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A B S T R A C T   

Background and purpose: Deep learning (DL) provides high sensitivity for detecting and identifying errors in pre- 
treatment radiotherapy quality assurance (QA). This work’s objective was to systematically evaluate the impact 
of different dose comparison and image preprocessing methods on DL model performance for error identification 
in pre-treatment QA. 
Materials and methods: For 53 volumetric modulated arc therapy (VMAT) and 69 stereotactic body radiotherapy 
(SBRT) treatment plans of lung cancer patients, mechanical errors were simulated (MLC leaf positions, monitor 
unit scaling, collimator rotation). Two classification levels were assessed: error type (Level 1) and error 
magnitude (Level 2). Portal dose images with and without errors were compared using standard (gamma 
analysis), simple (absolute/relative dose difference, ratio) and alternative (distance-to-agreement, structural 
similarity index, gradient) dose comparison methods. For preprocessing, different normalization methods (min/ 
max and mean/standard deviation) and image resolutions (32 × 32, 64 × 64 and 128 × 128) were evaluated. All 
possible combinations of classification level, dose comparison, normalization method and image size resulted in 
144 input datasets for DL networks for error identification. 
Results: Average accuracy was highest for simple dose comparison methods (Level 1: 97.7%, Level 2: 78.1%) 
while alternative methods scored lowest (Level 1: 91.6%, Level 2: 71.2%). Mean/stdev normalization particu-
larly improved Level 2 classification. Higher image resolution improved error identification, although for SBRT 
lower image resolution was also sufficient. 
Conclusions: The choice of dose comparison method has the largest impact on error identification for pre- 
treatment QA using DL, compared to image preprocessing. Model performance can improve by using simple 
dose comparison methods, mean/stdev normalization and high image resolution.   

1. Introduction 

In pre-treatment patient specific quality assurance (QA), the radio-
therapy treatment plan is delivered to a measurement device before the 
actual patient is treated, to evaluate deliverability of the plan. This is, for 
instance, done using electronic portal imaging device (EPID) dosimetry. 
Gamma analysis between predicted and acquired two dimensional (2D) 
EPID dose distributions, with standard dose difference (DD) and 
distance-to-agreement (DTA) criteria, and fixed thresholds on gamma 
pass rates are commonly used for dose comparison and error detection 
[1,2]. However, this approach has inherent limitations. Gamma pass 
rates from 2D dose measurements have been shown to have limited 
correlation to clinically relevant differences in dose-volume histogram 
metrics based on the three dimensional (3D) patient dose [3–6], and the 

wealth of 2D or 3D measurement data is reduced to a few metrics. 
Furthermore, different treatment modalities may require different 
gamma criteria and pass/fail rate thresholds, while in clinical practice 
often the same criteria are used for all treatments [7–9]. For instance, for 
stereotactic body radiotherapy (SBRT) treatments with small radiation 
fields and high doses, less strict dose difference (DD) but stricter 
distance-to-agreement (DTA) criteria may be warranted [10]. 

As in many other parts of the radiotherapy workflow, artificial in-
telligence (AI) has been utilized in pre-treatment QA for improving error 
detection sensitivity and efficiency [11,12]. Several studies have 
focused on not only detecting errors based on gamma pass rates, but also 
on identifying their causes, using deep learning (DL) algorithms that can 
take full dose comparison images as input [13–17]. This DL approach 
does not have the limitations of traditional error detection systems, as it 
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is not necessary to reduce 2D or 3D dose measurements to a few metrics, 
which allows for extracting more information (e.g., the root cause of the 
error) than was traditionally possible. These studies show promising 
results, with DL models providing high sensitivity for detecting and 
identifying errors and additional information on error causes that 
cannot be obtained with traditional gamma pass/fail rates. 

While gamma analysis is the traditional dose comparison method of 
choice in clinical practice, other comparison methods (e.g., DD maps) 
may provide more information for DL models for error identification. 
Although the comparison images resulting from different comparison 
methods can appear too noisy for human interpretation, DL models may 
be able to utilize this additional information. This way, error detection 
and identification using DL can potentially be improved further. Another 
factor influencing DL model performance is image preprocessing, which 
is an inherent step in any DL method [18]. Different image resolutions or 
normalization methods could provide better DL performance. Further-
more, the optimal combination of dose comparison method, image 
resolution and image normalization can also differ for different treat-
ment modalities (e.g., regular volumetric modulated arc therapy 
(VMAT) vs. SBRT). 

