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Background. A5350, a phase II, randomized, double-blind study, evaluated the safety and tolerability of the probiotic Visbiome 
Extra Strength (ES) over 24 weeks and measured effects on inflammation and intestinal barrier function.

Methods. The primary outcome was change in soluble CD14 (sCD14) levels; secondary outcomes included safety and tolera-
bility, markers of inflammation and cellular activation, and microbiome. In a substudy, gut permeability was assessed by paired co-
lonic biopsies measuring the area of lamina propria occupied by CD4+ cells, interleukin (IL)-17+ cells, and myeloperoxidase (MPO). 
Changes between arms were compared with the 2-sample t test with equal variance or the Wilcoxon rank-sum test. For safety, the 
highest graded adverse events (AEs) were compared between arms using the Fisher exact test.

Results. Overall, 93 participants enrolled: 86% male, median age 51 years, median CD4 count 712 cells/mm3. Visbiome ES 
was safe and well tolerated. There was no difference in mean change in sCD14 from baseline to week 25/26 between placebo (mean 
change, 92.3 µg/L; 95% CI, –48.5 to 233 µg/L) and Visbiome ES (mean change, 41.0 µg/L; 95% CI, –94.1 to 176.2 µg/L; P = .60). 
Similarly, no statistically significant differences between arms in inflammatory marker changes were identified. In substudy parti-
cipants, no statistical differences between arms for change in cellular marker expression or gut permeability were observed (P > .05 
for all). The microbiome demonstrated increased probiotic species and a significant decrease in Gammaproteobacteria (P = .044) in 
the Visbiome ES arm.

Conclusions. Visbiome ES was safe and altered the microbiome but demonstrated no effect on systemic inflammatory markers, 
pathology, or gut permeability in antiretroviral therapy–treated people with HIV.
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HIV infection confers a chronic inflammatory state, impairing 
immune function and exacerbating chronic disease risk. HIV-
related alterations in the intestinal microbiome are associated 
with CD4+ T-cell depletion and chronic inflammation [1–4]. 
Previous studies have found that gut microbiota and related 
metabolites, including tryptophan metabolism, are altered in 
people with HIV (PWH) [1, 2, 5, 6]. HIV infection of intes-
tinal CD4+ T cells results in intestinal epithelial damage, with 

decreased colonic epithelial tight junction proteins and in-
creased colonic permeability, and facilitates microbial translo-
cation despite suppressive antiretroviral therapy (ART) [7]. As 
systemic inflammation has been linked with long-term mor-
bidity and mortality [8], adjunctive interventions are needed to 
improve gut integrity.

Probiotics are organisms such as yeast or bacteria available 
in foods and supplements that may improve overall gut health 
and reduce excess intestinal permeability [9, 10]. Various pro-
biotics have been studied in disease states associated with gas-
trointestinal dysbiosis, including inflammatory bowel disease 
(IBD) and infectious diarrhea. In addition to intestinal health, 
probiotic bacteria may have effects on immune function and 
response to infection or vaccination [11]. This has been most 
clearly demonstrated in the case of diarrheal illness, such as 
Clostridioides difficile disease [12–14].

The promising effects of probiotics on gut dysbiosis and in-
flammation have been described in simian immunodeficiency 
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virus (SIV)–infected macaques [15]. Colonic CD4+ T cells 
were reconstituted to near normal levels in the animals that 
received ART and Visbiome compared with ART alone, and a 
significantly greater number of antigen presenting cells could 
be measured. Probiotic products have also been studied in the 
setting of HIV infection, but with mixed results (reviewed in 
[16]). Given its promise in animal models, in AIDS Clinical 
Trials Group study A5350, we evaluated whether the probiotic 
Visbiome Extra Strength (ES) reduced measures of systemic 
inflammation in persons with well-controlled HIV on ART. 
In a substudy (A5352s), we obtained colonic biopsies and per-
formed immunohistochemistry to evaluate gut pathology. We 
additionally performed lactulose mannitol testing to evaluate 
functional gut permeability before and after Visbiome ES treat-
ment. We hypothesized that Visbiome ES would be safe and re-
pair intestinal pathology and reduce gut microbial translocation 
and inflammation in PWH.

