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Unregulated Src activity promotes malignant processes in cancer, but no Src-directed
targeted therapies are used clinically, possibly because early Src inhibitors produce
off-target effects leading to toxicity. Improved selective Src inhibitors may enable
Src-directed therapies. Previously, we reported an irreversible Src inhibitor, DGY-06-116,
based on the hybridization of dasatinib and a promiscuous covalent kinase probe
SM1-71. Here, we report biochemical and biophysical characterization of this compound.
An x-ray co-crystal structure of DGY-06-116: Src shows a covalent interaction with the
kinase p-loop and occupancy of the back hydrophobic kinase pocket, explaining its high
potency, and selectivity. However, a reversible analog also shows similar potency. Kinetic
analysis shows a slow inactivation rate compared to other clinically approved covalent
kinase inhibitors, consistent with a need for p-loop movement prior to covalent bond
formation. Overall, these results suggest that a strong reversible interaction is required to
allow sufficient time for the covalent reaction to occur. Further optimization of the covalent
linker may improve the kinetics of covalent bond formation.

Keywords: src kinase, cancer, dasatinib, selectivity, irreversible inhibitor

INTRODUCTION

SRC was among the first oncogenes to be discovered (Stehelin et al., 1976) and encodes a non-
receptor protein tyrosine kinase that regulates many cancer-related cellular processes including
mitogenesis, angiogenesis, adhesion, invasion, migration, and survival (Sen and Johnson, 2011). Src
activity drives malignant phenotypes in hematologic and solid cancers including breast, prostate,
lung, colorectal, and pancreatic cancer (Araujo and Logothetis, 2010; de Felice et al., 2016; Appel
et al., 2017). Genetic ablation of Src in animal models reverses cancer phenotypes without systemic
toxicity (Trevino et al., 2006; Ammer et al., 2009; Marcotte et al., 2012), suggesting that Src
inhibition may be effective in treating certain cancers (Araujo and Logothetis, 2009; Zhang et al.,
2009; Chen et al., 2014; Anderson et al., 2017; Appel et al., 2017). Src has also been implicated in
cancer drug resistance (Carretero et al., 2010; Sen et al., 2011). Nevertheless, selective Src inhibition
has not been demonstrated as a driver of efficacy for any of the clinically used multi-targeted
Src drugs.
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Dasatinib and bosutinib inhibit multiple kinases including
Src, but are approved as anti-Bcr-Abl therapies to treat chronic
myelogenous leukemia and acute lymphoblastic leukemia (Shah
et al., 2010; Keskin et al., 2016; Cortes et al., 2019). Src-directed
trials using dasatinib failed in part due to dose-limiting toxicity
(Araujo and Logothetis, 2010; Algazi et al., 2012; Araujo et al.,
2012; Secord et al., 2012; Sharma et al., 2012; Schott et al., 2016)
including grade 3 to 4 diarrhea, thrombocytopenia, neutropenia,
and anemia (Buglio et al., 2012; Daud et al., 2012). These
toxicities may be due to the multi-targeted nature of these
compounds that also inhibit members of the Src family of kinases
(SFKs), Bcr-Abl, c-Kit, PDGFR, c-Fms, and EphA2. Improved
Src inhibitors with better selectivity may enable Src-directed
cancer therapies.

Engineering selectivity into Src inhibitors is challenging
because of the high degree of sequence homology between
Src family members and other receptor tyrosine kinases
(Duan et al., 2014; Elias and Ditzel, 2015). One strategy
for achieving selectivity in kinases is to utilize covalent
chemistry, targeting non-conserved cysteines near the inhibitor

FIGURE 1 | DGY-06-116 is a hybrid of dasatinib and SM171. (A) Src inhibitors are composed of a kinase hinge-binding component (blue), back pocket-binding
component (green), and solvent-exposed component (yellow). DGY-06-116 (second from right) resulted from hybridizing the SM1-71 core (third from left) with the
back-pocket component of dasatinib (second from left). NJH-01-111 (first from right) is a non-covalent analog. (B) Superposition of Src-dasatinib (PDB: 3G5D; cyan)
and Src-SM1-71 (PDB: 6ATE; gray) structures suggested that the substitution would be tolerated. Schematic representation of interactions between Src and (C)

dasatinib or (D) SM1-71. Dotted lines are hydrogen bonds.

