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Abstract 

Background:  Acute kidney injury (AKI) is a serve and harmful syndrome in the intensive care unit. Comparing to the 
patients with AKI stage 1/2, the patients with AKI stage 3 have higher in-hospital mortality and risk of progression to 
chronic kidney disease. The purpose of this study is to develop a prediction model that predict whether patients with 
AKI stage 1/2 will progress to AKI stage 3.

Methods:  Patients with AKI stage 1/2, when they were first diagnosed with AKI in the Medical Information Mart 
for Intensive Care, were included. We used the Logistic regression and machine learning extreme gradient boosting 
(XGBoost) to build two models which can predict patients who will progress to AKI stage 3. Established models were 
evaluated by cross-validation, receiver operating characteristic curve, and precision–recall curves.

Results:  We included 25,711 patients, of whom 2130 (8.3%) progressed to AKI stage 3. Creatinine, multiple organ fail-
ure syndromes were the most important in AKI progression prediction. The XGBoost model has a better performance 
than the Logistic regression model on predicting AKI stage 3 progression. Thus, we build a software based on our data 
which can predict AKI progression in real time.

Conclusions:  The XGboost model can better identify patients with AKI progression than Logistic regression model. 
Machine learning techniques may improve predictive modeling in medical research.
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Introduction
Acute kidney injury (AKI) is a common syndrome in 
intensive care unit with an incidence of nearly 50% [1]. It 
is characterized by sudden increase of serum creatinine 
and decrease of urine volume [2]. The survival rate of 
patients with AKI will decrease, which may relate to the 
duration of AKI [1]. A previous study found that com-
paring to patients with AKI duration of less than 7 days, 
the 1-year survival of patients with AKI lasting the entire 
hospital stay decreased from 90% to 44% [3]. According 
to the KDIGO criteria, AKI is classified into stage 1, stage 

2, and stage 3 for severity [2]. Comparing to the patients 
with AKI stage 1/2, the patients with AKI stage 3 have 
higher in-hospital mortality [1] and risk of progression to 
chronic kidney disease (CKD) [4]. Therefore, early pre-
diction of progression of AKI stage 1/2 to AKI stage 3 is 
of great importance. It is an alert for clinicians to prompt 
measures to avoid additional kidney damage or delay in 
recovery [5].

Currently, few methods were developed to predict AKI 
stage 1/2 to AKI stage 3. Furosemide stress test (FST) was 
considered as a robust predictive approach to identify 
who will progress to AKI stage 3 [6]. However, the clinical 
application has been hampered for several reasons such 
as lacking of high quality RCT [5], not stable for patients 
with unstable hemodynamics [7], no standardization of 
dosage and time [8] and ambiguous effect of other factors 
such as fluid balance and diuretic on the outcome [9].
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Machine learning is a series of algorithms with set 
objective and without being explicitly programmed. It 
performs well in development of prediction model and 
has been widely used in medical data in recent years [10]. 
Machine learning technology may be helpful to estab-
lish a robust prediction model predicting AKI stage 1/2 
to AKI stage 3. Currently, there are studies predicting 
AKI by machine learning [11–13]. However, there is no 
study in predicting AKI progression by machine learn-
ing. In this study, we developed prediction models to 
predict AKI stage 3 progression by using machine learn-
ing techniques (extreme gradient boosting) and Logistic 
regression.

Method
Data source
MIMIC-III (Medical Information Mart for Intensive 
Care III) is a large, de-identified comprehensive data set. 
It includes patients from the ICU at Beth Israel Deacon-
ess Medical Center in Boston, Massachusetts from 2001 
to 2012 [14]. This database includes general information, 
vital sign measurements, laboratory test results, and so 
on. As this study was an analysis of a third-party anon-
ymous public database that has been approved by the 
Institutional Review Board (IRB), IRB approval from our 
institution was waived.

Participants
Definition of AKI was: an increase in serum creatinine of 
0.3 mg/dl or 50% from the baseline value or urine output 
< 0.5 ml/kg h [2]. This definition was consistent with the 
recommendations given by the Kidney Disease Improv-
ing Global Outcomes (KDIGO) criteria. The critically 
ill patients were included if their primary diagnosis was 
AKI stage 1/2. Patients who are younger than 18 years 
old or suffering from chronic kidney disease (CKD) were 
excluded. Furthermore, Patients who received RRT or 
progressed to AKI stage 3 within 72 h or over 28 days of 
first AKI diagnosis were also excluded.