METHODS

Study Participants and Design

PWH at AIDS Clinical Trials Group sites in the United States, 
age >18 years, on stable ART, with CD4+ T-cell count >200 
cells/mm3 were eligible. History of inflammatory bowel disease, 
total colectomy, or chronic liver disease; recent or current use 
of antimicrobials, immunomodulatory or probiotic treatment 
(including probiotic yogurt), or active substance abuse inter-
fering with study procedures were exclusionary. Participants 
were randomized 1:1 to Visbiome ES or placebo for 24 weeks 
starting at week 2 and followed for an additional 12 weeks off 
study product.

Patient Consent 

Written informed consent was obtained from all participants 
before participation, and the human experimentation guide-
lines of the US Department of Health and Human Services 
were followed. The study was approved by institutional review 
boards at all participating sites (NCT02706717).

Collections

Blood samples were collected to measure markers of cellular 
activation, inflammation, gut damage, and bacterial trans-
location. Plasma concentrations of sCD14 were quantified 
using the human sCD14 enzyme-linked immunosorbent assay 
(ELISA) kit (R&D Systems) per the manufacturer’s instruc-
tions. Commercially available ELISA kits were used to deter-
mine plasma levels of interferon-inducible protein 10 (IP-10 
or CXCL10) and D-dimer (Sekisui Diagnostics) and I-FABP 
(Hycult Biotech) according to the manufacturer’s instruc-
tions. Duplicates of 20% of the samples were included in each 
ELISA plate. The plasma kynurenine-to-tryptophan (KT) ratio 
was determined using published techniques [17]. Glucose and 
insulin were batch-analyzed on stored plasma. Fasting lipid 

profiles were batch-analyzed on stored serum. Insulin resist-
ance was estimated by the homeostasis model assessment–in-
sulin resistance (HOMA-IR) [18]. Participants were provided 
with stool collection kits. In the substudy, colonic biopsies 
were collected by flexible sigmoidoscopy at baseline and week 
24 to assess tissue-specific effects related to immunologic out-
comes, inflammation, bacterial translocation, and gut integ-
rity. A lactulose mannitol (LM) test for gut permeability was 
performed at baseline and week 26 [19, 20]. The methods used 
for blood testing for inflammatory and metabolic biomarkers, 
immunohistochemistry staining of the colonic biopsies, 
microbiome analysis, symptom and dietary questionnaires, and 
lactulose mannitol testing are provided in the Supplementary 
Methods. Safety assessments were performed at weeks 6, 14, 26, 
and 38.

Study Product

DuPont/Danisco manufactured Visbiome ES and matched pla-
cebo for Visbiome ES for Exegi Pharma (Rockville, MD, USA), 
who supplied the product. Visbiome ES contains 1 strain of 
Streptococcus thermophiles, 3 strains of Bifidobacteria, and 4 strains 
of Lactobacilli in defined ratios. Each sachet contains at least 900 
billion lyophilized lactic acid bacteria. For weeks 2–4, participants 
were instructed to take 1 sachet orally daily. For weeks 4–26, parti-
cipants were instructed to take 1 sachet orally twice daily.

Statistical Analysis

The primary outcome was change in sCD14 levels from base-
line (average of entry and week 2) to week 26 (average of week 
25 and week 26). Based on a prior study, a 0.07 log10 µg/Ll 
sCD14 difference was associated with a 23% decreased odds 
of a non-AIDS event or nonaccidental death at the pre-event 
time point [21], suggesting it would be a clinically significant 
reduction, and this guided the effect size for the study. With 
45 participants per study arm, there was 90% power to detect 
this 0.07 log10 µg/L between-arm difference assuming an SD of 
0.09 log10 µg/L, a 5% type 1 error, and 20% of participants with 
missing end points. Loss to follow-up in this study was higher 
in the placebo arm, but despite this, with 42 Visbiome ES parti-
cipants and 31 placebo participants, we still had 89.97% power 
to detect this difference. The continuous secondary outcomes 
assessed changes over the 24-week treatment period and the 
12-week post-treatment period. Unlike the primary sCD14 out-
come, secondary outcomes did not utilize averaging at baseline 
and week 26.

