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Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver
injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound
healing response to liver tissue damage. Numerous studies have shown that hepatic stellate
cells play a critical role in this process, with various cells, cytokines, and signaling pathways
engaged. Currently, the treatment targeting etiology is considered the most effective measure
to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often
occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced
fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an
urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis
could identify new targets for the treatment. Most of the drugs targeting critical cells and
cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any
definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will
summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated
mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs
that have been trialed in clinical practice or are in the research stage.
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INTRODUCTION

Hepatic fibrosis is a universal pathological process that occurs in various types of chronic liver disease,
including viral hepatitis, alcoholic hepatitis, fatty liver disease, nonalcoholic fatty liver disease (NAFLD),
wilson’s disease, and cholangitis. When hepatocytes are damaged, the release of signals such as reactive
oxygen species (ROS) and intercellular interactions lead to the differentiation of HSCs towards
myofibroblasts, and the latter is the primary source of the extracellular matrix (ECM) (Casini et al.,
1997; Novo et al., 2009; Ghatak et al., 2011; Mederacke et al., 2013). Damaged hepatocytes also activate
inflammatory cells such as macrophages and lymphocytes to generate multiple types of cytokines,
including transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF). These
cytokines would result in dysregulation of ECM degradation and synthesis, leading to the development of
liver fibrosis (Luedde et al., 2014; Seki and Schwabe, 2015). Suppose the injury persists and therapeutic
interventions are not taken in time, the liver parenchymawill gradually be replaced by scar tissue formed by
excessive ECM, leading to the loss of standard structure and the formation of cirrhosis. Additionally, the
risk of hepatocellular carcinoma (HCC) and serious complications such as gastrointestinal bleeding
increased.

Over the past decades, we have made some important progress in the mechanism study of
liver fibrosis, but the complex pathogenesis of liver fibrosis poses certain difficulties for the
development of anti-hepatic fibrosis drugs. Many therapeutic interventions are effective in
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experimental models, but their efficacy and safety in humans
are unknown and cannot be applied in the clinic for the time
being. Though still lack of specific anti-fibrosis agents in
clinical, numerous studies have shown that the etiological
treatment of primary liver disease is effective and even
partially reversible for liver fibrosis (Dienstag et al., 2003;
Czaja and Carpenter, 2004; Schiff et al., 2008; Chang et al.,
2010). In addition, it is worth mentioning that traditional
Chinese medicine (TCM) has a beneficial effect on anti-
fibrosis (Chen et al., 2015). In this review, we will
summarize the various therapeutic measures or drugs that
have been trialed in clinical practice or are in the
research stage.

OVERVIEW OF THE MECHANISMS OF
LIVER FIBROSIS

Liver fibrosis is caused by an excessive accumulation of scar
tissue, accompanied by angiogenesis (Lin et al., 2021), which

ultimately leads to changes in the architecture of the liver. The
mechanisms of liver fibrosis can be generalized as follows,
multiple stimuli (such as toxins, viruses, cholestasis, hypoxia,
and insulin resistance, etc.) attack the liver cells and induce the
formation of reactive oxygen species (such as hydrogen peroxide,
hydroxyl radicals, and aldehyde end products, etc.), which in turn
cause hepatocyte damage, apoptosis, steatosis, and immune cell
infiltration, especially kupffer cells (KCs) (Wehr et al., 2013;
Pradere et al., 2013). At the same time, sinusoidal endothelial
cells experience the loss of fenestrae, known as capillarization of
the sinusoids (Marrone et al., 2016). Chronic damage to
hepatocytes is the initiator of the fibrotic cascade, it induces
the production of pro-fibrotic cytokines/growth factors (e.g.,
TNF-a, IL-6, TGF-β, and PDGF) indirectly through
interactions with hepatic macrophages and natural killer (NK)
cells. Meanwhile, it directly activates primary response cells (e.g.,
hepatic stellate cells) through the release of cellular contents,
ultimately leading to the activation of HSCs and the fibrotic
network and excessive deposition of ECM (Figure 1) (Canbay
et al., 2002; Elpek, 2014). Based on the pathogenesis, we can

FIGURE 1 | Mechanisms of liver fibrosis. Liver injury is caused by a variety of stimuli that result in hepatocyte damage and the release of substances such as ROS; in
response to persistent hepatocyte injury, HSCs and macrophages (including Kupffer cells) are activated, activated myofibroblasts increase and excessive ECM is
produced, leading to the progression of liver fibrosis. The activation of hepatic stellate cells is a key step in the process of liver fibrosis. Many influential factors regulating
HSC activation, proliferation, function, and survival have emerged as important therapeutic targets; likewise, protection of hepatocytes from damage and
degradation of excessive ECM deposition provide therapeutic options. HSCs: Hepatic stellate cells CCL2:C-C chemokine ligands types 2; LPS: Lipopolysaccharide
LSEC： Liver sinusoidal endothelial cells TIMP: inhibitors of matrix metalloproteinase; MMP: matrix metalloproteinase; DAMPS:damage-associated molecular patterns;
ECM: extracellular matrix; ROS: reactive oxygen species.
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regress liver fibrosis by protecting hepatocytes, inhibiting the
activation of hepatic stellate cells, and fibrotic scar evolution.

The ECM is a complex network of macromolecular substances
that can regulate various physiological functions such as cell
growth, proliferation, migration, differentiation, adhesion,
metabolism, damage repair, and tissue remodeling through
various signaling systems. In the normal liver, it is a highly
dynamic substrate that maintains an exact balance between
synthesis and degradation (Theocharis et al., 2016; Villesen
et al., 2020). However, in chronic liver disease, the balance is
disturbed due to the involvement of multiple cells and cytokines,
leading to a greater synthesis than degradation. But most of these
changes can be reversed if the liver injury is transient
(Hernandez-Gea and Friedman, 2011). The process of liver
fibrosis is complicated, involving both hepatic parenchymal
and non-parenchymal cells as well as immune cells, and the
main functions of different cells and cytokines in liver fibrosis are
described in detail below.