Predictors of model
We collected clinical and laboratory variables obtained 
within 72 h before and after the AKI diagnosis. For some 
variables measured multiple times in these 6  days, the 
outcome closest to the date of diagnosed AKI will be 
included in the model. We analyzed age and vital signs 
including heart rate, blood pressure, respiratory rate, 
and temperature. Besides, we followed the factors of 
other studies including sodium, potassium, glucose, cre-
atinine, lactate, blood urea nitrogen (BUN), anion gap, 
PaO2, and pH [15]. Furthermore, we also analyzed par-
ticipants whether received vasoactive drugs, cardiac sur-
gery, mechanical ventilation, and whether have sepsis, 

respiratory failure, and multiple organ failure syndromes 
(MODS) [16]. Specifically, creatinine was calculated the 
mean of measurement within 6 days because serial meas-
urements have better predictive capability than single 
time-point [17]. As for FST, we calculate the patient’s 
mean hourly urine output volume over 6 hours after 
receiving furosemide [18].

Data preprocessing
Variables with missing values of more than 70% were 
excluded because of possible bias from missing data. 
Extreme gradient boosting (XGBoost) can automatically 
process missing values. As for the Logistic regression 
model, we complete missing values using the multiple 
imputation method in scikit-learn [19]. In this algorithm, 
we models that a feature column is designated as output 
and other feature columns are treated as inputs by using 
that estimating for imputation iteratively [20]. And, most 
classification algorithms will only perform optimally 
when the number of samples of each class is roughly the 
same [21]. The low rate of progression patients (8.3%) 
may have bad effect on model generalization. A combina-
tion of over-sampling and under-sampling [22] can bal-
ance the proportion of patients in the two groups. This 
algorithm first over-sample minority class examples by 
generating examples and then under-sample majority 
class examples by deleting examples [23]. We divided the 
original data into a train set (70%) and a teat set (30%). 
Both XGBooost and Logistic regression were train on the 
train set and assessed on the test set.

Model selection and development
We compared characteristics between groups by Student 
t-test. In addition, as for categorical and nonnormal vari-
ables, we used the Chi-square test and the Kruskal–Wal-
lis Rank Sum Test respectively.

Logistic regression model to predict AKI progres-
sion was established by forward selection and backward 
elimination. In this process, we iteratively assess model 
by Akaike Information Criteria (AIC) after including or 
excluding a feature. AIC give consideration to the fea-
tures incorporated into the model and the predictive 
performance [23]. Therefore, the final model have best 
prediction performance and contain the fewest features.

Extreme gradient boosting (XGBoost) is an ensem-
ble method of machine learning based on decision trees 
[24]. The decision trees was set as the weak learners and 
binary logistic was set as objective. We iteratively re-fit 
the weak classifier (decision tree) to the residuals of the 
previous model. Each iteration adds a tree to the exist-
ing tree to fit the residuals between the predicted and 
true values of the previous tree. XGBoost hyperparam-
eters included learning rate, maximum depth of trees, 
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minimum child weight, subsample ratio, minimum split 
loss, parameters for subsampling of columns and param-
eters for regularization. In this study, we performed 100 
iterations of the cross-validation process, which is also 
the default and recommended value [25]. All analyses 
were performed using Python, version 3.7.9.

In train set, the data was randomly divided into five 
equal-sized subsamples. Four subsamples were used 
to train the model and then validated in the remaining 
one. On this basis, hyperparameters were tuned for the 
higher area under receiver operating characteristic curve 
(AU-ROC) which can evaluate the predictive ability of 
the model. We used grid search which can cycle through 
tuning and scoring to select the hyperparameters. Learn-
ing curve that demonstrates AU-ROC of the model by 
changing the subsample ratio helps prevent overfitting 
or overfitting. After choosing the hyperparameters, the 
XGBoost was trained for the final model on the whole 
train set. Then, the model was estimated on the test set.

