful of outliers, hubs with connectivi-
ties  between  57  and  62,  that  belong  to  COG  I  (related  to
lipid  transport  and  metabolism)  and  K  and  L  (which,  to-
gether with J, dεfine the functional class of information stor-
age and processing). The list of these outliers is reported in
Table 4. Interestingly, they correspond to RNA polymerases
and to enzymes involved in acetate metabolism. But, which
are the genes of COG J that drive the transition? In the next
Fig. (6), we show which genes are the main characters in the
transition. We then investigate the connectivities of the high-
ly conserved (ERI=1, shared by all the species in Table 1)
genes belonging to COG J and whose proteins have connec-
tivities  bigger  than  40.  These  highly  shared  genes  corre-
sponding  to  cores  of  highly  connected  ribosomal  proteins
are  listed  in  Table  5.  In  the  heat  map  of  Fig.  (6),  we  sort
each gene in the COG J in order of descending degree, spe-
cies by species, and we see there is a core of genes (in red,
lower left sector) that correspond to highly connected pro-
teins,  which  are  also  highly  shared  (ERI  =1,  see  Table  5)
among all the species we considered. It is quite clear that in
the heat map of Fig. (6) the 42 species in this study can be
split into at least two groups (see the cladogram on the left).
In one group the group of species at the Bottom in Fig. (5)
there is a shared set of genes (the red band at the bottom-left
side  of  the  heat  map)  corresponding to  a  common core  of
highly connected ribosomal proteins. This remarkable obser-
vation suggests that the species in this group (namely, Syne-
chocystis  sp.  PCC  6803,  Escherichia  coli  K-12  MG1655,
Clostridium acetobutylicum ATCC 824, Mycobacterium tu-
berculosis H37Rv, Sphingomonas wittichii RW1, Vibrio chol-
erae N16961, Burkholderia thailandensis E264, Rickettsia
prowazekii str. Madrid E, Agrobacterium tumefaciens (fab-
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Table 3. Relative density values r for PPI subnetworks between
essential genes ( ), between nonessential genes ( ) and be-
tween essential and nonessential genes , for each DEG-anno-
tated bacterial genome.

Organisms
basu 44.46 0.80 0.11
bath 20.07 0.76 0.25
bups 6.21 0.83 0.27
buth 18.69 0.70 0.22
cacr 18.40 0.70 0.15
caje 3.65 0.82 0.32
esco 2.91 0.88 0.31
frno 9.84 0.52 0.18
hain 1.65 1.15 0.27
hepy 2.91 0.78 0.38
myge 1.42 0.29 0.08
mypu 3.42 0.22 0.12
mytu 8.09 0.78 0.23
pogi 11.03 0.41 0.21
psae 9.85 0.92 0.16
saen 28.80 0.81 0.12
shon 6.50 0.64 0.16
spwi 15.47 0.74 0.22
stau 23.05 0.58 0.23
stau 21.89 0.64 0.16
stpy 9.30 0.73 0.23
stsa 30.65 0.61 0.22
vich 8.37 0.81 0.19

Table 4.  Specific hubs.  In this  table we detail  which proteins
populate the few bins of connectivity around k = 60 in Fig. (5).

k COG Gene Protein
57 1250I paaH 3-hydroxyadipyl-CoA dehydrogenase, NADdependent

0365I acs acetyl-CoA synthetase
58 0222J rplL 50S ribosomal subunit protein L7/L12

0335J rplS 50S ribosomal subunit protein L19
0267J rpmG 50S ribosomal subunit protein L33
0365I acs acetyl-CoA synthetase

59 0183I paaJ 3-oxoadipyl-CoA3-oxo-5,6-dehydrosuberyl-CoA thio-
lase

1960I ydiO putative acyl-CoA dehydrogenase
0183I atoB acetyl-CoA acetyltransferase

60 0197J rplP 50S ribosomal subunit protein L16
0088J rplD 50S ribosomal subunit protein L4
0197J rplP 50S ribosomal subunit protein L16
0087J rplC 50S ribosomal subunit protein L3
1960I aidB putative acyl-CoA dehydrogenase

61 0085K rpoB RNA polymerase, beta subunit
0202K rpoA RNA polymerase, alpha subunit

62 0087J rplC 50S ribosomal subunit protein L3
0052J rpsB 30S ribosomal subunit protein S2
2965L PriB ribosomal replication protein

Table 5. Genes belonging to COG J with average degree bigger
than 40 Fig. (6). All these genes are conserved, common to all
species (ERI=1), and drive the transition shown in Fig. (5).