The objective of this work was to systematically evaluate the impact 
of different dose comparison and image preprocessing methods on the 
performance of a DL model for error identification in pre-treatment QA. 
To this end, a large database was created by simulating errors and pre- 
treatment dose distributions. This database was used to systematically 
test combinations of dose comparison and image preprocessing 
methods, to determine the combination that leads to the highest DL 
model performance for both regular VMAT and SBRT treatment plans of 
lung cancer patients. 

2. Materials and methods 

Two 2D dose distribution datasets were created, based on 53 regular 
VMAT and 69 SBRT treatment plans of 46 and 63 lung cancer patients, 
respectively. The fractionation schemes of the regular VMAT plans were 
24 × 2.75, 30 × 1.8 or 33 × 2 Gy, and those of the SBRT plans were 3 ×
15 or 4 × 12 Gy. Each treatment plan consisted of two arcs, with the 
exception of two SBRT plans that contained three arcs. The average 
amount of monitor units (MU) per arc (±standard deviation) was 333 ±
85 for the regular VMAT plans and 1746 ± 251 for the SBRT plans. 

Mechanical errors were simulated by changing parameters in the 
treatment plans. The simulated errors and their magnitudes are listed in 
Table 1. Collimator rotation was simulated by changing the angle of the 
collimator. To simulate multileaf collimator (MLC) errors, the leaf po-
sitions were adjusted. In the systematic MLC error case, one or both leaf 
banks were shifted as a whole, while in the random MLC error case, each 
leaf position was adjusted individually. Monitor unit (MU) errors were 
simulated by scaling the MU values by a certain percentage. For each 
error, 20 simulations per treatment plan for different error magnitudes 
were performed. In the cases of collimator rotation, systematic MLC and 
systematic MU errors, the same error magnitude was applied to all 
segments in a treatment arc, while for the random MLC and MU errors 
the error magnitude differed per segment and was averaged afterwards 
to obtain one overall value. 

Two classification levels were assessed, with Level 1 corresponding 
to classification of the error type and Level 2 to classification of the error 
magnitude. For Level 2 classification, the thresholds listed in Table 1 
separated the error magnitudes in two classes, that can be interpreted as 
relevant and irrelevant errors. These thresholds were determined for the 
purposes of this study. For use in clinical practice, they should be opti-
mized and their clinical relevance should be evaluated. As errors were 
simulated per segment of the treatment arcs, random errors may average 
out when the dose per segment is summed up into an integrated 2D dose 
distribution [19,20]. However, while errors may average out in the dose 
measurement, that does not necessarily mean that their clinical conse-
quences also average out. Therefore, to prevent missing potentially 
clinically relevant errors, stricter thresholds were chosen for the random 
errors. 

For all treatment plans, 2D time-integrated portal dose images were 
predicted using an in-house developed 2D pre-treatment dose prediction 
model [21]. This model was implemented in Matlab (v9.7, Mathworks, 
Natick, MA, USA), and predicts the dose in a plane in a virtual homog-
enous phantom in full scatter conditions. It was fitted for the TrueBeam 
and TrueBeam STx (Varian Medical Systems, Palo Alto, CA, USA). The 
dose images were simulated at a source-detector distance of 100 cm. 

The dose based on a plan with a simulated error was then compared 

Table 1 
Overview of the simulated mechanical errors and their magnitudes. MLC: mul-
tileaf collimator; MU: monitor unit.  

Error type Error magnitude (excluding 
0) [step size] 

Error magnitude threshold 
(absolute value) 

Collimator 
rotation 

− 2 to +2◦ [0.2] 1◦

MLC systematic − 2 to +2 mm [0.2] 1 mm 
MLC random − 2 to +2 mm [0.2] 0.5 mm 
MU systematic − 10 to +10% [1] 5% 
MU random − 10 to +10% [1] 3%  

Table 2 
Overview of the systematically evaluated input factors: dose comparison 
method, image normalization method and image resolution. In the gamma 
analysis, global dose differences with respect to the maximum dose in the 
reference dose distribution were considered. DD: dose difference; DTA: distance- 
to-agreement; SSIM: structural similarity index; stdev: standard deviation.  