KEY CELL TYPES IN LIVER FIBROSIS

Hepatic Stellate Cells and Myofibroblasts
In normal liver, HSCs exhibit a quiescent state, whose
physiological functions are related to fat storage and the
metabolism of vitamin A. Another function of the quiescent
HSC is to secrete adequate amounts of ECM proteins such as type
III collagen, type IV collagen, and laminin. Besides, HSC secretes
a variety of degradative enzymes called matrix metalloproteinases
(MMPs), such as MMP-1, which promote the degradation of
ECM. HSC also produces tissue inhibitors of matrix
metalloproteinases (TIMPs), such as the TIMP-1 and TIMP-2.
The TIMP1 can prevent ECM degradation by blocking MMPs
and can inhibit HSC apoptosis (Carloni et al., 1996; Roeb et al.,
1997; Benyon and Arthur, 2001; Geerts, 2001; Yoneda et al.,
2016). The highly regulated interaction between MMPs and
TIMPs is responsible for the renewal of the liver matrix and
the maintenance of homeostasis and healthy liver architectures in
vivo (Murphy et al., 2002). When the liver injury occurs,
numerous key cells and inflammatory mediators are involved,
including inflammatory stimuli, fibrogenic cytokines TGF-β,
ROS, produced by activating macrophages, platelets, and
products of damaged hepatocytes drive HSC activation.
Quiescent HSCs become activated and TIMP-1 expression is
upregulated, which is an essential and central step of liver
fibrogenesis. The activated HSCs can not only transform into
myofibroblasts and secrete enough ECM, but also secret cytokines
such as TGF-β to maintain a constant state of activation,
ultimately resulting in the deposition of mature collagen fibers
in the space of the Disse and leading to the formation of scars
(Tsuchida and Friedman, 2017).

In past, our understanding of HSCs has been dominated by
their crucial role in liver fibrosis, thus generating anti-fibrotic
strategies that target this cell. As research has progressed and
understanding of the role of HSCs in disease has increased, we
have found that HSCs have a role in promoting liver cell
regeneration (Yang et al., 2008), which may be achieved

mainly through the following mechanisms, secretion of
cytokines that promote liver cell proliferation, promote the
migration of stem cells to the liver, and promote the epithelial
transformation of mesenchymal cells into hepatocytes. Therefore,
we need to consider their role in liver regeneration when targeting
HSCs in liver fibrosis (Ge et al., 2020).

Myofibroblasts (MFs) are key cells in fibrotic diseases,
including lung, kidney, and liver disease (Friedman et al.,
2013). It is the major cell that produces ECM in the process
of liver fibrosis, such as collagen I and III. The origin of
myofibroblasts has been controversial, but experiments and
data now demonstrate that the main sources are HSCs and
portal myofibroblasts. Following an injury to liver tissue,
myofibroblasts are transformed from activated HSCs in
response to a large number of cytokines and inflammatory
cells. The overproduced cytokines can continue to act on
myofibroblasts to keep them activated, which in turn produces
large aggregates of ECM. In biliary disease, the main source of
myofibroblasts is portal myofibroblasts (Iwaisako et al., 2014;
Wells et al., 2015). Besides, animal experiments have shown that
HSCs and myofibroblasts can be converted frommesothelial cells
via mesothelial-mesenchymal transition after liver injury (Li
et al., 2013).

Hepatocytes
Hepatocytes make up 80% of the total cell population and volume
of the human liver, and under physiological conditions perform a
variety of functions such as detoxification, secretion of bile,
proteins, and lipids (Schulze et al., 2019). It is also a primary
target for toxic substances that attack the liver. Hepatocyte death
is an important initial event in all liver diseases. Dead hepatocytes
release intracellular compounds called damage-associated
molecular patterns (DAMPs) that signal to surround hepatic
stellate cells and Kuffer’s cells and therefore play an important
role in the development of fibrosis and inflammation (An et al.,
2020; Gaul et al., 2021). Therefore, protecting hepatocytes from
damage is an important therapeutic intervention.

Inflammatory Cells
Inflammation is a fundamental characteristic of chronic liver
disease, cell death is typically the precipitating event. The release
of signals such as reactive oxygen species (ROS) from the
damaged cells can activate the inflammatory cells, including
macrophages, lymphocytes, and NK cells etc (Jaeschke, 2011).
Among them, hepatic macrophages (Kupffer cells) play major
roles and are known as regulators in the process of liver fibrosis
(Wynn and Barron, 2010). KCs are an essential component of the
innate immune mononuclear phagocytic system and play critical
functions in homeostasis, and act as first responders following
liver injury. In response to tissue damage, numerous Ly-6Chi
macrophages are recruited to the liver, releasing cytokines and
attracting NK cells and other immune cells (Karlmark et al., 2009;
Reid et al., 2016). These macrophages could induce the
transdifferentiation of HSCs into collagen-producing
myofibroblasts by secreting TGF-β1 and PDGF. Dendritic cells
(DCs) increase fibrosis regression, mainly through the production
of MMP-9 (Jiao et al., 2012). NK cells directly kill target cells and

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 7877483

Wang et al. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


are capable of producing a variety of cytokines that play various
roles in liver injury, fibrosis, and hepatocarcinogenesis, activated
NKT cells have a role in killing activated HSCs (Radaeva et al.,
2006). However, in chronic liver disease, NKT cells have a pro-
inflammatory function, recruit neutrophils and myeloid cells, and
promote the activation of hepatic stellate, leading to hepatocyte
necrosis, fibrosis, and even HCC (Jin et al., 2011; Wolf et al.,
2014).