binding site. Prior work showed that Src, in particular,
is amenable to this approach by targeting non-conserved
cysteines in the p-loop (Kwarcinski et al., 2012). In that
work, promiscuous scaffolds, including the dasatinib scaffold,
were derivatized to include reactive warheads that could react
with p-loop cysteines, resulting in enhanced selectivity for
kinases that include a p-loop cysteine. The work generated
hypotheses regarding the importance of p-loop dynamics
for this class of inhibitor, but structural data were not
reported. Recently, we found an opportunity to build upon
this strategy when we found that SM1-71, a 2, 4-disubstituted
pyrimidine that includes a cysteine-reactive warhead, can
covalently modify 23 different kinases including Src. Our
Src-SM1-71 crystal structure (PDB: 6ATE) revealed the Src
p-loop in a kinked conformation (Rao et al., 2019). We
subsequently showed that SM-1-71 could be optimized for
Src inhibition by hybridization with dasatinib (Figures 1A–D,
Figure S1; Du et al., 2020). Here, we present formal biochemical,
biophysical, and structural characterization of Src inhibition
by DGY-06-116.
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FIGURE 2 | DGY-06-116 inhibits Src enzymatic activity. DGY-06-116 potency
at 1 h exceeds SM1-71 and bosutinib. However, a non-covalent analog
NJH-01-111 also shows potent activity. DGY-06-116 also potently inhibits
SrcC280S. Error bars are the standard deviation of three replicates.

RESULTS

DGY-06-116 Potently Inhibits Src Kinase
Activity
DGY-06-116 was previously characterized for the ability to bind
Src (Du et al., 2020). Here, we evaluated the relative potency of
inhibitors on Src enzymatic activity using a mobility shift assay
(MSA), which measures phosphorylation of a peptide substrate
of Src. Given that covalent inhibitors can show time-dependent
effects on IC50 values, we use a 1-h time point for all samples so
relative potencies are comparable. At 1-h incubation, DGY-06-
116 showed an IC50, 1 h of 2.6 nM. This was substantially better
than SM1-71 (IC50, 1 h of 26.6 nM), bosutinib (IC50 of 9.5 nM),
and its non-covalent analog NJH-01-111 (IC50 of 5.3 nM)
(Figure 2). To estimate the contribution of covalent binding
to the overall potency of DGY-06-116, we also tested SrcC280S,
which cannot form a covalent bond because of the cysteine-
to-serine mutation. SrcC280S showed excellent kinase activity,
although specific activity was less (∼50%) than that of wild-type
protein (Figure S2B). DGY-06-116 showed comparable IC50, 1 h
values for mutant and wild-type Src (Figure 2), suggesting that
reversible binding substantially contributes to the potency of this
compound. To confirm this, we also tested a non-covalent analog
of DGY-06-116, NJH-01-111, in which the acrylamide warhead
is replaced with propionamide (Figure 1A). The IC50 of NJH-
01-111 could not be distinguished fromDGY-06-116, confirming
that the core scaffold supports the potency of this compound class
(Figure 2).

Structure of the Src-DGY-06-116 Complex
To further understand the nature of the interactions between
DGY-06-116 and Src, we determined a co-crystal structure of
DGY-06-116 with Src (PDB code: 6E6E) at 2.15 Å resolution.
Data collection and refinement statistics are shown in Table 1.
This structure includes eight molecules in the asymmetric unit.
The main difference between individual protomers was variation
in an N-terminal lobe loop conformation, but there were no
differences in the conformations of the ATP binding sites
(Figure S3). DGY-06-116 was easily modeled into the predicted

TABLE 1 | Data collection and refinement statistics.

