
Research Article
DevelopingMachine Learning and Statistical Tools to Evaluate the
AccessibilityofPublicHealthAdviceon InfectiousDiseases among
Vulnerable People

Wenxiu Xie ,1 Meng Ji ,2 Mengdan Zhao ,2 Kam-Yiu Lam ,1 Chi-Yin Chow ,1

and Tianyong Hao 3

1Department of Computer Science, City University of Hong Kong, Hong Kong, China
2School of Languages and Cultures, University of Sydney, Sydney, Australia
3School of Computer Science, South China Normal University, Guangzhou, China

Correspondence should be addressed to Meng Ji; christine.ji@sydney.edu.au

Received 25 October 2021; Accepted 30 November 2021; Published 17 December 2021

Academic Editor: Heng Liu

Copyright © 2021 Wenxiu Xie et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. From Ebola, Zika, to the latest COVID-19 pandemic, outbreaks of highly infectious diseases continue to reveal severe
consequences of social and health inequalities. People from low socioeconomic and educational backgrounds as well as low health
literacy tend to be affected by the uncertainty, complexity, volatility, and progressiveness of public health crises and emergencies.
A key lesson that governments have taken from the ongoing coronavirus pandemic is the importance of developing and
disseminating highly accessible, actionable, inclusive, coherent public health advice, which represent a critical tool to help people
with diverse cultural, educational backgrounds and varying abilities to effectively implement health policies at the grassroots level.
Objective. We aimed to translate the best practices of accessible, inclusive public health advice (purposefully designed for people
with low socioeconomic and educational background, health literacy levels, limited English proficiency, and cognitive/functional
impairments) on COVID-19 from health authorities in English-speaking multicultural countries (USA, Australia, and UK) to
adaptive tools for the evaluation of the accessibility of public health advice in other languages. Methods. We developed an
optimised Bayesian classifier to produce probabilistic prediction of the accessibility of official health advice among vulnerable
people including migrants and foreigners living in China. We developed an adaptive statistical formula for the rapid evaluation of
the accessibility of health advice among vulnerable people in China. Results. Our study provides needed research tools to fill in a
persistent gap in Chinese public health research on accessible, inclusive communication of infectious diseases’ prevention and
management. For the probabilistic prediction, using the optimised Bayesianmachine learning classifier (GNB), the largest positive
likelihood ratio (LR+) 16.685 (95% confidence interval: 4.35, 64.04) was identified when the probability threshold was set at 0.2
(sensitivity: 0.98; specificity: 0.94). Conclusion. Effective communication of health risks through accessible, inclusive, actionable
public advice represents a powerful tool to reduce health inequalities amidst health crises and emergencies. Our study translated
the best-practice public health advice developed during the pandemic into intuitive machine learning classifiers for health
authorities to develop evidence-based guidelines of accessible health advice. In addition, we developed adaptive statistical tools for
frontline health professionals to assess accessibility of public health advice for people from non-English speaking backgrounds.

1. Introduction

From Ebola, Zika, to the novel coronavirus pandemic,
outbreaks of highly infectious diseases continue to reveal
severe consequences of social and health inequalities in both
developing and developed countries [1, 2]. Vulnerable

people are affected more by the uncertainty, complexity,
volatility, and progressiveness of public health crises and
emergencies [3, 4]. A key lesson that governments have
taken from the ongoing coronavirus pandemic is the im-
portance of developing disseminating highly accessible,
inclusive, actionable, coherent public health advice [5–8],
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which represents a critical tool to help people with diverse
cultural, educational backgrounds and varying abilities to
effectively implement health policies at the grassroots level.
High variability in people’s socioeconomic background,
education, and health literacy levels, varying intellectual,
cognitive abilities, English proficiency, and religious beliefs
can cause barriers to access and implement public health
advice under health emergencies and crises [9–11]. In-
creasing inclusiveness and accessibility of health advice
recommendations among diverse vulnerable populations
has emerged as an important topic in both public health
education and domestic and international policy making as a
highly cost-effective measure to reduce health inequalities
[12–15].

