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Abstract
In 1981, the Journal of Molecular Evolution (JME) published an article entitled “Evolutionary trees from DNA sequences: 
A maximum likelihood approach” by Joseph (Joe) Felsenstein (J Mol Evol 17:368–376, 1981). This groundbreaking work 
laid the foundation for the emerging field of statistical phylogenetics, providing a tractable way of finding maximum likeli-
hood (ML) estimates of evolutionary trees from DNA sequence data. This paper is the second most cited (more than 9000 
citations) in JME after Kimura’s (J Mol Evol 16:111–120, 1980) seminal paper on a model of nucleotide substitution (with 
nearly 20,000 citations). On the occasion of the 50th anniversary of JME, we elaborate on the significance of Felsenstein’s 
ML approach to estimating phylogenetic trees.
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Molecular Phylogenetics in the 80′s

Before delving into the substance of this seminal paper, it 
is important to understand the historical context in which it 
was written. “In the development of scientific methodology 
there is no new thing under the sun. Every ‘new’ idea is like 
another node in a spreading network” (Edwards 2009). In the 

early 1960s, AWF Edwards and LL Cavalli-Sforza were set 
on a clear mission to develop modern statistical approaches 
for reconstructing phylogenetic trees from genetic data, 
using computers. Over a very short period of time, they were 
able to develop three methods: least-squares (LS)–see also 
Fitch and Margoliash (1967), maximum parsimony (MP), 
and ML (Edwards and Cavalli-Sforza 1963a, b, 1964, 1965). 
This was before DNA or protein sequences were even avail-
able, and their focus was on the use of blood group allele 
frequency data to recover the history of human populations; 
for an account of this historical period, see Edwards (2009).

Remarkably, while the LS and MP approaches rapidly 
became quite popular, during the 1970s the method of ML 
was pretty much ignored by most researchers. The reasons 
for this were several, but the most obvious was the sim-
plicity of the former methods, a clear advantage at a time 
when computers were still very slow and uncommon. Since 
Edwards and Cavalli-Sforza, the development of ML in phy-
logenetics was clearly championed by Joe Felsenstein (but 
see Neyman 1971; Kashyap and Subas 1974), starting with 
his Ph.D. thesis (Felsenstein 1968)—a current read of which 
tells us how much of a visionary he was in many regards. In 
1973, Felsenstein already simplified the model for quantita-
tive characters proposed by Edwards and Cavalli-Sforza in 
1964 to make it tractable (Felsenstein 1973a). Also in 1973, 
he set the basis for his 1981 JME publication, proposing an 
algorithm for computing the likelihood of a tree for discrete 
characters advancing the “pruning” technique (see below; 
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also present in the other 1973 paper) and proposing new 
probabilistic models of change (see also Jukes and Cantor 
1969; Felsenstein 1973b). During this period, Felsenstein 
also showed that MP could be inconsistent under certain 
realistic scenarios (Felsenstein 1978) where “long-branch 
attraction” is a concern—the so-called “Felsenstein zone” 
(Huelsenbeck and Hillis 1993).

The major breakthroughs in DNA sequencing technolo-
gies took place in the second part of the 70′s (Maxam and 
Gilbert 1977; Sanger et al. 1977), and during the 80′s an 
explosion of DNA sequences started to revolutionize the 
incipient field of molecular phylogenetics. In particular, 
Felsenstein pointed out that parsimony methods implic-
itly assume that change is improbable a priori (Felsenstein 
1973b, 1979). These accumulating DNA sequence data were 
clearly indicating that this assumption was not correct and 
therefore, the need for a tractable likelihood method was 
palpable. Felsenstein’s publication in 1981 was exception-
ally timely, given the deluge of DNA sequence data that 
continues to this day.

A Maximum Likelihood Approach for DNA 
Sequences

The main goal of Felsenstein’s 1981 JME article was to 
show how to efficiently calculate the probability of a set of 
aligned nucleotide sequences given a phylogenetic tree. In 
doing this, and in only nine pages, Felsenstein made several 
significant contributions, namely: (i) a probabilistic model of 
nucleotide substitution, (ii) an algorithm to optimize branch 
lengths, (iii) an algorithm to search for the most likely tree, 
(iv) a computer program to implement these calculations, (v) 
likelihood ratio tests to compare phylogenetic hypotheses, 
and (vi) the first empirical ML tree obtained from (ribo)
nucleotide sequences.