For the subset of participants who completed paired colonic 
biopsies, the primary outcome was change in CD4+ T cells 
(median % positive staining) in colonic tissue over 24 weeks of 
treatment. With 20 participants per study arm, there was 90% 
power to detect a 20.1% between-arm difference in CD4+ T 
cells assuming an SD of 16.4%, a 5% type 1 error, and 20% of 
participants with missing end points.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data


Assessing Probiotics in Treated PWH • OFID • 3

To examine the biologic effects of Visbiome ES, we used 
per-protocol analyses, limited to participants on treatment 
through week 26, without confirmed virologic failure (2 con-
secutive ≥200 copies/mL of HIV-1 RNA) at or before week 26, 
who had primary outcome data (sCD14 for main study out-
comes and quantifiable intestinal CD4+ T cells for substudy 
outcomes). Mean changes in main study outcomes were com-
pared between arms using a 1-sample t test with equal vari-
ance. If data were highly skewed and log10 transformed, means 
were exponentiated to estimate geometric mean fold changes 
within arms and the percent difference in geometric mean fold 
changes between arms. Due to the sample size in the substudy, 
the Wilcoxon rank-sum test was used to compare treatment 
arms. Participants who received any study product were in-
cluded in the safety analysis, which compared the proportion 
with adverse events between arms using the Fisher exact test. 
Absolute change was used for all continuous outcomes except 
for CD4+/CD8+ ratio and lactulose mannitol ratio (LMR), 

which used fold change. All statistical tests were 2-sided with 
a nominal alpha level of .05 and no adjustment for multiple 
testing.

RESULTS

Cohort Characteristics

Overall, 93 participants enrolled between April and 
December 2016 and completed follow-up in September 2017 
per protocol: 46 placebo, 47 Visbiome ES; 86% natal male sex; 
55% White, 42% Black or African American, 20% Hispanic/
Latino ethinicity; median (Q1, Q3) age was 51 (45, 56) years, 
BMI (Q1, Q3) was 27.1 (24.2, 30.7) kg/m2, CD4 count (Q1, 
Q3) was 712 (542, 893) cells/mm3, and 99% had HIV-1 RNA 
<40 copies/mL; 1 participant had 48 copies/mL (Figure 1). 
Excluding 19 participants who did not complete study treat-
ment and 1 virologic failure, 73 participants (31 placebo, 42 
Visbiome ES) remained in the population. Of 42 participants 

Assessed for eligibility (n = 121) 

Enrollment 

Excluded (n = 28) 

Randomized (n = 93) 

Allocation 

Allocated to visbiome ES (n = 47) Allocated to placebo (n = 46) 

Lost to follow-up (n = 1) Follow-up Lost to follow-up (n = 8) 

Discontinued visbiome ES (n = 3) 

Discontinued placebo (n = 4) 

Analysis 

Analyzed in per-protocol population 
(n = 42) 

Analyzed in per-protocol population 

Did not meet inclusion criteria (n = 17) 
 Declined to participate (n = 4) 
 Screening period expired (n = 7) 

 Received visbiome ES (n = 47) Received placebo (n = 43) 
Did not receive placebo (n = 3) 

 Withdrew before initiation (n = 2) 
 Lost to follow-up before initiation (n = 1) 

 Participant withdrew (n = 1) 

 Adverse event (n = 2) 
 Noncompliance (n = 1) 

 Participant withdrew (n = 6) 
 Participant died (n = 1) 
 Other (n = 1) 

 Adverse event (n = 1) 
 Noncompliance (n = 2) 
 Other (n = 1)

 Excluded due to virologic failure (n=1) 
(n = 31) 

Figure 1. Trial flowchart. Abbreviation: ES, Extra Strength.
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enrolled into A5352s, 29 had paired biopsy specimens for 
analysis. The median (Q1, Q3) age for the substudy per-
protocol population was 50 (44, 56) years; 26 (90%) natal 
male sex; baseline CD4 count (Q1, Q3) was 718 (601, 925) 
cells/mm3 (Table 1).