Dose comparison 
method 

Gamma 
analysis 

(1%, 1 mm) 
(2%, 2 mm) 
(3%, 3 mm) 
(3%, 1 mm) 
(1%, 3 mm) 

Ratio Dose with error divided by dose without error 
DD Absolute: DD per pixel 

Relative: DD per pixel divided by the maximum 
dose 

DTA Distance to pixel with corresponding dose 
value in x (row) and y (column) directions 

DTA/DD Combination of relative DD, DTA in x direction 
and DTA in y direction (i.e., all components of 
gamma analysis separately) 

SSIM Similarity between two images, based on  
• Luminance: intensity of the recorded object 

(i.e., the image’s pixel values)  
• Contrast: difference/variation in luminance  
• Structure: correlation of the luminance of 

two images 
A mathematical description of the SSIM is 
provided by Peng et al. [22] 

Gradient Magnitude and direction of gradients in DD 
maps based on the Sobel gradient operator  
[31,32]  

Image 
normalization 

Min/max  • Calculate mean and standard deviation of 
dataset  

• Minimum/maximum values = mean ± 2 ⋅ 
standard deviation  

• Clip pixel values to minimum and maximum 
values  

• Calculate 
pixel value − min value
max value − min value 

for each 

image 
Mean/ 
stdev  

• Calculate mean and standard deviation of 
dataset  

• Calculate 
pixel value − mean
standard deviation 

for each image  

Image resolution 32 × 32  
64 × 64 
128 × 128  
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to the dose based on the plan without error, using various dose com-
parison methods. In total, seven different dose comparison methods 
were applied (Table 2). These dose comparison methods were chosen 
because they are commonly used in radiotherapy (i.e., gamma analysis), 
because of their simplicity (i.e., ratio and DD maps) or because they are 
not commonly used for this purpose but could provide beneficial in-
formation for a DL network (i.e., DTA maps, DD and DTA separately, 
structural similarity index (SSIM) [22] and the gradient method). An 
example comparison image of each of the dose comparison methods is 
provided in Fig. 1. All dose comparisons were performed in Matlab using 
either standard available functions or in-house developed software [23]. 

While most dose comparison methods resulted in single-channel 
images as input for the DL network, the DTA, DD/DTA and gradient 
methods resulted in multi-channel images. The DTA was calculated in 
the x and y directions separately, and was input as a two-channel image 
into the DL network. The addition of the relative DD map led to a three- 

channel input for the DD/DTA method. For the gradient method, the 
magnitude and direction of the gradients are calculated separately, also 
leading to a two-channel input for the DL network. 

Image preprocessing consisted of cropping the dose comparison 
images to the radiation field by applying a 10% low dose threshold, 
normalizing the images and resizing to a square image size. Image 
normalization is a standard step in preprocessing images for DL, to in-
crease the efficiency of model training. Normalization was applied to the 
dose comparison images and did not affect the dose distributions 
directly. Two types of normalization were evaluated: 1) clipping the 
pixel values to a minimum and maximum value and normalizing them to 
the range [0,1] and 2) subtracting the mean value from the pixel values 
and dividing by the standard deviation. A detailed explanation of these 
methods is provided in Table 2. For the square image size, three options 
were chosen, ranging from relatively small (32 × 32) to large (128 ×
128). As cropping of the images before resizing to a square image size 

Fig. 1. Examples of dose distributions and corresponding dose comparison images. For the dose with error, a 2◦ collimator rotation was simulated. For all dose 
comparison images, the white color represents areas with no error, while red and blue represent areas of error with positive and negative values, respectively. The 
interpretation of positive and negative values depends on the dose comparison method. E.g., for gamma analysis and dose difference maps, red represents over-
dosage, while for the DTAx it represents a distance in the positive direction (i.e., to the right). The colormaps are for visualization purposes only; the underlying pixel 
values in the images are used as input for the preprocessing workflow and subsequently the DL network. DD: dose difference; DTA: distance-to-agreement; SSIM: 
structural similarity index. 
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was based on a 10% low dose threshold, the size of the cropped images 
and consequently the pixel size in the square images depended on the 
radiation field size and could differ between different treatment plans 
and modalities. An overview of the average field, image and pixel sizes 
of the datasets is provided in Table 3. Making all possible combinations 
of classification level, dose comparison method, normalization method 
and image size led to 144 input datasets of 10.440 images each for the 
regular VMAT plans and 144 input datasets of 13.720 images each for 
the SBRT plans. These were split in training (70%), validation (10%) and 
test (20%) sets. 