Crystallography statistics

DATA COLLECTION

X-ray source APS 19–1D

Wavelength (Å) 0.9795

Space group P1

Unit cell

a, b, c (Å) 63.53, 84.03, 120.11

α, β, γ (◦) 89.96, 90.05, 90.12

Resolution (Å) 50.00–2.15 (2.19–2.15) a

Unique reflections 123,213

Redundancy 3.6 (3.0)

Completeness (%) 91.7 (91.6)

Wilson B-factor 32.1

Rmerge (%) 12.7 (96.4)

I/σ 9.7 (1.0)

REFINEMENT

Resolution 43.66–2.15 (2.19–2.15)

Reflections Used 122,649

Rfree reflections 5,955

Rwork/Rfree (%) 25.0/28.5

Non-hydrogen atoms 17,919

Protein 17,140

Water 435

Ligand 344

RMSD

Bond lengths (Å) 0.002

Bond angles (◦) 0.592

Average B-factor (Å2) 46

Protein 46.84

Ligands 31.75

Water 38.46

Ramachandran plot (%)

Favored 95.02

Allowed 4.11

Disallowed 0.4

PDB accession code 6E6E

binding site for all, with the warhead forming continuous
electron density with Cys-280 (Figure 3A). As seen with SM171,
the p-loop of the Src kinase is bent and thus allows a covalent
bond to form, a phenomenon that is not observed with other
Src structures (Figure 3B). As expected, the nitrogen of DGY-06-
116′s carboxamide linker hydrogen bonds to gatekeeper Thr-338.
The nitrogen is also part of a coordinated hydrogen bonding
network that includes an active-site water (HOH432), catalytic
Lys-298, the backbone of Cys-280, and the carbonyl DGY-06-116
(Figure 3C). The chloro-methyl phenyl substituent is situated
in the back pocket of the Src kinase, creating hydrophobic
interactions with Ile-297 and Leu-396. The anilinopyrimidine
forms two hydrogen bonds with the backbone of Met-341 in
the hinge region and the methyl piperazinyl tail extends to
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FIGURE 3 | Structural characterization of the Src-DGY-06-116 complex. (A) A Fo-Fc map at 2.5σ shows continuous electron density observed for DGY-06-116
forming a covalent linkage to Cys-280 of the p-loop. (B) DGY-06-116 binding to Src kinase leads to bending of p-loop Cys-280 consistent with design. (C)
Two-dimensional representations of interactions between DGY and Src kinase domain residues. Hydrogen bonds are shown as green dashes. Hydrophobic
interactions are shown as red spikes.

FIGURE 4 | DGY-06-116 shows a slow inactivation rate. (A) Covalent DGY-06-116 and (B) non-covalent analog NJH-01-111. Data from each interaction were
analyzed using both a 1:1 kinetic model and a two-state covalent interaction (p-loop movement) model for calculation of kinact/K I.

the solvent channel forming hydrophobic contacts with Val-
284 and Gly-347 (Figure 3C). These results confirm that DGY-
06-116 forms a covalent bond with Cys-280, but also suggest
that hydrophobic interactions with the back pocket significantly
contribute to affinity, possibly explaining the high potency of the
non-covalent analog NJH-01-111.

Inactivation by Src by DGY-06-116 Is Slow
While the crystal structure clearly indicates covalent binding
to Src, the enzymatic assay could not distinguish between