The Tree Likelihood

The likelihood of a hypothesis (H) given some data (D) 
is P(D | H), the conditional probability of observing D 
given that H is correct (Edwards 1972). In phylogenetics, 
the tree likelihood is the probability of a sequence align-
ment (S) given the tree (topology and branch lengths) (T) 
together with a model of nucleotide substitution (M), that 
is, P(S | T,M). To facilitate the computation of the tree likeli-
hood, Felsenstein assumed that sites change independently 
from each other and across different branches, two prem-
ises that persist in most phylogenetic methods today, despite 
being unrealistic.

For a given site, the likelihood of the tree can then be com-
puted simply as the product of the probabilities of change/no 
change in each branch, times the prior probabilities of each 

of the four DNA bases. The problem is that this approach 
implies, for a rooted tree, the sum of 4n−1 products of a num-
ber of terms equal to the total number of branches plus one, 
which can be a lot (for a rooted tree with n sequences at 
the tips, there are 4 possible nucleotides at each of the n–1 
interior nodes, and 2n–2 branches). For example, for only 
12 sequences we would need to sum already 411 = 4,194,304 
products of 23 terms. Therefore, Felsenstein proposed to 
conduct this computation in terms of conditional likelihoods, 
starting from the tips and moving towards the root, in a well-
known movement called postorder traversal. This “pruning” 
algorithm had been in fact already proposed by Felsenstein 
himself for a more general case (Felsenstein 1973b), and in 
turn, it was based on the “peeling algorithm” for computing 
likelihoods on human pedigrees (Hilden 1970; Elston and 
Stewart 1971; Heuch and Li 1972). It is worth mentioning 
that Felsenstein already devised in his Ph.D. thesis in 1968 
a special case of the pruning algorithm for continuous char-
acters changing by Brownian Motion.

The F81 Substitution Model

To compute the tree likelihood, it is necessary to calculate 
the probability of changing from one nucleotide to another 
along a branch of a given length in time units. Generally, 
we do not know the absolute times, so usually, the time unit 
is arbitrarily set as the expected time required for a single 
change. In this way, branch lengths are conveniently scaled 
in expected nucleotide substitutions per site. Here, Felsen-
stein proposed a simple reversible Markov process similar to 
the one previously proposed by Kaplan and Langley (1979) 
in JME for restriction sites. A Markov process implies that 
the probability of one nucleotide changing to another does 
not depend on its previous states. Reversible means that this 
process will look the same backward or forward in time. The 
process is stationary as the probabilities of change among 
nucleotides are constant. Felsenstein assumed that these 
change probabilities only depended on the frequency of the 
target nucleotide. This model of nucleotide substitution is 
known as the F81 model.

Finding the Maximum Likelihood Tree

Note that this model does not assume a molecular clock (i.e., 
a constant mutation rate) nor does it require the sequences 
to be contemporaneous. In a short appendix, Felsenstein 
proved what he called the “Pulley principle” by which the 
likelihood of a tree is not affected by the position of the 
root. This implies that under this model, the tree does not 
contain information about the location of the root, which is 
very convenient for computational purposes. In particular, 
it allows one to optimize the likelihood of each branch itera-
tively in a way that maximizing the likelihood of the tree for 
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a given topology becomes much more feasible, as he showed 
in the paper.

Indeed, once we know how to maximize the likelihood 
for a given tree topology, we still need to find the best tree 
across all possible topologies. For this Felsenstein proposed 
to obtain the maximum likelihood tree using a random step-
wise addition algorithm (Eck and Dayhoff 1966; Kluge and 
Farris 1969), by which sequences are added one by one, 
always looking for the placement with the highest likelihood 
and performing local rearrangements between additions to 
try to improve the likelihood score. Indeed, Felsenstein 
acknowledged this procedure can result in local optima, 
and recommended repeating this process multiple times but 
changing the order in which sequences are added.

A Computer Program: dnaml

In the article, Felsenstein also made an important announce-
ment, the availability of a computer program (dnaml) for 
optimizing the branch lengths, as part of a package of pro-
grams for numerical analysis of evolutionary trees, the great 
PHYLIP package (https​://evolu​tion.genet​ics.washi​ngton​
.edu/phyli​p.html). PHYLIP was first released in October 
1980 and has helped tens of thousands of researchers across 
the globe. In version 1.7 (December 1981), that differed only 
a bit from the first version (1.0), dnaml was a program writ-
ten in Pascal, with only 782 lines of code and able to deal 
by default at most with 15 sequences 60-bp long (although 
the users could change these limits when recompiling the 
program).

