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Staphylococcus aureus (S. aureus) is a virulent bacterium that abundantly colonizes inflammatory skin diseases. Since 
S. aureus infections occur in an impaired skin barrier, it is important to understand the protective mechanism through 
cutaneous immune responses against S. aureus infections and the interaction with Staphylococcal virulence factors. 
In this review, we summarize not only the pathogenesis and key elements of S. aureus skin infections, but also the cuta-
neous immune system against its infections and colonization. The information obtained from this area may provide 
the groundwork for further immunomodulatory therapies or vaccination strategies to prevent S. aureus infections.
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INTRODUCTION

Staphylococcus aureus (S. aureus) most commonly causes 

skin infections where the skin barriers are impaired from 

multiple factors, including wounding [1]. S. aureus in-

fections show minor symptoms without spreading to other 

sites and are easily treated with antibiotics. However, these 

infections can become more invasive and cause life-threat-

ening infections such as bloodstream infections, pneumonia, 

abscesses, endocarditis, and surgical site infections [2-4]. 

Moreover, methicillin-resistant staphylococcus aureus (MRSA) 

is a problem to communities and healthcare settings [5]. The 

rates of infections linked to MRSA are soaring, and MRSA 

is currently the leading cause of invasive illness, resulting 

in more fatalities worldwide. A recent study in the US dem-

onstrated that 76% of all bacterial infections in emergency 

rooms were identified as MRSA stains [5].

It is well accepted that barrier functions of the skin local-

ize to the stratum corneum (SC), the outer-most layer of 

the skin [6]. The SC deploys various barrier functions to 

defend an organism from external insults, and pathogenic 

microbes, including S. aureus, and to maintain internal 

homeostasis. Although the composition of SC, e.g., pH, con-

tents of water, lipids, and antimicrobial peptides, is opti-

mized to prevent bacterial infection and growth, changes in 

these factors due to barrier disruption increase the suscepti-

bility to infection [7-9].

In this review, we summarize the pathogenesis of the most 

virulent bacteria S. aureus infections, and cutaneous im-

mune responses against their infections and colonization. 

The information obtained from this area will provide the 

groundwork for further immunomodulatory therapies or 

vaccination strategies, which help to prevent S. aureus 

infections.
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Fig. 1. Virulent factors of S. aureus.

Staphylococcus aureus (S. aureus) 
AND ITS VIRULENCE FACTORS

S. aureus is a gram-positive opportunistic pathogen that 

is normally found on the skin and nose of appropriately 

25-30% of healthy adults and in 25% of hospital workers 

[9,10]. Colonization provides a reservoir from which bac-

teria can be introduced, usually resulting in a localized col-

lection of pus, known as an abscess or furuncle, cellulitis, 

impetigo, and scalded skin syndrome [11]. Once S. aureus 

disseminate into the bloodstream and spread to the organs, 

the organism spreads widely to peripheral sites in the distant 

organs, leading to serious illnesses known as bacteremia, 

sepsis, osteomyelitis, and infective endocarditis [12,13]. The 

prevalence of these infections has apparently increased ow-

ing to higher rates of colonization, immunosuppression, a 

greater use of surgical implants, and dramatic increases in 

antibiotic resistance [3]. It is critical to understand the 

mechanisms of skin S. aureus colonization, which is an im-

portant risk factor for subsequent infection (Fig. 1).

The antibiotic resistance of S. aureus is due to the acquis-

ition of a new penicillin-binding protein, penicillin-binding 

protein 2a (PBP2a), which has cross-resistance to all β- 

lactam antibiotics [14]. A common drug-resistance strain, 

methicillin resistant S. aureus (MRSA) is resistant not only 

to antibiotic methicillin, but also to other drugs in the same 

class, including penicillin, amoxicillin, and oxacillin [15]. 

MRSA infections normally occur in patients in hospitals and 

other health facilities, especially in the elderly, the very 

sick, and those with an open wound or catheter in the body 

(health care-associated MRSA) [15,16]. Until the early 20th 

century, MRSA rarely caused infections among community 

members, and not in hospital settings. The first outbreak of 

community acquired MRSA infections was reported at 1991 

and aggressive MRSA infections started to be reported in 

the late 1990s associated with necrotizing pneumonia or pul-

monary abscess and sepsis [17]. The U.S. Centers for Disease 

Control and Prevention (CDC) estimated in 2008 that about 

12% of MRSA infections are now community-associated 

[18,19]. The strain responsible for these infections is the 

USA400 clonal type strain (also called MW2 strain) [20]. 