DGY-06-116 and NJH-01-111. Nevertheless, clear differences are
seen in the selectivity of these compounds (Du et al., 2020).
Previously, we used the MSA to measure the inactivation rate
of other covalent inhibitors (Tan et al., 2017). However, in
this case, we could not because the IC50, 1 h of for DGY-06-
116 was near the enzyme concentration used in the assay and
therefore close to the theoretical sensitivity limit. To evaluate
the inactivation rate, we used a surface plasmon resonance assay
to estimate kinact/KI (Copeland, 2013; Miyahisa et al., 2015).
In our setup, biotinylated Src kinase was immobilized on the
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biosensor. Binding kinetics for DGY-06-116 and NJH-01-111
were found to be similar, indicating a similar initial binding event
(Figures 4A,B). Although the decay appeared similar on visual
inspection, we were unable to fit the curve for DGY using a
one-state model. We considered that the p-loop must move into
position to allow a covalent bond to form. We therefore used
a two-state model to calculate kinact/KI. For the non-covalent
inhibitor NJH-01-111, the value was only 1.7 M−1 s−1, indicating
that a covalent bond did not form. In contrast, kinact/KI for
DGY-06-116 was 174 M−1 s−1, consistent with covalent bond
formation. However, when comparing inactivation rate constant
(kinact), DGY-06-116 showed a rate of 5.7 × 10−7 s−1, several
orders of magnitude slower than for other validated covalent
compounds such as neratinib (2 × 10−3 s−1) and afatinib (1 ×

10−3 s−1) (Gierse et al., 1999; Papp-Wallace et al., 2014; Schwartz
et al., 2014), showing modest irreversible inhibition. Given that
the p-loop must shift to form a covalent bond with DGY-06-
116, we speculate that this slow kinact occurs because it depends
on protein dynamics at the p-loop. This is in agreement with
prior ideas about the importance of p-loop movement for p-loop
targeted inhibitors (Kwarcinski et al., 2012).

DISCUSSION

In these studies, we established that DGY-06-116 binds covalently
to Src in a manner similar to SM1-71, where the p-loop must
kink to establish the covalent bond. However, we also showed
that a non-covalent analog, NJH-01-111, binds with a similar
high affinity. We also showed that the covalent reaction is slow.
Altogether, our interpretation of these findings is that a strong
reversible interaction is required to allow sufficient time for the p-
loop to sample a kinked conformation compatible with covalent
bond formation.

We speculate that that optimization of the interaction between
the p-loop and compound may increase the inactivation rate,
leading to further improvements in compound selectivity in
biological systems, since covalent bond formation appears to be
the major driver of selectivity (Du et al., 2020). One way to do
this would be to increase the length of the linker to the covalent
warhead so the p-loop does not have to kink. Computationally,
this appears to be a viable strategy since simulated docking shows
that extended linkers retain existing interactions and may even
add additional hydrogen bonding with the main-chain oxygen of
Gln-275 (Figure S4).

Despite the slow inactivation rate of DGY-06-116, this
compound is a selective Src inhibitor that will enable laboratory
studies of Src-driven biology, with applications in cancer. One
potential application may relate to the subject of acquired
resistance, which is a major challenge with kinase inhibitors
(Lovly and Shaw, 2014). Src has been implicated in mechanisms
that underlie the development of hormone therapy resistance
in breast cancer (McDonnell and Norris, 2002; Hiscox et al.,
2006) and resistance to chemotherapy in triple-negative breast
cancer (Wu et al., 2016). Src is also involved in drug resistance
to Her2-directed therapy and for certain head and neck and
lung cancers (Carretero et al., 2010; Sen et al., 2011). Src has

also been implicated in non-small cell lung cancers harboring
mutations in EGFR where Src is activated via Cripto-1 (Park
et al., 2014). Indeed, this concept is being tested in a clinical
trial (NCT02954523) where dasatinib and osimertinib are
delivered together. Another possible application is in KRAS-
mutated lung cancer, where loss of the Lkb1 tumor suppressor
activates Src signaling. In mouse cancer models that mimic
this cancer state, the combined inhibition of Src, PI3K, and
Mek showed synergistic tumor regression (Carretero et al.,
2010). Finally, a lack of predictive biomarkers has limited
prior Src-directed trials (Puls et al., 2011). Our tool compound
may allow us to identify cancer populations that are sensitive
to Src inhibition through chemistry-first biomarker discovery
approaches (McMillan et al., 2018).

ACCESSION CODES

The atomic coordinates and structure factors have been deposited
in the RCSB Protein Data Bank archive (PDB) for human proto-
oncogene tyrosine-protein kinase Src in complex with DGY-06-
116 (PDB ID: 6E6E). SRC_HUMAN P12931.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.
2020.00081/full#supplementary-material

Figure S1 | Src kinase domain architecture and location of targetable cysteine
the p-loop.