More Ideas

The article also hinted at possible extensions of the meth-
odology, like the incorporation of uncertainty in the data 
–interpreting sequencing chromatograms was not always 
straightforward–, and a way of dealing with rate heteroge-
neity among sites. Moreover, the possibility of conducting 
a likelihood ratio test of the molecular clock, or to test alter-
native trees by evaluating the uncertainty in the estimation 
of specific branch lengths, was also mentioned. Indeed, all 
these ideas would be exploited in subsequent years by dif-
ferent researchers.

The First Maximum Likelihood Tree from (RNA) 
Sequences

The paper also offered the first application of the ML method 
to a set of aligned nucleotide sequences (5S and 5.8S RNA) 
obtained by Erdmann (1982), a process that would be 
repeated a million times after that. The resulting tree with 
trout, frog, turtle, iguana and chicken is shown in Fig. 1. 
Probably this is one of the first phylogenetic estimates in 
which the author is able to explain with a sound statistical 
basis that this result is not very reliable.

Fig. 1   Reestimation (by Joe 
Felsenstein) of the first pub-
lished maximum likelihood tree 
obtained from a sequence align-
ment and published in his 1981 
paper. The ML tree in the 1981 
paper was computed incorrectly 
due to a bug in the code that 
computed branch lengths, and 
that even affected the tree topol-
ogy. The bug was found a year 
or two later and corrected in the 
PHYLIP code (Felsenstein pers. 
comm.). Note that the Iguana 
branch has been artificially 
lengthened so that its branch 
length can be drawn next to it

https://evolution.genetics.washington.edu/phylip.html
https://evolution.genetics.washington.edu/phylip.html
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Uses of the Phylogenetic Likelihood

The maximum likelihood framework developed by Felsen-
stein has been tremendously influential, providing a pow-
erful methodology for phylogenetic inference that has been 
exploited by many empirical and theoretical researchers to 
this day (e.g., Ji et al. 2020). Felsenstein’s 1981 article has 

been cited by thousands of researchers around the world in 
over 9,000 publications (Fig. 2). As a side note, this is not 
Felsenstein’s most cited work, which is instead his boot-
strap paper in the journal Evolution (Felsenstein 1985), 
with more than 32,000 citations.

The reasons for this popularity are straightforward. 
The method of ML is a standard in statistics that brought 
a wealth of statistical theory to the field. Its application 

Fig. 2   Bibliographic impact of Felsenstein (1981). a Number of cita-
tions per year. b Distribution of citing articles across scientific fields 
(nearly 260,000 citing articles—those articles citing one or more of 
the articles citing Felsenstein’s paper (and the paper itself). The total 

number of citations is over 9000. The h-index of this list is 245. Data 
obtained from the Web of Science (webofknowledge.com) in Decem-
ber 2020



138	 Journal of Molecular Evolution (2021) 89:134–145

1 3

to phylogenetics permitted the use of complex models of 
evolution, including the ability to estimate model param-
eters and so make inferences about the process of evolu-
tion, providing the means to compare competing trees and 
models (Whelan et al. 2001). Below we describe some of 
the research prompted by Felsenstein’s JME paper. Indeed, 
such a list cannot, and was not intended to, be exhaustive.

Molecular Systematics

The method of ML was swiftly adopted by many research-
ers, most rapidly by Hasegawa and collaborators, who used 
it to infer the tree of Hominoidea (Hasegawa and Yano 
1984), and of eukaryotes (Hasegawa et al. 1985a). During 
the explosion of molecular phylogenetics in the 1990s, ML 
trees played a fundamental role in the field, but not without 
competing strategies, and often with accompanying philo-
sophical debates. The method of ML was thoroughly scru-
tinized from multiple angles and benchmarked against other 
approaches (Saitou 1988; Saitou and Imanishi 1989; Gold-
man 1990; Fukami-Kobayashi and Tateno 1991; Hasegawa 
et al. 1991; Tateno et al. 1994; Kuhner and Felsenstein 
1994; Yang 1994c, 1996; Gaut and Lewis 1995; Huelsen-
beck 1995a, b). During this time, there was a fierce debate 
between supporters of MP and those of ML (Farris 1983; 
Felsenstein and Sober 1986; Sober 1991; Whiting 1998; 
Huelsenbeck 1998).