Subsequently, other clonal outbreaks of skin infection by 

MRSA were also reported among prison inmates, soldiers, 

and athletes. The strain responsible for these infections was 

USA300 (LAC strain) [21]. More recently, some clonal 

strains of S. aureus have been identified to be resistant to 

the antibiotic vancomycin, the last drug to which the organ-

ism had been uniformly sensitive [22]. These organisms are 
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known to be vancomycin-intermediate-resistant S. aureus 

(VISA) and vancomycin-resistant Staph aureus (VRSA).

1. Microbial surface components recognizing adhesive 

matrix molecules

The extracellular matrix (ECM) is the extracellular part 

of the multicellular structure that provides physical struc-

tural and biochemical support to the surrounding cells, such 

as cell adhesion, migration, and differentiation [23]. In addi-

tion, ECM also provides the attachment of colonizing micro-

organisms [24]. Many microorganisms express cell surface 

adhesions that mediate microbial adhesion to the ECM of 

the host tissue. Over the last 20 years, the genomes of many 

isolates of S. aureus have been sequenced and different as-

says have been employed to identify virulence factors asso-

ciated with colonization or invasion [25]. When S. aureus 

colonization occurs in the skin, human extracellular matrix 

proteins, e.g., fibronectin, fibrinogen, laminin, elastin, and 

collagen recognize invaded S. aureus [23,26]. This ECM 

binding adhesin family is called microbial surface compo-

nents recognizing adhesive matrix molecules (MSCRAMMs) 

[27] (Fig. 1).

MSCRAMMs are cell-wall anchored proteins and exhibit 

specific, high-affinity binding of collagen, fibronectin, fi-

brinogen, elastin, laminin, von Willebrand factor, vi-

tronectin, and thrombospondin. MSCRAMMs were identi-

fied by their ability to bind ECM such as elastin (EbpS), 

fibrinogen (ClfA, ClfB), fibronectin (FnbpA, FnbpB), and 

Collagen (Cna) [27]. More than twenty MSCRAMMs have 

been identified, but the contribution of individual MSC-

RAMMs to the infection and colonization process is not 

clear. This ambiguity might be due to the functional re-

dundancy with regard to the host-bacterial protein reco-

gnition. For example, S. aureus express at least seven fibrin-

ogen-binding proteins with higher affinity to fibrinogen. 

Moreover, individual MSCRAMMs might only be important 

in particular pathological conditions that are not fully ad-

dressed by current experimental models. 

2. Secreted Staphylococcal virulence factors

S. aureus secrete a number of molecules to kill host im-

mune cells, to stimulate host immune cells, and to inhibit 

neutrophil recruitment (chemotaxis inhibitory protein) [26, 

28]. Pore-forming toxins of S. aureus have the capacity to 

lyse host cells, including α-hemolysin, β-hemolysin, γ- 

hemolysin, Panton-Valentine leukocidin (PVL), leukocidin 

E/D, and leukocidin M/F-PV-like [29]. PVL encoded in a 

prophage is a cytotoxin and has initially been epidemiologi-

cally linked with CA-MRSA cutaneous infections [30]. 

These are soluble monomers prior to engagement of the tar-

get cell membrane with subsequent formation of an aqueous 

membrane pore. Membrane pore formation is responsible 

for not only immediate host cell lysis, but also contributes 

to the penetration of epithelial barriers and evasion of the 

immune system, thus creating survival niches for pathogens 

[29,31]. Pore-forming toxins can also contribute to the in-

duction of inflammation and the manifestation of local in-

flammation and systemic infections [29,31]. Clearly, pore-for-

ming toxins are not the sole factors that drive sepsis pro-

gression, but they often act in combination with other bac-

terial virulent factors, such as lipoteichoic acid, peptidogly-

can, or MSCRAMMs.