Figure S2 | SrcC280S efficiently phosphorylates the peptide substrate. Percent
conversion from non-phosphorylated to phosphorylated substrate is shown over
time for a range of Src concentrations. Each data point represents a triplicate
measurement. (A) WT Src. (B) SrcC280S.

Figure S3 | Differences between protomers in the asymmetric crystallographic
unit. All 8 protomers were superimposed and each colored differently.

Figure S4 | Covalent docking model predicts hydrogen bonding interactions for
linker optimization.
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

BACTERIAL STRAINS

E. coli BL21DE3 cells Gift from Dr. M. Seeliger (SUNY,
Stony Brook)

N/A

Src kinase purification, assays, and crystal
structure
pET28a Src kinase expression vector

Gift from Dr. M. Seeliger (SUNY,
Stony Brook)

N/A

Custom oligos:
AAGCTGGGGCAGGGCAGCTTTGGAGAGGTCTGG

Sigma-Aldrich N/A

QuikChange II Site-Directed Mutagenesis
Kit

Agilent Technologies Cat # 200524

Kanamycin Sigma-Aldrich Cat # K1377

Streptomycin Sigma-Aldrich Cat # S9137

Chloramphenicol Sigma-Aldrich Cat # C0378

Bosutinib Sigma-Aldrich Cat # PZ0192

SM1-71 Prof. Nathanael Gray, DFCI,
Harvard

https://graylab.dana-farber.org/

DGY-06-116 Prof. Nathanael Gray, DFCI,
Harvard

https://graylab.dana-farber.org/

NJH-01-111 Prof. Nathanael Gray, DFCI,
Harvard

https://graylab.dana-farber.org/

LabChip® EZ Reader automated
microcapillary electrophoresis platform

PerkinElmer https://www.perkinelmer.com/product/assy-ez-
reader-ii-ship-level-122919

Fluorescently labeled peptide-4 substrate Perkin Elmer https://www.perkinelmer.com/product/dkp-peptide-
4-packed-760348

EZ-LinkTM Sulfo-NHS-Biotinylation Kit ThermoFisher Cat # 21425

Biacore S200 GE Healthcare https://www.gelifesciences.com/en/us/shop/
protein-analysis/spr-label-free-analysis/systems/
biacore-s200-p-05541

Biotin Capture Kit and Sensor Chip CAP GE Healthcare Cat # 28920233

Deposited data
Src-DGY-06-116

https://www.rcsb.org(thisstudy) PDB ID: 6E6E

SOFTWARE AND ALGORITHMS

EZReader 3.0 software Perkin Elmer https://www.perkinelmer.com/lab-products-and-
services/resources/software-downloads.html

GraphPad software version 7 GraphPad Software www.graphpad.com

HKL3000 (Minor et al., 2006) https://sbgrid.org/

PHENIX 1.14rc3_319 (Adams et al., 2010) https://sbgrid.org/

Coot Emsley and Cowtan, 2004 https://sbgrid.org/

CCP4 7.0 Winn et al., 2011 https://sbgrid.org/

Pymol 2.3 Schrodinger, LLC https://sbgrid.org/

LIGPLOT Laskowski R A, Swindells M B
(2011)

https://www.ebi.ac.uk/thornton-srv/software/
LigPlus/

BiacoreTM insight evaluation software GE Healthcare Life Sciences,
USA.

https://www.gelifesciences.com/en/us/shop/
protein-analysis/spr-label-free-analysis/systems/
biacore-s200-p-05541

METHOD DETAILS

Expression, Purification and Crystallization
of Human Src Kinase and Cys280-Ser
Mutant Src Kinase
The Src (UniProtKB P12931) kinase domain was purified as
reported previously (Rao et al., 2019). The Cys280-Ser mutant

Src version was generated via site-directed mutagenesis and
purified similarly.