ML in phylogenetics has stood the test of time. It, along 
with Bayesian approaches, are very popular in phylogenet-
ics today. The broad use of ML in phylogenetics has been 
greatly facilitated by novel software implementations such 
as RAxML (Stamatakis 2014, 2015), RAxML-NG (Kozlov 
et al. 2019), and IQTree (Nguyen et al. 2015; Minh et al. 
2020)—all of which enable likelihood calculations on very 
large datasets.

Remarkably, in the current COVID-19 pandemic, ML 
phylogenetic inference is playing a fundamental role in 
understanding the origins, diversification and spread of 
SARS-CoV-2 (e.g., Fauver et al. 2020; Lam et al. 2020; 
Gonzalez-Reiche et al. 2020; Worobey et al. 2020; Boni 
et al. 2020).

Models of Molecular Evolution

Models of nucleotide substitution are a central part of the 
ML estimate of phylogeny as these models define the tran-
sitional probabilities from one nucleotide to another for the 
likelihood calculation. These models are not only integral 
to phylogeny estimation but are central to testing hypoth-
eses related to tree topology, natural selection, and rates 
of evolution (see below). Jukes and Cantor (1969) (JC69) 
proposed the first such stochastic model of DNA substitu-
tion which assumed that all nucleotide substitutions occur 

at equal rates, implying that each nucleotide is equally likely 
to be a replacement at a given position in an alignment. This 
model formalized the molecular clock hypothesis put forth 
by Zuckerkandl (this journal’s founder) and Pauling (Zuck-
erkandl and Pauling 1965) suggesting that the rate of evo-
lution of a given protein (later DNA) is constant over time 
and across evolutionary lineages (Morgan 1998). Kimura 
introduced what became a series of extensions building on 
the JC69 model, introducing the Kimura 2-Parameter (K2P 
or K80) model (1980) that recognized the empirical result 
that transitions (changes in nucleotides within purines or 
pyrimidines resulting, therefore, in a similar biochemi-
cal shape) occurred at different frequencies than transver-
sions (changes from a purine to pyrimidine or vice versa). 
The model presented by Felsenstein (F81) recognized that 
nucleotide frequencies are often divergent from the implicit 
assumption of equal across the four nucleotides. For exam-
ple, in early sequence analyses of mitochondrial DNA, 
insects in particular showed very high frequencies of A’s 
and T’s relative to C’s and G’s (Jermiin and Crozier 1994). 
Thus, in the Felsenstein model, the rate of nucleotide sub-
stitution depends only on the equilibrium frequency of that 
nucleotide (Felsenstein 1981). Additional model param-
eters would be added to accommodate combining nucleo-
tide frequency differences and differences in transitions and 
transversions (HKY; (Hasegawa et al. 1985b)), differences 
within transitions and transversions, etc., until eventually the 
development of the General Time Reversible model or GTR, 
allowing a unique parameter for each nucleotide substitution 
(Lanave et al. 1984; Tavaré 1986).

With the GTR model established for transition rates 
across nucleotides, researchers turned to other aspects of 
biology to expand models of DNA evolution, based on fur-
ther empirical observations of model inadequacy relative to 
the accumulating DNA sequence data (Barry and Hartigan 
1987). Yang (1993) introduced a ML approach, building 
on Felsenstein’s work, that allows for substitution rates to 
vary across sites by implementing a gamma distribution of 
rate variation. An alternative to modeling rate variation to 
relax the independent and identically distributed assump-
tion, was to model sites that appear to be invariant in a given 
alignment versus those that are variable (Waddell and Steel 
1997), even when relaxing assumptions of stationarity, 
reversibility, and homogeneity (Jayaswal et al. 2007). More 
recently, Lie Markov models have been proposed to average 
over non-homogeneous Markov processes along the phy-
logeny (Sumner et al. 2012; Woodhams et al. 2015). Indeed, 
substitution rates can also change through time due to vari-
able selective pressures resulting from changes at other sites 
(Fitch and Markowitz 1970), and different covarion models 
have been proposed to deal with these types of situations 
(Miyamoto and Fitch 1995; Galtier 2001; Penny et al. 2001; 
Huelsenbeck 2002; Wang et al. 2007).
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With an eye towards DNA sequence alignment, in par-
ticular, Thorne et al. (1991, 1992) set the foundation for 
alignment algorithms to have a stronger statistical footing by 
integrating DNA sequence models of evolution. Integral to 
applications of models of evolution to sequence alignment, 
is a model of insertion/deletion or indels. Their approach 
builds on the more general articulation of sequence align-
ment by Smith et al. (1981) by integrating a new model of 
indel evolution within the context of the previously estab-
lished models of nucleotide substitution. Note also the work 
by Sankoff and collaborators (Sankoff et al. 1973; Sankoff 
and Rousseau 1975) which first made the point that sequence 
alignment and phylogenetic estimation of phylogenies 
should not be treated as separate inferences.