Activated inflammatory cells are the primary source of
cytokines, such as C-C chemokine ligands types 2 and 5
(CCL2 and CCL5), IL, TGF-β1, PDGF, etc. The role of
inflammatory cells is double-sided, which could promote the
regression of liver fibrosis and accelerate the deterioration of
fibrosis. For example, hepatic macrophages can not only relieve
inflammation and fibrosis by degrading the ECM and releasing
anti-inflammatory cytokines but also promote liver fibrosis by
activating HSCs (Duffield et al., 2005; Tacke and Zimmermann,
2014). The Ly6Chi macrophages can differentiate into restorative
Ly6Clo macrophages to engulf cell debris and secrete MMP-9 and
MMP-1/MMP-2 to promote scar regression (Ramachandran
et al., 2012).

Liver Sinusoidal Endothelial Cells
In normal liver tissue, liver sinusoidal endothelial cells (LSECs)
have characteristics of vasodilatory, anti-inflammatory, anti-
thrombotic, anti-angiogenic, anti-fibrotic, and regeneration-
promoting effects (Ding et al., 2010), so LSECs are considered
to be the gatekeepers of hepatic homeostasis. At the same time,
LSECs are the main source of endothelium-derived nitric oxide
(NO), which keeps HSCs in a resting state. In the presence of liver
injury, LSECs become capillarized, which can not only reduce the
production of vasodilators (such as NO, cyclooxygenase, and
prostaglandin I2 [PGI2]) but also increase the production of
vasoconstrictors (endothelin 1, thromboxane A2, angiotensin II).
This imbalance not only alters the phenotype of LSECs but also
contributes to the activation of HSCs and promotes inflammation
and liver fibrosis (Deleve et al., 2008; Xie et al., 2012; Poisson et al.,
2017). It also secretes TGF-β, PDGF or activates signaling
pathways such as Wntβcatenin, which can activate HSCs in a
paracrine and autocrine manner. Due to the unique properties of
LSECs, selective LSEC-targeted therapy appears to be an
attractive strategy for the treatment of liver fibrosis (Gracia-
Sancho et al., 2021).

MOLECULAR SIGNALING PATHWAYS
INVOLVED IN LIVER FIBROGENESIS
TGF-β Signaling and Platelet-Derived
Growth Factor Signaling
Transforming growth factors (TGF) have the function of
regulating the growth and development of various cells, which
are essential for the homeostasis of tissues and organs. In the liver,
they are mainly produced by HSCs, LSECs, KCs, and DCs as well
as NKT cells, and can act on themselves or other cells through
autocrine or paracrine secretion (Schon and Weiskirchen, 2014).
The functions of TGF-β vary between different types and stages of

liver disease. During liver fibrosis, TGF-β is up-regulated, the
main function of TGF-β is to activate HSCs, which are considered
to be the main pro-fibrotic factor in the process of liver fibrosis. It
also enhances the expression of TIMPs and directly promotes the
synthesis of interstitial fibrillar collagens (García-Trevijano et al.,
1999; Hellerbrand et al., 1999; Dewidar et al., 2019). Due to its
important function in liver fibrosis, blocking the signaling
pathway of TGF-β is now a potential target for the treatment
of liver fibrosis (Guo et al., 2012).

The platelet-derived growth factor (PDGF) is a member of the
family of growth factors whose biological functions include
angiogenesis, regulation of cell proliferation and survival, cell
migration, and stimulation of the synthesis of major components
of the connective tissue matrix (Heldin and Westermark, 1999).
In the context of liver disease, the expression of PDGF and its
receptors have now been shown to be significantly upregulated
(Pinzani et al., 1996). It has been regarded as the most effective
growth factor for HSC proliferation in hepatic fibrosis, and the
receptors of PDGF have become a new promising direction in the
treatment of liver fibrosis (Pinzani et al., 1989; Borkham-
Kamphorst et al., 2007).

Inflammatory Cytokines Pathways
The progression and regression of liver fibrosis are regulated
by a complex signaling pathway consisting of cytokines,
growth factors, and chemokines. IL-6, TNF-a, Interleukins,
PDGF, and TGF-β are the key pro-inflammatory and
profibrogenic cytokines that drive liver fibrosis.
Interleukins (ILs) are important immunomodulatory
cytokines. During liver injury, it is produced by various cell
types and exerts pro-inflammatory (such as IL-13, IL-17, and
IL-33) as well as anti-inflammatory effects (such as IL-22 and
IL-10) in hepatic cells (Hu et al., 2016; Xu et al., 2016; Liu
et al., 2019). For instance, An animal study has shown that the
IL-6/gp130 pathway plays a protective role for non-
parenchymal hepatocytes in the progression of fibrosis
(Streetz et al., 2003). But a recent study has demonstrated
that IL-6 can induce differentiation of HSCs towards
myofibroblast via MAPK and JAK/STAT signaling
pathways (Kagan et al., 2017). In addition, IL-22 has been
shown to attenuate liver fibrosis by binding to cell receptors,
attenuating the activation of HSCs and down-regulating levels
of inflammatory cytokines (Lu et al., 2015). This suggests that
a strategy using blocking pro-inflammatory interleukins or
inducing anti-inflammatory interleukin production to treat
liver fibrosis can be effective.