A DL network architecture consisting of multiple blocks of two 
convolutional layers and a max pooling layer, followed by dense layers 

was implemented in Keras/Tensorflow [24]. The exact network archi-
tecture and hyperparameters (Supplementary Material A) were opti-
mized for each input dataset using Bayesian optimization through the 
hyperparameter optimization framework Optuna [25]. The DL networks 
were trained on a 12 GB Titan Xp GPU (NVIDIA, Santa Clara, CA, USA). 
Early stopping based on validation loss was applied to prevent over-
fitting, and pruning to limit unnecessary exploration of unpromising 
hyperparameter configurations. Model performance was evaluated by 
calculating the accuracy, i.e., the percentage of images classified in the 
correct class. As the dataset was well balanced with respect to the 
number of images in each class, no other evaluation metric was 
considered. Training times were recorded to evaluate training speed. 

3. Results 

Fig. 2 shows that using relatively simple dose comparison methods 
such as ratio analysis (median accuracy Level 1: 98.4%/97.2%, Level 2: 
77.6%/78.3% for VMAT/SBRT) or relative DD (Level 1: 97.8%/97.3%, 
Level 2: 79.3%/79.8%) provided highest DL model performance, 
although gamma analysis with strict criteria (particularly in the DTA; 
(3%, 1 mm) Level 1: 97.7%/97.4%, Level 2: 78.5%/78.7%) also per-
formed well. Gamma analysis with strict relative DD but less strict DTA 
(i.e., (1%, 3 mm); Level 1: 91.6%/93.3%, Level 2: 70.6%/72.7%), DTA 
alone (Level 1: 81.3%/87.5%, Level 2: 58.7%/67.2%) and SSIM (Level 

Table 3 
Overview of the radiation field, cropped image and pixel sizes for the different 
treatment plans. All reported values are the average length × width over all 
treatment arcs. The pixel size of the original dose images is 0.8 × 0.8 mm.   

VMAT SBRT 

Field size (cm) 9.5 × 8.7 4.9 × 4.7 
Number of pixels after cropping based on 10% low dose 

threshold 
118 × 121 57 × 68 

Pixel size after resizing to 32 × 32 pixels (mm) 2.9 × 3.0 1.4 × 1.7 
Pixel size after resizing to 64 × 64 pixels (mm) 1.4 × 1.5 0.7 × 0.8 
Pixel size after resizing to 128 × 128 pixels (mm) 0.7 × 0.7 0.3 × 0.4  

Fig. 2. Deep learning network performance on the test dataset for different dose comparison methods. Level 1 corresponds to classification of the error type, Level 2 
to classification of the error magnitude. The dashed boxes indicate the three methods with the highest median performance. GammaXY: (X%, Y mm) gamma map, 
relDD: relative dose difference, absDD: absolute dose difference, DTA: distance-to-agreement, SSIM: structural similarity index. 
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1: 89.7%/91.9%, Level 2: 68.7%/73.4%) did not perform well. The 
accuracy of the DL networks trained with these images as input was 
substantially, and for some cases even significantly (Supplementary 
Material B), lower than that of the other methods. The performance of 
the DL networks with the clinically commonly used gamma analysis 
with (3%, 3 mm) or (2%, 2 mm) criteria was close to the average over all 
dose comparison methods (Level 1: 94.5%/95.1%, Level 2: 73.7%/ 
76.0%). The same trends are seen for Level 1 versus Level 2 classifica-
tion, as well as for VMAT versus SBRT plans. As a result of the SBRT 
dataset being larger than the regular VMAT dataset, the SBRT results 
generally show smaller variance than the regular VMAT results. 

Regarding image normalization (Fig. 3), when using the mean/stdev 
method, DL performance was higher compared to using the min/max 
method. The difference between the two methods was slightly larger for 
SBRT plans than for regular VMAT plans, especially for Level 1 classi-
fication. Fig. 3 also demonstrates that median performance of the DL 
networks increased with higher image resolution. This preprocessing 
step had a larger influence on DL performance for regular VMAT plans 
than for SBRT plans, although none of the differences were statistically 
significant (Supplementary Material B). The average training times ± 1 
standard deviation for 32 × 32, 64 × 64 and 128 × 128 were 87.7 ±
80.3, 151.6 ± 93.0 and 403.0 ± 193.2 s, respectively, on a 12 GB Titan 
Xp GPU (NVIDIA). 

4. Discussion 

A systematic evaluation of various types of input data of a DL 
network for pre-treatment error identification showed that the choice of 
dose comparison method had the largest influence on DL model per-
formance. Using simple, direct dose comparison methods led to the 
highest DL model performance, with an increase in average accuracy of 
approximately 2 percentage points for Level 1 and up to 5 percentage 
points for Level 2, compared to standard (3%, 3 mm) gamma analysis. 
While these simple dose comparison methods lead to dose comparison 
images that may contain too many details for human interpreters and 
are therefore not used in clinical practice, they are beneficial for DL 
networks. Following this reasoning, it may also be beneficial to decrease 
the low dose threshold that was used to crop the dose comparison im-
ages, to determine if including larger low dose regions may further 
improve DL performance for error detection and identification. 