3. Immunoglobulin binding molecules of S. aureus

S. aureus produces a virulence factor, protein A (SpA), 

which is a LPxTG mediated cell-wall anchoring protein 

binding tightly to the Fcγ portion of IgG [32]. In addition, 

SpA has an ability to stimulate B lymphocyte proliferation, 

provoking their clonal expansion [33]. The binding of Fcγ 

on SpA on the cell surface of S. aureus could mask the un-

derlying surface antigens and inhibit opsonophagocytic 

death by neutrophils.

Staphylococcal binder of immunoglobulin (Sbi) is a se-

creted protein containing two IgBD-like modules that share 

amino acid sequence homology to immunoglobulin binding 

domain of SpA [34]. In addition, Sbi encodes two conserved 

domains responsible for binding of complement factor C3d 

and factor H. However, it provides only for Fcγ binding 

to inhibit opsonophagocytsis, but not stimulate a B cell un-

like SpA. Instead, its higher binding affinity to complement 

factors (C3d and Factor H) leads to an accumulation of C3 

to inhibit the activation of complement cascade.

4. Lipoproteins and lipoteichoic acid

Lipoproteins, which are found in both staphylococcal cell 

walls, are a functionally diverse class of membrane bacterial 
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proteins characterized by an N-terminal lipid moiety. The 

lipid moiety serves to anchor these proteins to the cell sur-

face [35]. Typically, between 1% and 3% of bacterial ge-

nomes encode lipoproteins. Lipoproteins may be divided into 

five general groups according to their function: adhesion 

and invasion, cell wall synthesis, nutrient uptake, degrada-

tive processes, and sensing and transmembrane signaling. 

While synthetic lipopeptides have proven to be potential toll 

like receptor 2 (TLR2) ligands, it is still unclear whether 

real bacterial lipoproteins function the same as synthetic lip-

opeptides in Gr+ inflammation and infection [36].

Lipoteichoic acid (LTA) forms another group of TLR2 

ligands. LTA is a polyphosphate polymer linked to a glycer-

ol backbone with two acyl chains and accounts for 5% of 

the cell wall [36,37]. Like lipoproteins, LTA is anchored on 

the cell membrane via a lipid moiety. Unlike lipoprotein, 

however, LTA is found only on Gram-positive bacteria, in-

cluding S. aureus. Additionally, since LTA shares many of 

its biochemical and physiological properties with lip-

opolysaccharide (LPS), which is a major inflammatory com-

ponent in Gram-negative bacteria, it plays an important role 

in the process of staphylococcal infection and inflammation 

as LPS does in Gr- inflammation and infection [36-38]. 

Note that the strains deleted in LTA synthesis genes showed 

a dramatic reduction in staphylococcal skin and/or systemic 

infections.

DEFENSIVE SKIN BARRIER

Skin has three structure layers: 1) epidermis, the outer-

most layers of skin, provides multiple defensive barrier and 

creates our skin tone; 2) dermis contains hair follicles and 

sweat glands; and 3) the subcutaneous tissue is made of fat 

and connextive tissue [39]. Moreover, the outer layer of 

skin, the epidermis, consists of four separate layers, stratum 

basale (SB), stratum spinosum (SP), stratum granulosum 

(SG) and stratum corneum (SC). Because the epidermis, 

particularly the SC, is positioned at an interface between the 

internal and external environment, the primary role of the 

SC is to protect our body from external stresses, including 

infectious microbes [39].

The composition of the skin is optimized to prevent the 

growth pathogenic microbes, e.g, low pH and structural 

sphingolipids [39]. In particular, the skin contains multi-

functional, specialized peptides that provide cutaneous im-

mune defense through their activity against pathogenic mi-

croorganisms [39,40].

CUTANEOUS IMMUNE DEFENSES

The cutaneous immune system develops two distinct de-

fense mechanisms, innate and adaptive immune systems 

[39-41]. The first-line defense system is cutaneous innate 

immunity, which prevents invasion of microbes through 

physical or chemical barriers. The SC consists of keratino-

cytes linked by desmosomes and small bridges, and re-

sembles spines that provide intercellular adhesion complexes, 

thereby creating a physical barrier against pathogenic 

damages. In addition to the physical barrier, epidermal kera-

tinocytes regulates cutaneous innate immunity through cy-

tokine production, regulating cellular signaling pathways, 

complement cascade, recruiting other immune cells, and the 

production of host defense peptides, antimicrobial peptides 

(AMPs) [40,42]. Importantly, AMPs are a critical innate 

immune element for immune response of the skin to micro-

bial infection. Two major AMPs in human skin are cath-

elicidin antimicrobial peptide (CAMP) and β-defensins 

(hBDs) [43,44].