Tumour necrosis factor (TNF) and related receptor pathways
can activate apoptosis in hepatocytes via the caspases pathway
and exert anti-apoptotic effects via the NF-κB pathway (Osawa
et al., 2018). TNF also plays a vital role in the activation of HSCs
and the synthesis of ECM (Osawa et al., 2013). TNF reduces
apoptosis of activated rat HSCs through upregulation of the anti-
apoptotic factor NF-κB. However, the effects of TNF-α on HSCs
and fibrosis are multiple. In animal experiments, it has shown an
anti-fibrotic effect by reducing glutathione and inhibiting the
secretion of pro-collagen α1 (Hernandez-Munoz et al., 1997;
Varela-Rey et al., 2007).
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Toll-Like Receptors in Liver Fibrosis
The liver is exposed to venous blood from the small and large
intestines through the portal vein. Due to this unique blood
supply system, the liver is easily exposed to bacterial products that
are transferred from the lumen of the intestine via the portal vein.
The small and large intestines are rich in flora. In healthy
organisms, due to the barrier effect of the intestinal mucosa,
only a small amount of translocated bacterial products reach the

liver, and the liver immune system tolerates these bacterial
products to avoid harmful reactions. After the injury to the
liver or the intestinal mucosa, the flora becomes disturbed,
and intestinal bacteria can translocate to the liver. Its
metabolites such as lipopolysaccharide (LPS) can conjugate
with functional toll-like receptor 4 (TLR4) to activate reactive
cells such as HSCs and Kupffer cells, and also enhance the activity
of transforming growth factors thus leading to the development

TABLE 1 | Targets and main mechanisms of some of existing anti-fibrotic drugs and novel therapeutic approaches.

Agent Anti-fibrotic target Mechanism Refs

Etiological
treatment

Etiology Removal of causative factors (Powell and Klatskin, 1968; Marcellini et al., 2005; Takahashi
et al., 2014; Rockey, 2016; Lens et al., 2017; Tada et al.,
2018; Bardou-Jacquet et al., 2020; Ye et al., 2020)

Glucocorticoids HSC lymphocytes Reducing the transmission of transforming growth factors (Bolkenius et al., 2004; Czaja, 2014)
Weakening the activity of hepatic stellate cells
Inhibiting the proliferation of lymphocytes

Curcumin Inflammation cell and
inflammation response

Anti-inflammatory and antioxidant effects (Zhang et al., 2014; Zhao et al., 2018; Kong et al., 2020)
Blocking the epithelial-mesenchymal transition of
hepatocytes
Inhibiting the activation of Kuffer cells
Inhibiting NF-κB upregulation and reducing sinusoidal
angiogenesis

YCHD TGF-β and RAS system Reduction of RAS pathway components and down-
regulation of TGF expression

Wu et al. (2015)

XCHT Nrf2 Inhibition of hepatic stellate cell activation Li et al. (2017)
Baicalein PDGF receptors Inhibit the activation and value-added of hepatic stellate

cells by down-regulating PDGF receptors
Sun et al. (2010)

FFBJ HSC Inhibition of hepatic stellate cell proliferation and
activation, as well as limiting the expression of TGF-β1 and
PDGF

Yang et al. (2016)

GW570 HSC A PPARγ receptor agonism, simulating PPARγ mediated
gene transcription

Yang et al. (2010)

Obeticholic acid An FXR agonist, FXR expressed in hepatic stellate cells
has an anti-fibrotic effect

Mudaliar et al. (2013)

Pioglitazone A PPARγ receptor agonism Musso et al. (2017)
Nilotinib Inhibition of TK, TK activation transforms HSC into an

activated state
(Ma et al., 2017) (Shaker et al., 2013)

Sorafenib
β-
aminopropionitrile

ECM Inhibits LOX, LOX-mediated cross-linking of collagen
limits MMP degradation of ECM

Georges et al. (2007)

CVC Cytokines Dual antagonist of the CCR type 2 and 5 Friedman et al. (2018)
TG101348 JAK2 receptor antagonist Akcora et al. (2019)
E5564 TLR4 Inhibitors of TLR4 (Fort et al., 2005; Kitazawa et al., 2009; Takashima et al.,

2009)
P13
CRX526
vitamin E ROS Antioxidant effects (Sanyal et al., 2010; Bril et al., 2019; Miyazawa et al., 2019)
losartan/
candesartan

AT1 receptor Angiotensin II may exert its pro-fibrotic effects, Blocking or
attenuating the role of Angiotensin II.

(Colmenero et al., 2009; Kim et al., 2012)

RNA interference target genes Downregulation of genes of critical cytokines in activated
HSCs

(Chen et al., 2008; Cong et al., 2013; Zhou and Yang, 2014;
Jiménez Calvente et al., 2015)

MiRNAs mRNAs Trigger the degradation of target mRNAs about liver
fibrosis

(Chen et al., 2018; Wang et al., 2019)

MSC Inflammation Modulation of the hepatic immune response
HSC Secretion of trophic cytokines to reduce hepatocyte

apoptosis
(Eom et al., 2015)

MMPs/TIMP-1 Antioxidant effects
Inhibition of HSC appreciation
Increased expression of MMPs
Reduced expression of TIMP-1

Abbreviations: PPAR, proliferator-activated receptor; HSCs, Hepatic stellate cells; FXR, farnesoid X receptor; ECM, extracellular matrix; ROS, reactive oxygen species; TK, Tyrosine kinase;
JAK, Janus kinase; TLR, Toll-like receptor; P13, a peptide called P13; YCHD, Yinchenhao Decoction; XCHT, Xiaochaihutang; FFBJ, Fufang Biejia Ruangan Tablets; MSC, Mesenchymal
stem cell; PDGF, platelet growth factor RAS, renin-angiotensin system.
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of liver fibrosis (Seki et al., 2007; Schnabl and Brenner, 2014). In
the liver, both hepatocytes and non-parenchymal cells (NPCs)
have expressed TLR4. Compared to other organs, healthy livers
have a low level of TLR4. However, damaged livers increase the
expression of TLR4 and its co-receptors, thus making
TLR4 signaling-mediated inflammatory responses more
sensitive (Kitazawa et al., 2008; Guo and Friedman, 2010).