COG Genes Name <k >

COG0097J 50S ribosomal protein L6 60.24

COG0087J 50S ribosomal protein L3 60.19

COG0197J 50S ribosomal protein L16 60.19

COG0090J 50S ribosomal protein L2 60.14

COG0080J 50S ribosomal protein L11 60.12

COG0088J 50S ribosomal protein L4 60.12

COG0081J 50S ribosomal protein L1 58.19

COG0089J 50S ribosomal protein L23 57.88

COG0102J 50S ribosomal protein L13 57.45

COG0094J 50S ribosomal protein L5 57.21

COG0092J 30S ribosomal protein S3 57.12

COG0098J 30s ribosomal protein S5 57.10

COG0093J 50S ribosomal protein L14 57.00

COG0091J 50S ribosomal protein L22 56.24

COG0049J 30S ribosomal protein S7 55.31

COG0051J 30S ribosomal protein S10 55.24

COG0200J 50S ribosomal protein L15 55.12

COG0256J 50S ribosomal protein L18 54.86

COG0203J 50S ribosomal protein L17 54.43

COG0244J 50S ribosomal Protein L10 54.19

COG0100J 30S ribosomal protein S11 53.76

COG0522J 30S ribosomal protein S4 53.43

COG0096J 30S ribosomal protein S8 53.10

COG0099J 30S ribosomal protein S13 52.88

COG0048J 30S ribosomal protein S12 52.14

COG0198J 50S ribosomal protein L24 50.83

COG0185J 30S ribosomal protein S19 50.52

COG0199J 30S ribosomal protein S14 50.45

COG0103J 30S ribosomal protein S9 49.45

COG0480J tetracycline resistance protein. tetM 47.90

COG0052J 30S ribosomal protein S2 47.69

COG0184J 30S ribosomal protein S15 45.95

COG0186J 30S ribosomal protein S17 44.60

COG0255J 50S ribosomal protein L29 43.95

COG0222J 50S ribosomal protein L7/L12 42.43

COG1841J 50S ribosomal protein L30 40.71

rum), Ralstonia solanacearum GMI1000, Xylella fastidiosa
9a5c) should have a common structural and functional organ-
isation of their ribosomes, an interesting point to be further
investigated.  In the rest  of the species,  the connectivity of
the  proteins,  corresponding  to  the  highly  shared  COG  J
genes, with k > 40 is more heterogeneous. We can conclude
that the abrupt transition shown in Fig. (5) is driven by a sub-
set of COG J genes which are highly conserved among a sub-
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set of species and are listed in Table 5. As one can see, these
genes correspond to a specific subset of ribosomal proteins
in the small and large subunits that should be further investi-
gated in their functional and structural role.

CONCLUSION
Connectivity  analysis  of  biological  networks,  such  as

protein-protein  interaction  or  metabolic  networks,  has  de-
monstrated that structural features of network subgraphs are
correlated with biological functions [40, 41]. For instance, it
was shown that  highly connected patterns  of  proteins  in  a
PPI are fundamental to cell viability [42]. In this work, we
have shown the existence of a functional transition in bacte-
rial species, ruled by the connectivity of proteins in the PPI
networks (Fig. 5). The critical threshold in k of the transition
is located between k=40 and k=50. Proteins that have connec-
tivities above the threshold are mostly encoded by genes that
are  conserved,  under  selective  pressure  (as  measured both
by ERI and Ka/Ks) and essentiality. Moreover, the functional
repertoire above the threshold mainly focuses on the COG J
(translation, ribosomal structure and biogenesis), with just a
few interesting hubs belonging to COGs I (Lipid transport
and metabolism), K (Transcription) and L (Replication, re-
combination and repair).

Indeed, the PPI network of each bacterial species is char-
acterised by a highly connected core of conserved ribosomal
proteins, the components of multi-subunit complexes whose
corresponding genes are mostly essential [32, 36] and code
for supra-molecular complexes that pile up in the bump we
have  observed  for  the  degree  distribution  (Fig.  1).  Hence,
what we see here is essentially the ribosome and related pro-
tein complexes such as RNA Polymerase. Indeed, the ribo-
some is the only molecular machine in bacteria in which a
given  protein  could  legitimately  have  40  or  more  protein
binding partners, with the help of rRNA mediating interac-
tions [43].

It  is  reasonable  to  admit  that,  since  there  are  bacterial
species that are much more investigated than others, compar-
ative statistical studies of bacterial PPIs might be particular-
ly biased by the choice of the sample of genomes to be in-
cluded in the study. Our dataset is no exception. In order to
address  this  hard  to  settle  problem  in  our  study,  we  have
checked Fig. (S1) that in our study, we have included small
genomes (i.e. less than 1000 genes) whose PPIs have densi-
ties (a rough proxy for the coverage of the interactions in the
network) that are higher than those of bigger genomes. The
group  of  small  genomes  comprises  Buchnera,  Chlamydia,
and Mycoplasmas, whereas bigger genomes refer mostly to
illustrious pathogens that are surely among the most investi-
gated bacterial species. The densities of the networks of th-
ese species are quite similar and comparable with that of E.
coli. As a general rule, and quite obviously, the networks rel-
ative  to  small  genomes are  better  covered in  the  STRING
database (after the application of a conservative cutoff w =
900) than those relative to bigger genomes. Interestingly, we
have shown Figs. (6 and 7) in Supplementary Information)
that,  indeed,  the  PPI  adjacency  matrices  of  bacteria  with

small genomes are dominated by the interactions constitut-
ing the ribosomal complex. In the adjacency matrices of the
PPIs of bacteria with bigger genomes, the cloud of interac-
tions between the proteins of nonessential genes tends to su-
perpose to the ever-present  ribosomal core.  In conclusion,
we believe to have convincingly shown that bacterial PPIs
are characterised by the presence of a highly connected struc-
ture, associated with the ribosomal functions, and particular-
ly visible in bacteria with small genomes. We believe that
the observations we have presented here could be of some
utility for the prediction of gene essentiality,  based on the
knowledge of PPI networks, and for the prediction of interac-
tions  between  proteins,  based  on  genetic  information  [44,
45].  It  is  interesting  to  note  that  our  results  are  consistent
with  a  previous  study  based  on  inferred  bacterial  co-
conserved  networks  based  on  phylogenetic  profiles  [36].
This work suggests to further and systematically investigate
how the structure of the PPI networks is correlated with mul-
tiple networks at the genetic level, at least in unicellular or-
ganisms.  In  particular,  we  believe  that  a  recent  approach
based  on  the  introduction  of  the  multiple-layer  networks
could be of great potential interest (e.g. to search for a gener-
al scheme behind antimicrobial resistance [46-50]).
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