Of these AMPs, CAMP is the first AMP found in the 

skin. The Vitamin D3-mediated Vitamin D Receptor (VDR) 

activation is the primary transcriptional regulatory mecha-

nism of CAMP generation in the skin [44,45]. Alterna-

tively, we recently demonstrated that subtoxic external 

stresses such as UVB irradiation that induce endoplasmic re-

ticulum (ER) stress and increase cellular ceramide pro-

duction in parallel with stimulated metabolic conversion of 

sphingosine to sphingosine-1-phosphate (S1P) lead to en-

hanced CAMP production via an NF-κB activation, in-

dependent of the VDR pathway [46,47]. Although a de-

tailed mechanism of how the ER stress-mediated increase 

in S1P activates NF-B still remains unresolved, our recent 

studies further demonstrated that CAMP generation likely 

occurs by an S1P receptor independent mechanism (Fig. 2). 

CAMP has potent, broad-spectrum antimicrobial activities 

against virulent S. aureus. It is generally accepted that 

CAMP disrupts the integrity of the cell membrane of S. aur-
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Fig. 2. The mechanism of Staphy-
lococcal skin infection and cuta-
neous immune defense.

eus, which accounts for their ability to kill invaded S. aureus 

[40,48]. In addition to antimicrobial activity, CAMP is 

known to have other functions, e.g., cytokine production, 

cellular differentiation, and adaptive immunity [49]. 

Interestingly, CAMP expression is highly increased in skin 

wounds, and decreased after wound closure, suggesting an 

important role of CAMP in wound healing [50]. 

Another major epidermal AMP is hBDs, which have a 

wide range of antimicrobial activity and keratinocytes ex-

pressing hBD-1, hBD-2, and hBD-3 [43,51]. While hBD-1 

is constitutively expressed in the skin, both hBD-2 and 

hBD-3 are upregulated by membrane receptors, cytokines, 

or external stresses such as UVB irradiation. Toll-like re-

ceptors (TLR) 4, which are evolutionarily conserved pattern 

recognition receptors, can recognize a bacterial virulence 

factor, lipopolysaccharides (LPS), increasing the hBD-2 ex-

pression in the skin [52]. Moreover, IL-1 regulates hBD-2 

production, whereas hBD-3 induction is influenced primar-

ily by IL-6, suggesting that different inducible factors or 

regulatory mechanisms are responsible for the generation of 

various hBDs [43,51,53]. Although hBD-2 has no anti-

microbial activity against Gram-positive S. aureus, which is 

the virulent bacteria that colonizes approximately 90% of 

atopic dermatitis (AD) patients, recent studies revealed that 

hBD-2 combined with another major AMP, hBD-3 and/or 

CAMP, has synergistic antimicrobial activity by effectively 

killing S. aureus [43,51].

In addition to innate immunity, prior studies have demon-

strated that the formyl peptide receptor-like (FPRL)1, 

which is a receptor of CAMP, activates the chemotaxis of 

neutrophils, monocytes, and CD4 T cells [51,54]. Moreover, 

hBDs induce the migration of adaptive immune cells via the 

CC chemokine receptors (CCR) on memory T cells and im-

mature dendritic cells (CCR6), as well as on monocytes and 

mast cells (CCR2), suggesting that both epidermal AMPs, 

CAMP and hBDs can link to adaptive immune response 

[51,54] (Fig. 2).

CONCLUSIONS

Healthy human skin is optimized to prevent the in-

fection/colonization of S. aureus, the most common species 

of staphylococcus on the skin. However, S. aureus infections 

of the skin occur in impaired skin caused by numerous fac-

tors, including certain skin diseases or wounds. To provide 

cutaneous immune defense against these infection/colonization, 

major epidermal AMPs initially function to kill S. aureus. 

In addition to antimicrobial ability, another role of AMPs 
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is adaptive immune response via activating chemotaxis 

and/or migration of immune cells, such as T cells, neu-

trophils, and monocytes (Fig. 2).
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