POTENTIALLY EFFECTIVE TREATMENTS
FOR LIVER FIBROSIS

Recently, it has been shown that fibrosis can reverse after the
removal of pathogenic conditions. Although no drugs are
currently approved for the treatment of liver fibrosis, some
treatment modalities have shown effectiveness in patients,
such as antiviral therapy for patients with viral hepatitis, zinc
for wilson’s disease, phlebotomy for hemochromatosis, alcohol
withdrawal for alcoholic liver disease and ursodeoxycholic acid
(UDCA) in the treatment of primary biliary cholangitis (Powell
and Klatskin, 1968; Marcellini et al., 2005; Takahashi et al., 2014;
Bardou-Jacquet et al., 2020; Ye et al., 2020). glucocorticoids,
vitamin E, and angiotensin receptor antagonists have gradually
been shown to have antifibrotic effects as well. In addition, TCM
appears to have an increasingly prominent role in the treatment
of liver fibrosis and its efficacy is promising (Fujiwara et al., 2010;
He et al., 2013), but more clinical trials are needed to confirm its
effectiveness. In the following, we will describe these potential
treatments in detail below (Table 1).

Antiviral Therapy
Among all the factors that contribute to chronic liver disease,
hepatitis virus infection is the most common, primarily hepatitis
B and C. Chronic hepatitis B virus infection is a worldwide public
health problem, with approximately 250 million people
chronically infected and at high risk of developing cirrhosis
and liver cancer. When liver cells are infected with the virus,
cellular damage induces an inflammatory response, at the same
time the virus itself can directly induce activation of the immune
system, leading to activation of HSCs and progress to liver
fibrosis. Clearing hepatitis viruses or inhibiting hepatitis virus
replication is the most effective way to reduce liver cell damage.
With the advent of antiviral drugs, we have now made
considerable progress in the fight against the hepatitis B and C
virus. Through effective antiviral therapy, most liver fibrosis can
be reversed, and liver cirrhosis and its related complications can
be reduced (Rockey, 2016; Lens et al., 2017; Tada et al., 2018).

Drugs Targeting Inflammation
Glucocorticoids have immunomodulatory and anti-
inflammatory effects. As we mentioned earlier, the
inflammatory response and immune cells play critical roles in
the process of liver fibrosis. Thus glucocorticoids may have some
therapeutic effects in liver fibrosis. It has been shown that
glucocorticoids can reduce liver fibrosis by reducing the
transmission of transforming growth factors, weakening the
activity of HSCs, and inhibiting the proliferate of lymphocytes,

but the efficacy of glucocorticoids differently in different diseases
(Bolkenius et al., 2004; Czaja, 2014). Glucocorticoids or
immunosuppressive agents are the most significant treatment
options for chronic autoimmune liver disease, and liver fibrosis
can be reversed with adequate management (Valera et al., 2011).
Early glucocorticoid treatment is effective for prognosis in
hepatitis and liver failure due to viral hepatitis B (Fujiwara
et al., 2010; He et al., 2013). Nevertheless, the use of
corticosteroids for alcohol-related acute liver failure or slow-
onset acute liver failure is still controversial in clinical practice,
although the AASLD and EASL guidelines recommend treatment
with corticosteroids. Studies have shown that the use of
glucocorticoids improves short-term survival but does not
significantly improve long-term prognosis and carries risks
such as infection (Thursz et al., 2015; Sersté et al., 2018;
Gustot and Jalan, 2019). Similarly, the use of glucocorticoids
to treat a drug-induced liver injury is also in dispute (Andrade
et al., 2019). Consequently, there is still a need for extensive trials
and data to evaluate the safety and efficacy of glucocorticoids in
liver disease.

Traditional Chinese Medicine With Multiple
Effects on Liver Fibrosis
Notably, there is growing evidence that TCM is effective in the
prevention and treatment of liver fibrosis (Pan et al., 2020). TCM
can suppress liver fibrosis activity through different mechanisms,
including inhibition of cytokine production and suppression of
HSCs activation, as well as regulating the progression of liver
fibrosis through other molecular mechanisms (Shan et al., 2019).
Turmeric is an herb that grows in Asia and has been widely used
as a spice in food and for therapeutic applications. In China, it is
also an ingredient in TCM and recently its extract curcumin has
received much attention. Curcumin has been widely used in anti-
fibrotic models due to its anti-inflammatory and antioxidant
effects. It has been shown to alleviate liver fibrosis by blocking
the epithelial-mesenchymal transition of hepatocytes through the
regulation of oxidative stress and autophagy (Cai et al., 2018; Cai
et al., 2019), and to weaken the role of Ly6Chi cells in liver fibrosis
by inhibiting the activation of Kuffer cells, thereby reducing the
secretion of chemokines (Cai et al., 2018; Cai et al., 2019). In
addition, it also has the effect of inhibiting NF-κB upregulation
and reducing sinusoidal angiogenesis (Cai et al., 2018; Cai et al.,
2019). More research is underway on the mechanism of curcumin
against liver fibrosis.