Effect on Biomarkers

After 24 weeks of treatment, Visbiome ES did not significantly 
reduce sCD14 compared with placebo; ∆ = –51.3 (95% CI, –246 
to 143.9) µg/L (P  =  .60), after log10-transforming ∆  =  –0.009 
(95% CI, –0.043 to 0.025) log10 µg/L (P = .59) (Figure 2A). After 
log10-transforming d-dimer values, the geometric mean fold 
change from baseline to week 26 was 1.20 (95% CI, 0.97 to 1.50) 
in the Visbiome ES arm, indicating a 20% relative increase to 
the baseline level, and 28.4% (95% CI, –3.6% to 71.0%) greater 
than the placebo (P =  .09) (Figure 2B). Mean fold changes in 
kynurenine-to-tryptophan (KT) ratio from baseline to week 
26 were 1.04 (95% CI, 0.94 to 1.14) in the Visbiome ES arm 
and 1.0 (95% CI, 0.94 to 1.05) in the placebo arm. There was 
no evidence of a difference between the arms (∆ = 0.04; 95% 
CI, –0.09 to 0.17; P = .51). Similar results were seen for IP-10 
(Supplementary Table 1).

The mean changes in circulating CD4 cell counts from base-
line to week 26 were 10 (95% CI, –32 to 52) cells/mm3 in the 
Visbiome ES arm and 43 (95% CI, –3 to 88) cells/mm3 in the 
placebo arm, with a difference in mean changes of –33 (95% 
CI, –94 to 28) cells/mm3 between arms (P = .29) (Figure 2C). 
Similarly, changes in CD4+/CD8+ ratio demonstrated no 
difference between arms (P  =  .41), with mean fold changes 
from baseline to week 26 of 1.03 (95% CI, 0.99 to 1.07) in the 

Visbiome ES arm and 1.05 (95% CI, 1.01 to 1.09) in the placebo 
arm. The difference in mean fold changes was –0.02 (95% CI, 
–0.08 to 0.03) (Figure 2D).

We did not identify differences in changes for most periph-
eral blood mononuclear cell flow cellular markers analyzed, 
except for the difference in percent expression of (CD8+) 
CD28-CD57+ between arms in changes over 26 weeks, with a 
mean increase over placebo of 2.28% (95% CI, 0.07% to 4.48%; 
P = .043) (Supplementary Tables 2–4). Over the post-treatment 
follow-up period (weeks 26–38), decreases in percent expres-
sion of (CD4+) CD28-CD57+ and (CD20-) CD27+CD38+ in the 
Visbiome ES arm were statistically significantly greater from 
placebo (P = .042 and P = .012, respectively); no other markers 
were found to be statistically different in their changes over this 
period.

Effect on the Microbiome

No differences between groups or changes over the course of 
the study were seen in the microbial diversity as measured by 
Shannon diversity index nor richness as measured by the Chao1 
Richness Index. Although not statistically significant, we de-
tected an increase in both Lactobacillus and Bifidobacterium 
in participants on Visbiome ES, which decreased to baseline 
values after discontinuation of study product (Figure 3A, C). 
Geometric mean fold differences from baseline to week 26 be-
tween the Visbiome ES and placebo groups were demonstrated 
for Lactobacillus of +109.0% (95% CI, –62.6% to 1068.2%; 
P =  .39) and Bifidobacterium of +199.5% (95% CI, –63.7% to 
2373.4%; P = .30), with variability among participants (Figure 
3B, D). Of other microbial communities, Gammaproteobacteria 

Table 1. Baseline Characteristics of Main Study and Substudy Population

Characteristic 

Main Study Substudy 

Overall (n = 93) 
Visbiome ES 

(n = 47) Placebo (n = 46) Overall (n = 29) 
Visbiome ES 

(n = 14) Placebo (n = 15) 

Age, y 51
(45, 56)

51
(47, 56)

52
(42, 56)

50
(44, 56)

50
(45, 56)

50
(42, 56)

Female sex 13 (14) 7 (15) 6 (13) 3 (10) 3 (21) 0 (0)

Race

White Black/African 
American

50 (55)
38 (42)

24 (53)
21 (47)

26 (57)
17 (37)

13 (45)
15 (52)

6 (43)
8 (57)

7 (47)
7 (47)