Enzymatic Assay for IC50 Determination
An automated microcapillary electrophoresis platform
(PerkinElmer LabChip R© EZ Reader) capable of separating
and detecting fluorescently labeled peptides based on charge
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(Elkins et al., 2016) was used for measuring Src kinase activity.
Briefly, purified Src enzyme, fluorescently labeled peptide-4
substrate (purchased from Perkin Elmer), ATP, and inhibitors
(SM1-71, Bosutinib, DGY-06-116, and NJH-01-111) were
combined into a single well, incubated for 1 h incubation
following phosphorylation of the substrate. Substrate (non-
phosphorylated peptide) to product (phosphorylated peptide as
a result of Src kinase activity) conversion was measured over
time. The kinase reaction buffer consisted of 100 mM Hepes,
pH 7.3, 0.015% Brij-35, 0.004% Tween-20, and 10 mM MgCl2.
Peptides were separated using running buffer made of 100 mM
Hepes, pH 7.3, 0.015% Brij-35, 1 mM disodium EDTA, 0.1%
coating reagent 3, 5% DMSO, and 1× coating reagent 8. Final
reaction conditions included 1.25 nM of purified Src kinase, 100
µM ATP, and 1 µM peptide-4 substrate. The percent conversion
was determined by EZReader 3.0 software and analyzed using
GraphPad software version 7 (La Jolla, California, USA) for
determination of IC50 values.

Crystallization and Structure
Determination of Src-DGY-06-116 Complex
Purified Src kinase was concentrated to 10 mg/ml and incubated
with three fold excess of inhibitor DGY-06-116 at room
temperature for 1 h. Co-crystals of Src-DGY-06-116 complex
were obtained by vapor diffusion from a hanging drop setup
at 20Å◦C using 0.1 M magnesium formate dihydrate and 15%
PEG3350 as precipitant. Crystals appeared overnight and were
harvested after 2 days in mother liquor with 30% glycerol
before freezing in liquid nitrogen. Diffraction data were collected
using beamline 19-ID of the Advanced Photon Source, Argonne

National Laboratory and scaled using HKL3000 (Minor et al.,
2006). Molecular replacement solution was obtained using
Phaser (McCoy et al., 2007) and 4MXO as initial search model.
Model building and refinement were carried out using Coot
(Emsley and Cowtan, 2004) and Phenix (Adams et al., 2010).

SPR Based Kinetics of Covalent Inhibition
A Biacore S200 was used to evaluate binding of covalent inhibitor
DGY-06-116 and its non-covalent analog NJH-01-111 with
Src kinase. Src was biotinylated using EZ-LinkTM Sulfo-NHS-
Biotinylation Kit (ThermoFisher). Biotinylated Src kinase was
captured using the Biotin Capture Kit and Sensor Chip CAP
(GE Healthcare). The Biotin Capture Kit works with a single-
stranded DNA sequence on Sensor Chip CAP. A capture reagent
consisting of a biotinylated complementary DNA strand and
streptavidin is captured by the single-stranded DNA, allowing
capture of other biotinylated molecules by streptavidin. At the
end of the binding cycle, the DNA duplex is chemically disrupted,
washing away all materials except the original single-stranded
DNA sequence. The sequence is repeated for each binding cycle
of the assay. Src was captured at surface densities between 800
and 900 RU for each cycle of the assay. Dilutions of DGY-06-
116 and NJH-01-111 from 100 to 1.2 nM were made in running
buffer (100 mM HEPES pH 7.3, 0.015% Brij-35, 0.004% Tween-
20, 10 mM MgCl2, and 1% DMSO) and tested for binding using
a multi-cycle assay. The SPR data were analyzed using BiacoreTM

Insight Evaluation Software (GE Healthcare Life Sciences, USA).
Data from each interaction were analyzed using both a 1:1 kinetic
model and a two-state covalent interaction model (involving p-
loop movement) for calculation of kinact/KI using Biacore S200
Evaluation software (GE Healthcare Life Sciences, USA).
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