YCHD (Yinchenhao Decoction) is a traditional Chinese herbal
formulation used to treat liver fibrosis and has been
experimentally shown to have multiple active ingredients
targeting various targets of liver fibrosis (Cai et al., 2018; Cai
et al., 2019). Recent studies have indicated RAS system in liver
fibrosis/cirrhosis may exert pro-fibrotic effects, and the
antifibrotic effects of the YCHD fibrosis effect may be related
to the reduction of RAS pathway components and down-
regulation of TGF expression (Bataller et al., 2000; Yoshiji
et al., 2007). XCHT (Xiaochaihutang) is a water decoction
traditionally used in china for the treatment of liver diseases,
and the mechanism for its anti-fibrosis is not completely clear.
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Nrf2 is an important redox-sensitive transcription factor in vivo,
which can promote cell survival, as well as maintain the redox
state of cells. Animal experiments have shown that XCHT is an
effective drug for the treatment of liver fibrosis, and its
therapeutic effect is mainly through upregulation of the Nrf2
pathway thus resulting in the inhibition of HSCs activation
(Bataller et al., 2000; Yoshiji et al., 2007). In addition,
baicalein, the main component of XCHT, can inhibit the
activation and proliferation of HSCs by down-regulating
PDGF receptors, thus exerting an anti-fibrotic effect (Bataller
et al., 2000; Yoshiji et al., 2007). It has been reported that ETV
combined with FFBJ (Fufang Biejia Ruangan Tablets) showed
significant anti-fibrotic effects in CHB patients. The mechanism
of action may be related to the inhibition of HSCs proliferation
and activation, as well as limiting the expression of TGF-β1 and
PDGF (Bataller et al., 2000; Yoshiji et al., 2007).

Similar TCMs also include Huangqi Decoction Dahuang
Zhechong Pills, Fuzheng Huayu Formula, Anluo Huaxian Pills
(Li, 2020), etc. Although TCM has been used for thousands of
years, its clinical effectiveness in liver fibrosis needs further
evaluation due to the lack of rigorous randomized controlled
trials.

Vitamin E and Renin-Angiotensin System
Inhibitor
Vitamin E, angiotensin-converting enzyme inhibitors (ACE-I),
and angiotensin II type 1 (AT1) receptor blockers have recently
drawn attention to the treatment of liver fibrosis. Vitamin E is an
important nutrient with antioxidant effects, it can inhibit the
production of singlet free radicals, oxygen, lipid hydroperoxides,
and lipid radicals. Since products such as free radicals play an
important role in the development of liver fibrosis, it may be a
potential option for the treatment of liver fibrosis. However, in
patients with non-alcoholic liver disease, vitamin E could not
significantly reduce the severity of fibrosis (Sanyal et al., 2010; Bril
et al., 2019; Miyazawa et al., 2019).

Recent studies have also shown that the production of
angiotensin II type 1 receptor is increased in activated
HSCs and enhanced the activity of the renin-angiotensin
system (RAS) in liver fibrosis/cirrhosis. Angiotensin II may
exert its pro-fibrotic effects through increased oxidative stress,
activation and proliferation of HSCs, upregulation of TGF-β
and TIMP1, and accelerated deposition of collagen (Bataller
et al., 2000; Yoshiji et al., 2007). Based on these mechanisms,
ACE-I and AT1 receptor blockers are potential treatment
options for liver fibrosis. A clinical study evaluating the
efficacy of angiotensin II receptor blocker (ARB) losartan
in patients with HCV showed that it can reduce
inflammation and decrease fibrosis gene expression
(Colmenero et al., 2009).In patients with chronic alcoholic
liver diseases, the combination of UDCA and ARB
candesartan improved patients’ fibrosis scores compared to
UDCA treatment alone (Kim et al., 2012). However, as no
clear effects have been shown in other clinical trials, further
studies are needed to demonstrate the benefit of RAS
antagonists in liver fibrosis.

CANDIDATE THERAPEUTIC TARGETS IN
CLINICAL TRIALS

There are no directly effective anti-fibrotic drugs in clinical
practice and most of them are still in clinical trials and in the
research stage. Although etiological treatment has proven to be
effective, some etiologies cannot be eliminated. In addition, even
with effective etiological treatment, reversal of advanced liver
fibrosis cannot completely avoid complications such as
gastrointestinal bleeding and HCC, so we urgently need direct
anti-fibrotic drugs.

The main pathogenesis of liver fibrosis can be summarized as
follows: Following the chronic injury to hepatocytes, the
multitude of cellular and cytokine interactions lead to the
activation of key cells such as HSCs and MFs, which in turn
leads to the overproduction of ECM and the development of liver
fibrosis (Parola and Pinzani, 2019; Kisseleva and Brenner, 2021).
Based on the pathogenesis of liver fibrosis, the drugs we are
exploring focus on the following aspects: protecting hepatocytes
from damage, inhibiting cytokine activity and cell proliferation,
promoting apoptosis of key cells, reducing ECM synthesis, and
promoting its degradation. Many relevant drugs are already in
clinical trials, including FXR agonists, PPAR agonists, and TAK
agonists, which inhibit hepatic stellate cell activation and
promote ECM degradation, TLR4 receptor antagonists, and
novel therapeutic approaches such as miRNA and
mesenchymal stem cell therapy. Below we describe in detail
the novel treatments and drugs according to the different
targets (Table 1).