Hispanic ethnicity 19
(20)

10
(21)

9
(20)

3
(10)

2
(14)

1
(7)

Body mass index, kg/m2 27
(24, 31)

27
(25, 31)

26
(24, 30)

27
(24, 29)

27
(26, 29)

26
(24, 28)

Current smoker 19
(21)

9
(19)

10
(23)

8
(28)

5
(36)

3
(20)

Current ethanol use 60
(66)

29
(62)

31
(70)

20
(69)

10
(71)

10
(67)

CD4 count, c/mm3 712 (542, 893) 702 (483, 866) 715 (546, 897) 718 (601, 925) 790 (601, 951) 712 (583, 897)

HIV RNA <40 copies/mL 92
(99)

47
(100)

45
(98)

29
(100)

14
(100)

15
(100)

Data are presented as median value (Q1, Q3) or No. (%).

Abbreviation: ES, Extra Strength. 
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demonstrated statistically significantly different (P = .044) ge-
ometric mean fold changes from baseline to week 26 between 
the Visbiome ES and placebo groups, with a percent difference 
of –76.9% (95% CI, –94.4% to –4.0%) (Figure 3E). As seen in 
Figure 3F, a distinguishable portion of individuals with a fold 
change of Gammaproteobacteria <1 were in the Visbiome ES 
group. No other changes or differences were seen in the rest of 
the microbial communities analyzed.

Diet

Participants completed 24-hour recall [22] at baseline and 
weeks 14, 26, and 38 using ASA24. We extracted the fol-
lowing Healthy Eating Index (HEI) measures [23]: added 
sugar, sodium, dairy, fatty acid ratio, saturated fats, whole 
fruit, total fruit, refined grains, whole grains, dark green 
vegetables and beans, total vegetables, protein foods, seafood 

and plant protein, and total score. Of all HEI measures, we 
saw no differences between arms over the 24 weeks of ac-
tive study treatment. During the post-treatment follow-up 
period (weeks 26–38), participants reported differences in 
saturated fat intake, with a mean increase of 2.51 (95% CI, 
0.02 to 5.00; P =  .049). No other notable changes or differ-
ences were seen in the rest of the HEI measures analyzed. 
However, the diet of the participants was low for whole fruit, 
whole grains, and dark green vegetables and beans, with a 
total HEI score across the groups of 47, significantly lower 
than the average American score of 59, and far from the ideal 
score of 100 [23].

Effects on Metabolism

We did not observe any notable changes or differences be-
tween arms in fasting lipids (cholesterol, LDL, HDL, non-HDL 
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cholesterol or triglycerides), which were measured at baseline 
and weeks 14 and 26. However, in exploratory analyses, we 
identified a statistically significant treatment group difference 
in fasting insulin and HOMA-IR fold changes from baseline to 
week 26, with a geometric mean HOMA-IR difference of –39.7% 
(95% CI, –59.0% to –11.3%; P = .011), although this was driven 
by an increase in the placebo arm (Supplementary Table 5).

Safety of Study Product

Overall, 25 participants (28%) reported at least 1 AE (8 [19%] 
placebo and 17 [36%] Visbiome ES; P  =  .098). Examining 
system organ classes where the difference in treatment arm pro-
portions was >5%, 5 (11%) in Visbiome ES and 2 (5%) in pla-
cebo reported any gastrointestinal disorder; 4 (9%) in Visbiome 
ES and 0 (0%) in placebo reported a musculoskeletal and con-
nective tissue disorder; and 4 (9%) in Visbiome ES and 1 (2%) 
in placebo reported a vascular disorder. Table 2 summarizes the 
adverse events and grades. One participant in the placebo arm 
discontinued study product due to an AE, while 2 discontinued 
due to an AE in the Visbiome ES arm. Three participants as-
signed to placebo never initiated study product. There was 1 
death in the placebo arm due to herpes encephalitis that was not 
attributed to study drug.