Finally, to further integrate the biological reality of pro-
tein coding sequences, Goldman and Yang (1994) developed 
a codon-based model to specifically account for codon usage 
bias. This model, and a similar model proposed by Muse and 
Gaut (1994), allowed for formal tests of natural selection 
at the nucleotide level within a ML framework by distin-
guishing between synonymous (silent) and nonsynonymous 
(replacement) substitutions. At the same time, taking into 
account nucleotide position within a codon allows for more 
biological realism by acknowledging the lack of independ-
ence of sites within a codon triplet, the difference in rates 
of substitution across the three sites within a codon due to 
the degeneracy of the genetic code, and the generally higher 
frequency of silent substitutions relative to replacements.

In addition to site non-independence due to their occur-
rence within a codon, structural constraints may inflict non-
independence among sites within the same neighborhood 
in a DNA sequence. Muse (1995), and Schoniger and von 
Haeseler (1994) published the first substitution models with 
structural constraints, a line of work extended by many oth-
ers (e.g., Thorne et al. 1996; Moshe and Pupko 2019; Glaser 
et al. 2003; Robinson et al. 2003; Arenas et al. 2013). Also, 
Jensen and Pedersen developed a dependent-rates model 
within a maximum-likelihood framework to accommo-
date sequences with overlapping reading frames (Pedersen 
and Jensen 2001) and context dependent rates of evolution 
(Jensen and Pedersen 2000). Bases themselves can be het-
erogeneous across a DNA sequence and models have been 
developed to account for this base compositional heteroge-
neity (Churchill 1989; Galtier and Gouy 1995, 1998). Simi-
larly, the substitution rates of bases themselves can vary and 
this variation can also be incorporated into an overall model 
of evolution (Yang 1993, 1994a; Gu et al. 1995; Felsenstein 
and Churchill 1996).

Hypothesis Testing

One of the great advantages of ML (for example, over par-
simony or distance-based approaches) is that it allows for 

the easy formulation and testing of phylogenetic hypotheses 
through the use of likelihood ratio tests (LRTs) (Huelsen-
beck and Crandall 1997). Such tests have been developed 
for a variety of aspects surrounding molecular evolution, 
including tree topology tests, tests of phylogenetic signal, 
tests of alternative models of evolution, tests for divergence 
rate heterogeneity, and tests of natural selection. We address 
each of these categories in turn, noting that all stem from 
the initial formulation of the ML estimate of phylogeny 
(Felsenstein 1981) where Felsenstein includes a specific 
section on ‘Hypothesis Testing’ detailing thoughts on test-
ing the constancy of the rate of substitution and alternative 
tree topologies.

While Felsenstein’s empirical example of ML used 
one of the few multispecies alignments available (chick-
ens, iguanas, trout, frogs, and turtles) (Fig. 1), many sub-
sequent extensions, especially in the models of evolution, 
often focused on the relationships of humans to our nearest 
relatives, specifically the human, chimp, gorilla, orangutan 
question (Hasegawa et al. 1985b; Kishino and Hasegawa 
1989) with implications for human origins and comparative 
genomics. The outstanding question at the time was in deter-
mining the sister relationship of humans and all three alter-
native hypotheses (gorilla, chimpanzee, and orangutan) were 
proposed based on different data and analyses. Felsenstein, 
through ML, provided a framework to test both underlying 
assumptions of the likelihood calculations (the model) as 
well as alternative hypotheses about relationships (the tree).