Results
Participants
Of the 61,532 patients in MIMIC-III, 34,440 (56.0%) 
patients were diagnosed AKI stage 1/2 of the first AKI 
diagnosis. 8729 patients were excluded according to the 
pre-designed criteria. A total of 25,711 patients were 
included in our analysis; 2130(8.3%) patients finally pro-
gress to AKI stage 3, and 23,581 (91.7%) patients did not 
(Fig. 1).

Characteristic differences between groups are shown 
in Table 1. There were more women (44.5% vs. 41.3%; p 
= 0.005) and emergency patients in progression group. 
Fewer patients underwent cardiac surgery in the progres-
sion group than in the non-progression group (72.9% 
vs. 80.8%; p < 0.001). The creatinine (2.4 ± 2.0 vs. 1.1 ± 
0.9 mg/dl; p < 0.001) and the BUN (39.0 ± 26.2 vs. 23.5 
± 17.0  mg/dl; p < 0.001) were higher, and FST (93.6 ± 
108.6 vs. 108.8 ± 113.1 ml/h; p < 0.001) was lower in the 
progression group. The progression group had higher 
heart rate (90.2 ± 21.2 vs. 86.1 ± 17.9; p < 0.001), higher 
respiratory rate (20.3 ± 6.9 vs. 19.1 ± 5.9; p < 0.001) 
than the non-progression group. As for laboratory data, 
lactate (2.5 ± 2.3 vs. 2.1 ± 1.6  mmol/l; p < 0.001), glu-
cose (144.9 ± 105.2 vs. 136.3 ± 68.4  mg/dl; p < 0.001), 
and potassium (4.3 ± 0.8 vs. 4.2 ± 0.6 mmol/l; p < 0.001) 
were higher in progression group. But sodium (138.5 ± 
4.6 vs. 137.6 ± 5.6 mmol/l; p < 0.001) was lower in pro-
gression group. And progression group had higher rate 
of mechanical ventilation (34.3% vs. 28.2%; p < 0.001), 
higher rate of MODS (94.1% vs. 59.2%; p < 0.001), higher 

rate of respiratory failure (63.7% vs. 34.0%; p < 0.001), 
higher rate of sepsis (41.4% vs. 14.7%; p < 0.001).

The logistic regression model
The results of the Logistic regression model are shown 
in Table 2 and Additional file 2: Fig. S1. After excluding 
the variables with high colinearity through the variance 
inflation factor (VIF) [26], the final variables included 
in the analysis are as follows. As expected, with MODS 
(odds ratio [OR] 1.55; 95% confidence interval 1.50 to 
1.60), sepsis (OR 1.71; 95% CI 1.60 to 1.82), respiratory 
failure (OR 1.47; 95% CI 1.41 to 1.54), and creatinine (OR 
1.20; 95% CI 1.15 to 1.25) were associated with increased 
probability of AKI progression(Table  1). Besides, BUN, 
lactate, and so on are also considered to be associated 
with AKI progression. On the contrary, male (OR 0.91; 
95% CI 0.87 to 0.95) and previous cardiac surgery (OR 
0.86; 95% CI 0.81 to 0.91) were associated with a reduced 
likelihood of AKI progression (Table 2).

The XGBoost model
Determining by grid search, the hyperparameters used in 
our analysis were set as learning rate = 0.19, minimum 
child weight = 8, maximum tree depth = 3, and the num-
ber of rounds = 100 (Additional file  1: Table  S1). With 
these hyperparameters, the training score increases as 
the number of rounds increases, and the cross-validation 
score test log-loss is only slightly higher than the training 
log-loss as the tree grows (Fig. 2A).

Learning curve demonstrated the cross-validation on 
train set and represent the generalization performance of 
the model as a function of the size of the training set [27]. 
Model was train on four-fifths of train set and validate on 
one-fifth of train set iteratively by AU-ROC. As the size 
grows, the difference between performance of the model 
on the train and test sets gradually narrowed (Fig.  2B) 
suggesting the model is generalizable and robust [28].