Inhibition and Reversal of the Activation of
Hepatic Stellate Cells
Because of its important role in liver fibrosis, HSCs become a
major target for anti-fibrotic drugs (Elpek, 2014). Reversing liver
fibrosis by converting activated HSCs to a quiescent state or
promoting their apoptosis is our main goal. Experimental models
of fibrosis consistently demonstrate that elimination of activated
HSCs by apoptosis or other pathways can lead to regression of
fibrosis (Iredale et al., 1998; Troeger et al., 2012). Recent studies
have shown that activated HSCs can be transformed into non-
fibrotic cells by transcriptional reprogramming, such as ectopic
expression of GATA4, FOXA3, HNF1a, and HNF4a in vivo (Song
et al., 2016). Besides, cellular senescence may be an anti-fibrotic
strategy. Expression of nuclear receptors PPAR and FXR in HSCs
suppress HSCs activation, as studies have shown that HSC
senescence can be invoked by PPARγ, FXR agonist, such as
GW570 (Krützfeldt et al., 2005; Janssen et al., 2013; Thakral
and Ghoshal, 2015), pioglitazone (Krützfeldt et al., 2005; Janssen
et al., 2013; Thakral and Ghoshal, 2015), obeticholic acid
(Krützfeldt et al., 2005; Janssen et al., 2013; Thakral and
Ghoshal, 2015), thereby alleviating liver fibrosis degree. TK
(Tyrosine kinase) is expressed in HSCs and its activation
transforms them into an activated state, thus inhibition of TK
may be a potential target for the treatment of liver fibrosis.
Sorafenib has been used as a treatment for patients with HCC,
where complications of cirrhosis (such as portal hypertension)
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have been reduced, and its anti-fibrotic activity has been
confirmed in numerous trials (Ma et al., 2017). Nilotinib
triggers apoptosis and autophagic cell death via inhibition of
histone deacetylase in activated HSC cells (Krützfeldt et al., 2005;
Janssen et al., 2013; Thakral and Ghoshal, 2015). Unfortunately,
most of these drugs are in animal studies and are not yet available
for clinical use, their safety and efficacy deserve to be evaluated.

Reduction of Fibrotic Scar Evolution
The removal of the excess ECM is one of our goals for treating
liver fibrosis. Collagen is the most abundant ECM protein in liver
fibrosis. Specific inhibition of type 1 collagen fibrils synthesis has
now been achieved in animals by miRNA, and this miRNA leads
to a significant reduction in collagen 1 synthesis in fibrosis models
(Jiménez Calvente et al., 2015). Besides, LOX is a copper-
dependent amine oxidase (Perepelyuk et al., 2013), and LOX-
mediated cross-linking of collagen limits MMP degradation of
ECM. The β-aminopropionitrile inhibits LOX, reduces liver
stiffness, decreases the number of fibroblasts, and attenuates
cell injury-induced liver fibrosis (Georges et al., 2007).
However, the clinical trial did not demonstrate significant
efficacy (Loomba et al., 2018). Similar to LOX,
transglutaminase (TGs) forms a covalent isopeptide bond by
covalently linking a glutamine residue of one protein chain to
a lysine residue of another protein chain. Intercross-linking of
TGs can promote liver fibrosis, and therefore invoking specific
inhibitors of TGs could be a potential target for the treatment of
liver fibrosis (Van Herck et al., 2010).

Drugs Targeting Cytokines and Signaling
Pathways
Cytokines are involved in the entire process of liver fibrosis,
blocking their signaling pathways, and receptors may inhibit the
production of the ECM and accelerate its degradation.
Cenicriviroc (CVC), an oral dual antagonist of the CCR type 2
and 5, has been shown to have antifibrotic effects in animal
studies. A clinical trial has shown amelioration of liver fibrosis in
patients with nonalcoholic steatohepatitis (NASH) after 1 year of
treatment with CVC (Krützfeldt et al., 2005; Janssen et al., 2013;
Thakral and Ghoshal, 2015), and further clinical trials on CVC
are currently underway, and we hope that it will become an anti-
fibrotic option in the future. The Janus kinases (JAK) signaling
pathway plays an important role in the pathogenesis of hepatic
fibrosis and can be activated by a variety of cytokines such as IL.
Studies have shown that the use of the JAK2 receptor antagonist
TG101348 can reduce hepatic fibrosis in animal models
(Krützfeldt et al., 2005; Janssen et al., 2013; Thakral and
Ghoshal, 2015). However, cytokine function is also important
for maintaining the immune response, tissue repair, etc. Long-
term targeting of these cytokines is challenging due to the severe
adverse effects. A great deal of research has been done on cytokine
antagonism (Gressner and Weiskirchen, 2006).

Drugs Targeting TLR4
As we mentioned earlier that intestinal microbiota is closely
associated with the development of liver fibrosis. the main

mechanism by which liver fibrosis occurs, in this case, is the
combination of the bacterial metabolites LPS and TLR4, further
activating key cells in the liver fibrosis process. Therefore,
inhibition of TLR4-related intracellular signaling may be
effective in reducing TLR4-mediated inflammation and
inhibiting liver fibrosis (Beutler, 2004). It was shown that a
peptide called P13, which was previously shown to be a potent
inhibitor of TLR signaling in vitro. Using this peptide to treat
mice effectively inhibited LPS-induced inflammatory mediator
production and significantly limited liver damage, enhancing
survival in a mouse model of inflammation (Tsung et al.,
2007). Several small-molecule inhibitors of TLR4 are currently
being tested, including lipid A mimetics, e.g., E5564 and CRX526
(Fort et al., 2005; Kitazawa et al., 2009; Takashima et al., 2009),
soluble fusion proteins with extracellular structural domains.
However, these are still in animal studies and may become
targets for anti-fibrotic drugs in the future.