Testing Tree Topologies

As Felsenstein set up the application of ML to phylogeny, 
the phylogeny (plus the model of substitution) is the hypoth-
esis. As an hypothesis, alternatives are eminently testable 
by calculating likelihood scores of competing hypotheses 
and comparing the difference of the log likelihoods of the 
null versus the alternative and comparing it to a Chi-square 
distribution. A common question in systematics is the mono-
phyly of taxonomic groups, that is the members of a clade 
all share a most recent common ancestor. Monophyly is the 
principle upon which modern taxonomy rests and it lends 
itself to statistical evaluation (Rosenberg 2007). Huelsen-
beck et al. (1996) described the first explicit test of mono-
phyly within a phylogenetic context. The likelihood ratio 
test, as originally conceived (Edwards 1972), is a goodness 
of fit test for a model with a constraint (null) tested against 
a model without the constraint (alternative). In the phylo-
genetic case of monophyly, monophyly is the constrained 
tree which is tested against an alternative using the standard 
log likelihood ratio test, comparing to a chi-square distribu-
tion with p—q degrees of freedom, where p is the number 
of parameters under the alternative hypothesis and q is the 
number of parameters under the null hypothesis. Because 
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alternative phylogenetic hypotheses are not necessarily 
nested and it is often difficult to determine the appropri-
ate degrees of freedom to conduct such a test, Huelsenbeck 
et al. (1996) propose a simulation approach to determine 
significance. Indeed, other LRTs were proposed through the 
years to answer different questions (Huelsenbeck and Cran-
dall 1997), for example to detect conflicting phylogenetic 
signal (Huelsenbeck and Bull 1996) or to identify host‐para-
site cospeciation (Huelsenbeck et al. 1997). An alternative 
approach to testing tree topologies using the variance in 
likelihood scores was proposed by Kishino and Hasegawa 
(KH Test) (1989). This test has been criticized as it was 
designed to compare two topologies but is often used to test 
many topologies which leads to overconfidence in the wrong 
tree (Shimodaira and Hasegawa 1999; Goldman et al. 2000) 
and adjustments have been proposed to eliminate this bias 
(Shimodaira 2002).

Testing the Substitution Model

As explained above, the calculation of the tree likelihood 
implies a specific model of DNA substitution. At the same 
time, the use of different substitution models can change 
under different circumstances impacting the tree likelihood 
and therefore also the optimal tree, including the inferences 
derived from it (Kelsey et al. 1999; Kelchner and Thomas 
2007; Ripplinger and Sullivan 2008; Arbiza et al. 2011; Hoff 
et al. 2016). After the Felsenstein 1981 paper, it took some 
time until statistical model adequacy and model selection 
was proposed (Goldman 1993a, b; Yang et al. 1994; Yang 
1994b; Rzhetsky and Nei 1995), but soon after a number of 
methodological implementations prompted a lot of interest 
in this area (e.g., Posada and Crandall 2001; Posada 2001; 
Suchard et al. 2001; Minin et al. 2003; Posada and Buckley 
2004; Sullivan et al. 2005; Sullivan and Joyce 2005) which 
continues to the present (Kalyaanamoorthy et al. 2017; 
Lefort et al. 2017; Abadi et al. 2019, 2020; Morel et al. 2019; 
Darriba et al. 2020). These approaches all share at their core 
a concept of comparing likelihood scores of different models 
of nucleotide substitution, given a tree topology. Variations 
occur in how these scores are compared (e.g., LRTs, Bayes-
ian information criteria, Akaike information criteria, etc.).

Testing for Natural Selection

Golding and Felsenstein (1990) took advantage of the LRT 
to detect the impact of deleterious selection on alternative 
tree topologies for an explicit test for selection. With the 
number of advances in models of nucleotide substitution, 
tests for selection moved from alternative trees to identi-
fying individual sites under selection. Specifically, codon-
based models of evolution (Goldman and Yang 1994; Muse 
and Gaut 1994) (see above) allowed the distinction between 

synonymous and nonsynonymous substitutions. Using this 
distinction, approaches to detecting selection test the expec-
tation that purifying selection leads to a higher rate of syn-
onymous substitutions compared to nonsynonymous, neutral 
evolution should be reflected by equal rates of synonymous 
and nonsynonymous substitutions, and diversifying selec-
tion should lead to more nonsynonymous substitutions. 
This molecular evolutionary dogma misses much of natural 
selection as do summary statistics approaches that ignore 
the evolutionary history (Crandall et al. 1999). Capitalizing 
on the ML framework and the codon models of evolution, a 
number of tests have now been proposed for testing for natu-
ral selection from DNA sequences across sites and along lin-
eages (Yang 1993; Yang et al. 2000; Yang and Nielsen 2002; 
Zhang et al. 2005). Likelihood ratio tests have also been 
proposed to test for heterogeneity among regions within a 
nucleotide sequence (Gaut and Weir 1994).