Generally, it is not beneficial for DL performance to use the DTA, 
SSIM or gradient method, i.e., methods that are not commonly used for 
dose comparisons. Even though these highlight different information 
than clinically used methods (Fig. 1), they are not informative enough 
for DL networks to learn to identify which error occurred, with differ-
ences in accuracy up to − 16 percentage points compared to (3%, 3 mm) 
gamma analysis. It could be beneficial to combine these methods with 

Fig. 3. Deep learning network performance on the test dataset for different image normalization methods and image resolutions. Level 1 corresponds to classification 
of the error type, Level 2 to classification of the error magnitude. The dashed boxes indicate the normalization method/resolution with the highest median 
performance. 
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better scoring ones by using multiple image channels as input. However, 
from Fig. 2 it can be derived that combining the low scoring DTA method 
with a relative DD map (DTA/DD method) does increase DL perfor-
mance, but not to the level of relative DD alone. 

Besides providing highest DL model performance, using simple dose 
comparison methods also has practical benefits. In contrast to gamma 
analysis, there are no parameters such as dose or distance criteria 
associated with these dose comparison methods. While for gamma 
analysis a new DL model would need to be trained for each combination 
of DD and DTA criteria, this is not necessary for direct dose comparisons, 
making them more robust and flexible. Furthermore, implementing 
gamma analysis can be computationally expensive and challenging 
[26], while DD and ratio maps are easy and fast to compute. 

The influence of image preprocessing methods on DL performance is 
small compared to the influence of the dose comparison method. Even 
though the mean/stdev method provides consistently better results than 
the min/max method, only for SBRT plans this difference is statistically 
significant (Supplementary Material B). Higher image resolution im-
proves error identification, as more details of the dose comparison im-
ages are preserved. For SBRT plans, this effect is less pronounced. This is 
likely because the radiation fields in SBRT plans are smaller than in 
regular VMAT plans (Table 3), which leads to smaller image sizes 
already containing sufficient information for the DL network. 
Comparing average pixel sizes for the different treatment modalities 
(Table 3) to the original pixel size confirms that for regular VMAT, the 
average pixel size of the 128 × 128 images is closest to the original pixel 
size, while for SBRT this holds true for the 64 × 64 images. Hence, for 
SBRT the 64 × 64 images already contain all information that was in the 
original images, while for regular VMAT lower image resolution may 
blur some details. For SBRT, resizing to 128 × 128 will include 
extrapolation, which does not seem to hamper DL performance, but may 
introduce artifacts in the images. It should be noted that for training DL 
networks with higher image resolution more computational resources 
and longer training times are needed. While this is not a major issue for 
the 2D images used in this work, it may be for 2D images per timepoint 
or for 3D reconstructed dose volumes. 

A limitation of this work is that all dose distributions were simulated, 
which means that no noise or other sources of delivery error (e.g., me-
chanical sag of the gantry and EPID during rotation of the linac) are 
present in the input data. In practice, measured dose distributions will 
contain measurement noise and uncertainty, which will propagate into 
the dose comparison images [27,28]. This can potentially decrease DL 
model performance, as it will be more difficult to distinguish between 
noise and real errors. Gamma analysis might provide better DL perfor-
mance in the presence of noise and measurement uncertainty than 
simple dose comparison methods, as gamma analysis can smooth out 
some of the noise. While small DTA provided best performance in this 
work, larger DTA may be needed to compensate for mechanical linac 
and EPID positioning deviations during delivery. However, this needs to 
be confirmed in future research. Furthermore, the thresholds dis-
tinguishing relevant from irrelevant errors in the Level 2 classification 
were chosen as a realistic example for this study, but should be opti-
mized for use in clinical practice. Moreover, for dynamic treatments, the 
use of time-resolved instead of time-integrated verification could further 
improve error identification [29,30]. However, this poses challenges for 
DL due to the vast increase in dataset size and computational resources 
needed to process this data. 

To conclude, the choice of dose comparison method has the largest 
impact on error identification for pre-treatment QA using DL, compared 
to image preprocessing. Model performance can improve by using 
simple dose comparison methods such as relative DD or ratio maps, by 
applying mean/stdev normalization and by using high image resolution 
(128 × 128), although for SBRT treatment plans lower image resolution 
(64 × 64) is also sufficient. 
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