siRNA and miRNA in Liver Fibrosis
Liver fibrosis is highly related to activated HSCs, and the
activation of HSCs is regulated by a variety of cytokines.
Downregulation of these cytokines in activated HSCs using
RNA interference (RNAi) is a promising strategy for reversing
liver fibrosis. RNA interference is a new technique that uses small
interfering RNAs (siRNAs) of 21–23 nucleotides to specifically
knock out target genes, and this new technique is based on the
high specificity of siRNAs and their ability to downregulate genes
associated with liver fibrosis (Kim and Rossi, 2007). Many
therapies for siRNA are currently in clinical trials to
translocate siRNA into HSC or other hepatic parenchymal
cells, for example, lipid nanoparticles containing HSP47
siRNA for the treatment of liver fibrosis (Kulkarni et al.,
2018). The main mechanism of siRNA action is to cause
homologous degradation of the targeted mRNA (Aagaard and
Rossi, 2007). It has been shown that siRNA can address liver
fibrosis by regulating collagen expression in HSC (Krützfeldt
et al., 2005; Janssen et al., 2013; Thakral and Ghoshal, 2015).
Meanwhile, it has been reported that direct knockdown of TGF-β
expression using siRNA can exert antifibrotic effects in a rat
model (Krützfeldt et al., 2005; Janssen et al., 2013; Thakral and
Ghoshal, 2015). Similarly, the use of PDGF siRNA suppressed the
advancement of liver fibrosis in mice (Krützfeldt et al., 2005;
Janssen et al., 2013; Thakral and Ghoshal, 2015). Besides,
MMP2-specific siRNA and TIMP-specific siRNAs also exert
an anti-fibrotic effect on the liver (Krützfeldt et al., 2005;
Janssen et al., 2013; Thakral and Ghoshal, 2015).

MiRNAs are endogenous small non-coding RNAs that can
post-transcriptionally regulate the expression of mRNAs and
ultimately trigger the degradation of target mRNAs. miRNAs
are associated with a variety of liver diseases, including liver
fibrosis, and therefore miRNAs are an alternative treatment for
liver fibrosis. It has been found that miRNAs can be both up and
down-regulated during liver fibrosis. Up-regulated miRNA can
be reverted by anti-miRNA oligonucleotides, and miRNA
masking (Krützfeldt et al., 2005; Janssen et al., 2013; Thakral
and Ghoshal, 2015), unlike the upregulated miRNA, some
downregulation of miRNA inhibiting liver fibrosis has been
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found (Chen et al., 2018; Wang et al., 2019), down-regulated
MiRNA can be restored by MiRNA mimics or plasmids
expressing miRNA (Cheng and Mahato, 2011). Similar to
siRNAs, the biggest challenge for miRNAs is to overcome
degradation and targeted transport in the blood. To date, there
are no clinical trials on MiRNA about the treatment of liver
fibrosis. A lot of effort has been spent on siRNA with MiRNA and
viral and non-viral transport systems have been developed, which
also still face significant challenges. There are already anti-fibrotic
siRNAs in clinical trials, and in the future siRNA with miRNA
may become a novel treatment for liver disease.

Mesenchymal Stem Cell Therapy for Liver
Fibrosis
Recently, MSC therapy has been regarded as an effective alternative
for the treatment of liver disease. MSCs possess the ability to self-
renew and differentiate intomany types of cells, and differentiation of
MSCs into hepatocytes is the prospect of liver regeneration (Hu et al.,
2020). The main mechanisms of the anti-fibrotic effects of MSCs can
be generalized as follows, modulation of the hepatic immune
response, secretion of trophic cytokines to reduce hepatocyte
apoptosis, antioxidant effects, inhibition of HSC proliferation, and
increased expression of MMPs or reduced expression of TIMP-1
(Hernandez-Munoz et al., 1997; Varela-Rey et al., 2007).
Mesenchymal stem cells are now widely used in clinical and
preclinical studies of liver fibrosis, Jang and others showed the
beneficial effects of autologous bone marrow MSC transplantation
for the treatment of alcoholic cirrhosis (Jang et al., 2014), Kharaziha
et al. (2009) showed that liver function improved in patients with
cirrhosis after injected autologous mesenchymal stem cells. However,
due to their multi-differentiation potential, MSCs can differentiate
into myofibroblasts rather than hepatocytes (Baertschiger et al., 2009;
di Bonzo et al., 2008). Besides, another risk of MSC transplantation is
that they are susceptible to malignant transformation and promote
the growth of existing tumors (Zhu et al., 2006). MSCs have the
potential to differentiate into hepatocytes, immunomodulatory
properties, and the ability to secrete trophic cytokines, making
them a potential treatment for liver disease. however, with both
their fibrotic potential and their ability to promote the growth of pre-
existing tumor cells, MSC therapy needs to be evaluated further.

CONCLUSION

Recently, with our greater understanding of the mechanisms of
liver fibrosis, a plethora of therapeutic strategies have been

generated. but the treatment of liver fibrosis remains a difficult
clinical problem that we face today and etiological treatment is
currently recognized as the most effective anti-fibrotic approach.
Multiple interactions between ECM, hepatic stellate, endothelial
cells, and immune cells have been demonstrated during liver
fibrosis, but the central event in fibrosis is the activation of HSCs.
Due to multiple cells and cytokines being involved in the
progression of liver fibrosis, it is crucial for us to fully
understand the biology of critical cells such as HSCs,
myofibroblasts, and macrophages, including their activation
and inactivation, to facilitate the development of specific
targeted drugs. In addition, the inflammatory response is one
of the fundamental features of liver fibrosis, so controlling liver
inflammation and inflammatory cells is also a viable strategy for
treating liver fibrosis. Besides, novel therapies targeting intestinal
microecology, mRNA, and mesenchymal stem cells are also
becoming available for clinical trials, and several drugs have
been successful in regressing liver fibrosis in experimental
models.

A growing number of potential drugs are in phase II and III
trials, and we expect that some of these drugs may soon be
approved for use in patients. These new drugs target multiple
pathways in the pathogenesis of chronic liver disease, but the
mechanisms of liver fibrosis are complex. With certain cells
having a dual role in the development and regression of liver
fibrosis, and targeted therapies may have some side effects.
Therefore we must understand the mechanisms more clearly
so that we can establish scientific treatments that are safe and
effective in achieving long-term results. In the future, a better
understanding of the molecular mechanisms involved in the
regression of liver fibrosis may provide new preventive and
therapeutic strategies for patients with fibrosis and even
cirrhosis.
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