Model performance
The model was evaluated using receiver operating char-
acteristic curve (ROC) and precision–recall curve (PRC) 
on test set. AU-ROC of XGBoost is significantly higher 
than the Logistic regression model (AU-ROC 0.926; 95% 
CI 0.917 to 0.931 vs. 0.784; 95% CI 0.771 to 0.796, respec-
tively; Fig.  3A). And area under precision–recall curve 
(AU-PRC) of XGBoost is also significantly higher than 
the Logistic regression model (AU-PRC 0.855; 95% CI 
0.844 to 0.861 vs. 0.584; 95% CI 0.575 to 0.593, respec-
tively; Fig. 3B) We also showed the confusion matrix for 
the two models in predicting AKI progression (Fig. 3C).
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Fig. 1  Flow chart of patient selection and data processing
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Table 1  Characteristics between progression and non-progression groups

Variables Overall Non-progression (n = 
23,581)

Progression (n = 2130) P value

Gender, n (%) 0.005

 Male 15,018 (58.4) 13,836 (58.7) 1182 (55.5)

 Female 10,693 (41.6) 9745 (41.3) 948 (44.5) 0.005

Age, median [Q1,Q3] 66.0 [55.0,77.0] 66.0 [55.0,77.0] 65.5 [53.0,76.0] 0.001

Ethnicity, n (%) < 0.001

 Asian 503 (2.0) 470 (2.0) 33 (1.5)

 Black 2042 (7.9) 1805 (7.7) 237 (11.1)

 Hispanic 718 (2.8) 649 (2.8) 69 (3.2)

 Native 12 (0.0) 10 (0.0) 2 (0.1)

 Other 656 (2.6) 602 (2.6) 54 (2.5)

 Unknown 3106 (12.1) 2835 (12.0) 271 (12.7)

 White 18,674 (72.6) 17,210 (73.0) 1464 (68.7)

Admissions_type, n (%)

 ELECTIVE 4511 (17.5) 4342 (18.4) 169 (7.9) < 0.001

 EMERGENCY 20,450 (79.5) 18,559 (78.7) 1891 (88.8)

 URGENT 750 (2.9) 680 (2.9) 70 (3.3)

ICU_type, n (%) < 0.001

 CCU​ 3647 (14.2) 3288 (13.9) 359 (16.9)

 CSRU 6500 (25.3) 6253 (26.5) 247 (11.6)

 MICU 8679 (33.8) 7681 (32.6) 998 (46.9)

 SICU 3937 (15.3) 3561 (15.1) 376 (17.7)

 TSICU 2948 (11.5) 2798 (11.9) 150 (7.0)

Cardiac surgery, n (%) 20,596 (80.1) 19,043 (80.8) 1553 (72.9) < 0.001

Respiratory failure, n (%) 9381 (36.5) 8025 (34.0) 1356 (63.7) < 0.001

Mechanical ventilation, n (%) 7380 (28.7) 6650 (28.2) 730 (34.3) < 0.001

MODS, n (%) 15,961 (62.1) 13,958 (59.2) 2003 (94.0) < 0.001

Spesis, n (%) 4358 (16.9) 3476 (14.7) 882 (41.4) < 0.001

Vasoactive_drugs, n (%) 8098 (31.5) 7425 (31.5) 673 (31.6) 0.937

Vital signs, mean (SD)

 Blood pressure (mmHg) 76.6 (16.4) 76.7 (16.0) 76.3 (20.3) 0.527

 Heart rate 86.4 (18.2) 86.1 (17.9) 90.2 (21.2) < 0.001

 Respiratory rate 19.2 (6.0) 19.1 (5.9) 20.3 (6.9) < 0.001

 Temperature ( ◦C) 36.9 (0.6) 36.9 (0.6) 36.8 (0.7) < 0.001

Laboratory variables, mean (SD)