Effect on Gastrointestinal Symptoms

Although gastrointestinal adverse events were more common 
in the Visbiome ES arm, gastrointestinal symptom scores did 
not reveal significant differences. At each visit, we performed 
a symptom questionnaire assessing 5 symptoms (passing gas, 
soft stools, excessive gas, hard stools, and watery stools) on a 
scale of 0 (not present) to 10 (very severe). The mean changes in 
the Visbiome ES arm ranged from –0.74 to –0.27, while in the 
placebo arm they ranged from –0.29 to 1.10. For all 5 symptom 
scores, the mean change in Visbiome ES was less than in the 

placebo arm. Notably, the largest and only statistically signif-
icant (P = .002) difference was for passing gas, which was the 
measure with the largest mean increase in placebo (1.10) and 
the largest mean decrease in Visbiome ES (–0.74).

Effect on the Gastrointestinal Tract

In the substudy with 42 participants enrolled, 29 with paired bi-
opsy samples, there were no significant changes seen in CD4+, 
IL-17, or MPO staining, measures of CD4+ T cells, Th17 cells, 
and neutrophils. At baseline, the median % positive staining 
for CD4+ T cells was 2.0% in the Visbiome ES arm and 2.1% 
in the placebo arm. The median % CD4 decreased to 1.74% 
in the Visbiome ES arm and 1.65% in the placebo arm, with 
a median change of –0.21 for placebo and –0.03 for Visbiome 
ES (P =  .089) (Supplementary Figure 1A). IL-17 staining was 
highly variable but demonstrated no significant change over 24 
weeks (P  =  .65) (Supplementary Figure 1B). MPO minimally 
decreased in placebo from 0.18 to 0.11, with a median change of 
–0.04, while it increased in Visbiome ES from 0.14 to 0.18 for a 
median change of 0.05 over 24 weeks (P = .081) (Supplementary 
Figure 1C). Consistent with these findings, we demonstrated no 
significant changes in gut permeability as measured by LMR, 
although this may not have been the best measure of gut perme-
ability [24]. At baseline, the overall median (Q1, Q3) ratio was 
0.03 (0.02, 0.06). The median (Q1, Q3) fold change from base-
line to week 26 was 0.66 (0.42, 1.35) in the Visbiome ES arm and 
0.86 (0.74, 1.55) in the placebo arm. There was no evidence of 
a difference between the arms (P = .35) (Supplementary Figure 
1D). In addition, we saw no significant change in circulating 
intestinal fatty acid binding protein (I-FABP), a marker of intes-
tinal barrier dysfunction, which demonstrated a baseline mean 
of 311 (95% CI, 186.7 to 518) pg/mL. I-FABP decreased in both 
arms similarly over the course of the study to a mean of 211 
(95% CI, 115 to 385) pg/mL [25].

Table 2. Adverse Events

 

Visbiome ES (n = 47), No. (%) Placebo (n = 43), No. (%)

Overall Grade 1–2 Grade ≥3 Overall Grade 1–2 Grade ≥3 

Totala 17 (36) 10 (22) 7 (15) 8 (19) 4 (9) 4(9)

GI disorder 5 (11) 4 (8) 1 (2) 2 (5) 1 (2) 1 (2)

Infections & infestations 4 (9) 3 (6) 1 (2) 2 (5) 1 (2) 1 (2)

Musculoskeletal 4 (9) 3 (6) 1 (2) 0 0 0

Metabolic/nutritional 1 (2) 1 (2) 0 1 (2) 1 (2) 0

Neoplasm 1 (2) 0 1 (2) 1 (2) 1 (2) 0

Renal/urinary 1 (2) 1 (2) 0 0 0 0

Psychiatric 0 0 0 1 (2) 1 (2) 0

Respiratory/thoracic 2 (4) 1 (2) 1(2) 0 0 0

Skin/soft tissue 0 0 0 1 (2) 1 (2) 0

General disorders 1 (2) 1 (2) 0 1 (2) 1 (2) 0

Injury/poisoning/procedural 2 (4) 1 (2) 1(2) 2 (5) 0 2 (5)

Abbreviations: AE, adverse event; ES, Extra Strength; GI, gastrointestinal.
aAny AE: 17 (36%) vs 8 (19%); P = .098 by Fisher exact test.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab550#supplementary-data
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DISCUSSION

Persistent microbial translocation and increased gastrointes-
tinal permeability have been hypothesized to contribute to 
chronic inflammation, morbidity, and mortality in PWH [8]. 
We performed a prospective, randomized, placebo-controlled 
clinical trial to measure the effects of the probiotic Visbiome 
ES on markers of inflammation, coagulation, the microbiome, 
gastrointestinal structure and function, and metabolism. In a 
cohort of virologically suppressed PWH with high CD4 counts 
and minimal symptoms, we were unable to demonstrate a sig-
nificant benefit of Visbiome ES administration.