Estimating Divergence Times

Zuckerkandl and Pauling (1962) made the observation that 
the number of amino acid changes across proteins, hae-
moglobins in particular, seemed to occur at a constant rate 
across the evolution of a group. They proposed that the num-
ber of amino acid replacements correlated with divergence 
times based on fossil calibrations, leading to the concept of 
a molecular clock (Bromham and Penny 2003). In Felsen-
stein’s JME paper, he takes advantage of the ML calculations 
to propose a test for the molecular clock (rate constancy). 
The test requires the calculation of a likelihood score for a 
tree with the constraint of all the tips being contempora-
neous and is compared to the alternative without this con-
straint. These nested hypotheses are neatly compared using 
the maximum-likelihood ratio test with n-2 degrees of free-
dom where n is the number of tips in the tree as that is the 
difference in free parameters between the constrained and 
unconstrained tree. This brings up an important point rela-
tive to the topology tests described above in that the likeli-
hood calculation involves both branch length and topology 
(together, the tree). Thus, alternatives can be significantly 
different just in branch length with the same topology, as in 
the case of the molecular clock test.

Following Felsenstein’s articulation of the constancy of 
rates test using LRTs, a number of tests were subsequently 
developed based on this foundational framework for differ-
ences in rates across lineages (Muse and Weir 1992; Thorne 
et al. 1998). Such tests are effectively used for identifying 
the impacts of natural selection on particular lineages and 
particular genes (e.g., Gaut et al. 1992). Another application 
of the molecular clock is to estimate divergence times of 
specific lineages/clades of genes or organisms. Such tests 
explicitly assume a molecular clock. However, after tests of 
the molecular clock were implemented, it became apparent 
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that a molecular clock was often rejected for various data 
sets. As a consequence, researchers developed approaches 
for relaxing the molecular clock assumption when calculat-
ing divergence times to provide better estimates (Huelsen-
beck et al. 2000; Kishino et al. 2001) through explicit mod-
els of rate evolution (Aris-Brosou and Yang 2002).

Inferring Ancestral Sequences

Felsenstein’s algorithm involves the computation of the par-
tial likelihoods for the different nucleotides at the internal 
nodes of the tree, and these in turn can immediately be used 
to estimate the ML ancestral DNA (or protein) sequences 
(Yang et al. 1995; Koshi and Goldstein 1996), and in general 
of any discrete state (Pagel 1999). Such approaches have 
been especially important in testing hypotheses of protein 
evolution, structure, and function (Harms and Thornton 
2010; Gumulya and Gillam 2017).

Bayesian Inference

In Bayesian inference, the posterior probability of a given 
hypothesis is computed according to Bayes’ theorem, in 
which the prior probability of a given hypothesis is updated 
with the likelihood of the data given that hypothesis. Not 
surprisingly, Felsenstein had already briefly discussed in his 
Ph.D. thesis (1968) how Bayesian inference could be used 
in phylogenetics. In the late 90′s, the ability to calculate 
the likelihood from trees and modern statistical techniques 
like Markov Chain Monte Carlo sampling made possible the 
Bayesian inference of phylogenies (Rannala and Yang 1996; 
Mau and Newton 1997; Yang and Rannala 1997; Larget and 
Simon 1999).

There have been discussions about the relative merits of 
the likelihood and Bayesian approaches (e.g., Svennblad 
et al. 2006), particularly regarding confidence measures 
(bootstrap values vs. posterior probabilities) (Douady et al. 
2003). In our opinion, both are close allies that provide a 
strong statistical, model-based framework for phylogenetic 
inference that has proven generally superior to non-model 
strategies.