 Anion gap (mEq/l) 13.5 (3.6) 13.3 (3.5) 15.4 (4.5) < 0.001

 PaO2 (mmHg) 128.0 (77.8) 128.5 (77.7) 123.5 (79.7) 0.016

 pH 7.4 (0.1) 7.4 (0.1) 7.4 (0.1) < 0.001

 Glucose (mg/dl) 137.0 (72.2) 136.3 (68.4) 144.9 (105.2) < 0.001

 Lactate (mmol/l) 2.1 (1.7) 2.1 (1.6) 2.5 (2.3) < 0.001

 Sodium (mmol/l) 138.4 (4.7) 138.5 (4.6) 137.6 (5.6) < 0.001

 Potassium (mmol/l) 4.2 (0.6) 4.2 (0.6) 4.3 (0.8) < 0.001

 BUN (mg/dl) 24.8 (18.5) 23.5 (17.0) 39.0 (26.2) < 0.001

 Creatinine (mg/dl) 1.2 (1.1) 1.1 (0.9) 2.4 (2.0) < 0.001

 FST (ml/h) 107.8 (112.9) 108.8 (113.1) 93.6 (108.6) < 0.001
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Tree interprets
SHAP (SHapley Additive exPlanations) is a game theory 
method which can intuitively and accurately explain 
the output of machine learning model [29]. As for this 
dichotomous classifier, the higher SHAP value, the higher 
probability of AKI progression. The base value is defined 
as the output when each variable in the training dataset is 
averaged, which can represent the average of the sample. 
With original data, we calculate the base value is − 0.468. 
Therefore, the average of these patients is unlikely to pro-
gress to AKI stage 3, which can be explained by the rela-
tively low proportion of progression patients (8.3%).

SHAP value can intuitively show features each con-
tribution to push the model output from the base value 
(Additional file 3: Fig. S2). SHAP value can be considered 
as a quantified contribution. We can easily find the con-
tribution of all features and which contribution is most 
(Fig. 4). The features are ordered in order of importance. 
Feature importance was calculated by the mean contri-
bution of every observation, which is equal to the tradi-
tional method [30]. The serum creatinine was the most 
important variable, followed by MODS and respiratory 
failure. The specific importance of each variable is shown 
in Additional file 4: Fig. S3.

Software for prediction
A web calculator based on this data was developed for 
clinicians to predict patients’ AKI progression (https://​
26014​7169.​github.​io/​AKI-​progr​ession/​AKI-​progr​
ession-​calcu​lator.​html) (Fig.  5). After inputting the cor-
responding data of the patient, the prediction can be 
made automatically. Besides, misssing value is acceptable, 
because XGBoost can complete automatically.

Discussion
In this study, we analyzed data in MIMIC-III and pro-
posed machine learning models predicting AKI pro-
gression. The machine learning model had excellent 
performance in predicting AKI stage 1/2 to AKI stage 3 
with ROC of 0.926, which was significantly better than 
the performance of logistics model (0.926 [95% CI 0.917–
0.931] vs. 0.784 [95% CI 0.771–0.796]). By interpreting 
the importance of each variable of the model (Additional 
file 4: Fig. S3), we found creatinine and MODS were more 
important than others.

Comparing AKI stage 1, patients with AKI stage 3 have 
higher risk of mortality in the intensive care unit (odds 
ratio (OR) 2.19 [95% CI 1.44–3.35] vs. OR 7.18 [95% CI 
5.13–10.04]) [31]. Therefore, predicting AKI progres-
sion is always one of research highlights. FST, a method 
for predicting AKI progression, had desirable prediction 
ability, which of AU-ROC was 0.88 [6]. Our model and 

Table 2  Logistic regression model with stepwise variable 
selection

Variables OR 95% CI P value

Gender 0.91 0.87, 0.95 < 0.001

Admissions type 1.16 1.1, 1.22 < 0.001

Cardiac surgery 0.86 0.81, 0.91 < 0.001

Respiratory failure 1.47 1.41, 1.54 < 0.001

Mechanical ventilation 1.00 0.96, 1.05 0.880

MODS 1.55 1.50, 1.60 < 0.001

Spesis 1.71 1.6, 1.82 < 0.001

Vasoactive drugs 1.04 0.99, 1.09 0.101

BUN 1.01 1.01, 1.01 < 0.001

Creatinine 1.20 1.15, 1.25 < 0.001

PaO2 1.00 1.00, 1.00 0.0535

Glucose 1.00 1.00, 1.00 0.187

Lactate 1.03 1.02, 1.05 < 0.001

FST 1.00 1.00, 1.00 < 0.001
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Fig. 2  The training process of the extreme gradient boosting 
machine. A Cross-validation during XGBoost hyperparameter tuning. 
The log-loss value for the training and testing datasets is shown in the 
vertical axis. The dashed vertical line indicates the number of rounds 
with the minimum log-loss in the test sample. B Learning curve of 
the XGBoost model after hyperparameter tuning. AU-ROC value for 
the testing and training datasets is shown in the vertical axis. With the 
subsample ratio increasing, AU-ROC of training datasets decreases, 
and AU-ROC of testing datasets increases. The training score is always 
higher than the test score