Changes in several markers of systemic inflammation and 
coagulation, including sCD14, d-dimer, KT ratio, and IP-10, or 
in relevant measures of immune activation of lymphocytes and 
monocytes were not different between arms (Supplementary 
Data). There were also no significant effects on CD4+ T-cell 
count or CD4/CD8 ratio in this cohort. Baseline sCD14 levels 
were relatively low, and CD4+ T-cell counts and CD4/CD8 
ratios (721 c/mm3 and 0.93, respectively) near normal. These 
surrogate measures of immune function and inflammation in-
dicated preserved or reconstituted immune function and pre-
sumably low systemic inflammation upon which the Visbiome 
ES could render a meaningful benefit. Data from the START 
trial suggest that PWH who initiate ART at CD4 counts >500 c/
mm3 and suppress HIV viremia have low measures of inflam-
mation and very low incidence of non-AIDS comorbidities that 
are historically linked to excess inflammation [26].

We considered whether variable engraftment of the probi-
otic might have affected results, but when comparing partici-
pants within the Visbiome ES arm with (n = 16) and without 
(n = 13) increased Lactobacillus from baseline to week 26, no ap-
parent difference in sCD14 changes was identified. One poten-
tial explanation for this finding is the high baseline CD4+ T-cell 
counts with consistent virologic suppression and generally im-
munologically healthy population studied. A second possibility 
may be poor dietary quality that did not facilitate engraftment 
of the probiotic over time. Alternatively, the probiotic used may 
not have been sufficient or appropriate to affect a meaningful 
change in the microbiome composition of these individuals [27]. 
Finally, there is also a possibility that gut dysbiosis and inflam-
mation are consequences rather than causes of systemic inflam-
mation. Despite this, a recent study in SIV-infected nonhuman 
primates suggested that altering the composition of the GI tract 
microbiome does not accelerate untreated SIV disease [28], sug-
gesting that the influence of the composition of the microbiome 
may be more complex in its effects on HIV disease course.

As mentioned, dietary factors may have influenced the study 
outcomes. Our study population had a persistently low-fiber 
diet. The population of PWH living in the United States gen-
erally has a diet containing <20 g of fiber per day [29]. Recent 
studies highlight that dietary fiber intake strongly influences 

successful engraftment of probiotic bacteria, the duration of en-
graftment, and the effect on functional and clinical parameters 
[30–32]. The nonhuman primate study of Visbiome that dem-
onstrated colonic CD4+ cell restoration also provided the sol-
uble prebiotic fiber inulin [15]. An unsuitable dietary nutrient 
composition may prohibit engraftment or the ability of mi-
crobes to produce metabolites, such as short-chain fatty acids, 
that improve health and anti-inflammatory outcomes [33–35]. 
We did not identify any apparent association within partici-
pants in the Visbiome ES arm between baseline total HEI and 
fold changes in Lactobacillus or Bifidobacterium communities.

In conclusion, we present data from a well-powered, random-
ized, placebo-controlled intervention of probiotics in healthy 
PWH on ART. The study product was generally safe and well 
tolerated and did appear to shift the microbiome, but the study 
did not demonstrate any significant benefit on inflammation or 
gut permeability or translocation in this population, although 
there may have been a benefit of preserved insulin sensitivity. 
In an era in which PWH are aging and current ART is associ-
ated with an increase in weight gain and potential loss of insulin 
sensitivity [35, 36], dietary interventions may be useful to ame-
liorate these consequences. A dietary intervention or combined 
probiotic/prebiotic intervention, such as the prebiotic/probiotic 
combination used in animal models [15], might result in better 
engraftment and demonstrate biologic efficacy if utilized in a 
population with more significant gastrointestinal pathology.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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