Software Implementations of the Phylogenetic 
Likelihood Function

As mentioned above, Felsenstein also introduced in his 
1981 paper a foundational program (dnaml) for obtaining 
ML estimates of the branch lengths, included in his phylo-
genetic package PHYLIP (https​://evolu​tion.genet​ics.washi​
ngton​.edu/phyli​p.html). Since then, multiple computer pro-
grams were written to estimate ML trees and evolutionary 
parameters from them, several of which became extremely 
popular, like PAUP* (Swofford 1993), fastDNAmL (Olsen 

et  al. 1994), PAML (Yang 1997), RAxML (Stamatakis 
et al. 2002, 2005), PhyML (Guindon and Gascuel 2003), or 
IQtree (Nguyen et al. 2015), among others. These programs, 
starting with dnaml, have been central for the growth and 
development of the field of molecular phylogenetics. As a 
side note, Felsenstein maintained (until 2013) an incredible 
community resource for phylogenetic software that is still 
available today: https​://evolu​tion.genet​ics.washi​ngton​.edu/
phyli​p/softw​are.html. While not totally up to date, this is still 
a great one-stop shopping for a wide diversity of software 
applications in a variety of aspects of phylogenetics.

Moreover, prompted by the need to analyze increasingly 
large data sets, more efficient algorithms (Kosakovsky Pond 
and Muse 2004; Stamatakis and Ott 2008; Sumner and 
Charleston 2010; Kobert et al. 2017; Ji et al. 2020) and dif-
ferent High-Performance Computing (HPC) solutions were 
also proposed for faster phylogenetic likelihood calcula-
tions, taking advantage of multi-core computers and cluster 
environments. Thus, phylogenetic likelihood libraries like 
BEAGLE (Ayres et al. 2019) or PLL (Flouri et al. 2015) 
have been developed, and different devices and architectures 
have been explored including Graphical Processing Units 
(GPUs) (Suchard and Rambaut 2009), Field Programmable 
Gate Array (FPGAs) (Mak and Lam 2004a, b; Alachiotis 
et al. 2009; Zierke and Bakos 2010) and other many-core 
accelerators (Kozlov et al. 2014).

The Future of Statistical Phylogenetics

As discussed in the previous section, Felsenstein’s paper 
inspired a plethora of applications that have defined the field 
of phylogenetics. Several of the assumptions he made were 
relaxed through the years, but others (e.g., independence 
among sites) have endured, suggesting perhaps that there 
is no clear benefit in redefining them. While multiple mod-
els have been developed for the estimation of parameters of 
biological interests upon trees, the models and algorithms 
behind the calculation of the tree likelihood itself have not 
evolved that much (but see Ji et al. 2020 for recently pro-
posed advances).

In the last decade, high-throughput sequencing techniques 
have changed many fields of biology, including phyloge-
netics, facilitating the accumulation of massive datasets 
with thousands of taxa and hundreds of thousands of sites. 
Many phylogenomic analyses now leverage the ‘Felsenstein 
phylogenetic likelihood’ as part of more or less complex 
models dealing with multiple phylogenetic layers beyond 
gene trees (i.e., locus trees and species trees). Perhaps, the 
most important challenge in phylogenomics is how to deal 
with these enormous data sets while taking advantage of the 
powerful statistical framework initiated by Edwards, Cavalli-
Sforza and Felsenstein and extended in different directions 

https://evolution.genetics.washington.edu/phylip.html
https://evolution.genetics.washington.edu/phylip.html
https://evolution.genetics.washington.edu/phylip/software.html
https://evolution.genetics.washington.edu/phylip/software.html
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by many others. As just described, the computation of the 
phylogenetic likelihood function is now much faster due to 
the implementation of modern computer science and statisti-
cal techniques, indeed favored by the availability of much 
more powerful computers. Clearly, future advances in com-
putation will facilitate the calculation of the tree likelihood 
with more data in less time.

Paradigms like probabilistic programming (Fourment 
and Darling 2019; Ronquist et al. 2020) and statistical pro-
cedures like Variational Bayesian phylogenetic inference 
(Dang and Kishino 2019) promise to help the development 
of biologically-realistic phylogenetic models that can be 
efficiently computed. Hopefully, in the future we will see 
in JME some of the most exciting developments in statis-
tical phylogenetics, honoring the ground-breaking, game-
changing article that Joe Felsenstein published in 1981 in 
this journal.
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