https://260147169.github.io/AKI-progression/AKI-progression-calculator.html
https://260147169.github.io/AKI-progression/AKI-progression-calculator.html
https://260147169.github.io/AKI-progression/AKI-progression-calculator.html
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previous FST studies have comparable prediction abil-
ity (AU-ROC 0.926 vs. 0.88). However, FST has some 
limitations including not stable for patients with unstable 
hemodynamics [7] and no standardization of dosage and 
time [8]. Our model is based on vital signs and labora-
tory data, which are easily assessable in most institutions. 
These features are also significant predictors of AKI in 
the others model such as sepsis and creatinine [11, 13]. 
Real-time automated prediction and analysis of main 
cause are also advantages of our study.

We employed visualization function in SHAP [32] to 
find the effect of the specific value of each variable on 
model output. There are some factors contributing most 
including creatinine, MODS, BUN, sepsis and so on. The 
KDIGO criteria proposed some similar exposures that 

may cause AKI including sepsis and shock [2]. Advanced 
age, underlying CKD, sepsis, and cardiac surgery were 
also proposed as risk factors for AKI [1, 33]. SHAP value 
was found to increase with the increase of creatinine 
until creatinine probably reach 3  mg/dl (265.2 µmol/L) 
(Fig. 6A). This is in line with the mainstream view in cli-
nicians [34, 35]. The relationship between SHAP value 
and FST (Fig. 6B) is consistent with previous studies that 
FST < 100 ml/h increases the risk of AKI progression [7, 
18].

Our study found that machine learning has better per-
formance than logistic regression, which is similar to the 
previous prediction study of AKI [13, 36].  Lee et al gra-
dient boosting tree has better performance than logistic 
regression (0.78 vs. 0.69) on predicting AKI after cardiac 
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Fig. 3  Performance of the XGBoost and Logistic regression model A Receiver operating characteristic curve for estimating the discrimination 
between the Logistic regression model and the XGBoost model. B Precision–recall curve for estimating the discrimination between the Logistic 
regression model and the XGBoost model. C Confusion matrix of the Logistic regression model and XGBoost model. The color represents the 
number of patients. Whether progress is represented by numbers
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surgery [13]. Zhang et  al found the machine learning 
model outperformed the logistic regression model (AU-
ROC 0.860 vs. 0.728) in differentiating between the vol-
ume-responsive and volume-unresponsive AKI [36]. The 
advantages of machine learning include ability of captur-
ing complex non-linear relationships [37] and focusing 
more on misclassified observations , especially when the 
sample size is large enough [37]. And, machine learning 
can automatically input missing values and give the pre-
diction as soon as possible for intervention in time.

A limitation of this study is a retrospective study 
with inevitable bias. And, the proportion of patients 
who eventually progressed to AKI stage 3 (8.3%) is sig-
nificantly lower than that without progression (91.7%). 
Even if we use the algorithm to balance the sample, it 
may still have bad effect on model generalization and 
reliability. Furthermore, external validation is still 
required in the following study.
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Fig. 4  SHAP value of XGBoost model output. SHAP value of all patient output. Each point represents a variable for an observation. The color of the 
point is determined by its relative height in the variable. The blue represents lower and the red represents higher
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Conclusion
We collected data from MIMIC-III and proposed a 
predicting model for AKI progression from stage1 to 
stage 2/3 by machine learning. The model had excellent 
performance in predicting AKI progression and was 

significantly better than the performance of logistics 
model. In the final model, creatinine, MODS and BUN 
were factors contributing most. The reasons of perfor-
mance gap and important factors require further study.

Fig. 5  The calculator for predcting AKI progression in real time. Feature importance was calculated by the mean contribution of every observation, 
which is equal to the traditional method. Abbreviations and annotations: BUN, blood urea nitrogen; FST, furosemide stress test; MODS, multiple 
organ failure syndromes
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Fig. 6  SHAP value for single variable. A SHAP value for creatinine. SHAP value increases with the increase of creatinine until creatinine probably 
reaches 5 mg/dL. B SHAP value for FST. SHAP value decreases with the increase of FST until FST reach 100 ml/h
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