Currently, there is a lack of national or international
guidelines around the development of accessible and in-
clusive public health advice, especially for health emer-
gencies and crises. However, the recent outbreak of
coronavirus has prompted national health authorities to
develop highly accessible health resources on COVID-19.
Most current public-oriented health resources on infectious
diseases belong to regular health resources (RHR) requiring
higher levels of education, English proficiency, health
knowledge, and literacy [16–19]. Typical RHR are resources
published by the World Health Organisation which are
intended for both general and professional readerships
[20–22]. However, the practical accessibility of WHO health
resources among the public remains unknown, as the in-
ternational health organisation recently embarked on sur-
veys to establish evidence of the accessibility of its public
health resources [20].

Vulnerable people-oriented (VPO) health resources are
known for their significantly improved language under-
standability, information relevance (minimal distracting
details irrelevant to the readers), social inclusiveness (ap-
plicability among diverse people), and information action-
ability [23–25]. ,ey are developed by medical/health
professionals with extensive experiences of working firstly
with diverse vulnerable populations to ensure the practical
usability of VPO. In English-speaking multicultural socie-
ties, intralingual health translations and simplified or ac-
cessibility-enhanced English resources provide main sources
of public health advice and information for diverse vul-
nerable populations [8, 26–28], although evidence-based
guidelines to inform the development of these materials and
associated quality control measures are yet to be established
and validated.

Increasing amounts of VPO health resources in English,
known as easy-to-read or easy read health materials, provide
valuable firsthand materials for the development of as-
sessment instruments and techniques to support best
practices in the clinic, as well as global health policy making
around accessible health recommendation design and social
dissemination. ,e development of language-adaptive
evaluation instruments can facilitate evidence-based health
policy making by international health authorities. For health
policy makers, we developed supervised Bayesian machine
learning classifiers, and for frontline health professionals
we developed convenient, language-adaptable statistical

analysis tools to evaluate the accessibility of public health
advice on top infectious diseases, including COVID-19.

It should be noted that the machine learning classifiers
and statistical tools that we developed using Chinese health
resources can be conveniently and reliably adapted to other
languages using low-cost, relatively easy-to-obtain natural
language annotation tools. In doing so, our study provides
practical and useful tools for clinical and health professionals
working directly with vulnerable people. ,e intuitive
Bayesian probabilistic evaluation tool that we developed will
help advance research-based global accessible health advice
design and international benchmarking for the pandemic
which continues to spread inmany developing countries and
any future public health crises that require rapid, effective,
and efficient response from governments and health au-
thorities to address the practical needs from diverse vul-
nerable populations and help minimise the environmental
and health impacts on them.

2. Methods

2.1. Collection and Translation of Regular and Vulnerable
People-Oriented Health Resources. We collected two sets of
stylistically distinct public health advice on the prevention
and self-management of infectious diseases. Regular health
resources (RHR) (202) were selected from the website of the
World Health Organisation (WHO). Vulnerable People-
Oriented (VPO) materials (91), especially public health
advice on COVID-19, were collected from websites of health
authorities, including Centers for Disease Control and
Prevention (CDC), Australian Ministry of Health and Public
Health England. ,ese resources were easily recognisable
due to being labelled clearly as easy-to-read public health
advice and instructions on COVID-19. As an interna-
tional health authority, WHO provides verified profes-
sional translations of original English resources. Since
our study was to develop assessment tools to evaluate
accessibility of public health advice in Chinese, Chinese
translations of regular WHO health advice on infectious
diseases were collected. VPO resources collected from
sources of CDC, the Australian Ministry of Health and
Public Health, England, were translated into Chinese
using forward and backward translation recommended
by the WHO [29–31].

2.2. Morphological-Lexical-Structural (MLS) Features. ,e
Chinese translations of RHR and VPO were annotated using
Chinese Readability Index Explorer (CRIE) [32, 33]. CRIE
annotation provided 26 morphological-lexical-structural
(MLS) features and 46 part-of-speech (POS) features (72 in
total) of the annotated Chinese texts for our machine
learning classifier development. MLS included average
sentence number per paragraph, type token ratio (TTR),
low-stroke characters (1–10 strokes), middle-stroke char-
acters (11–20 strokes), high-stroke characters (21 or above),
average strokes per character, 2-character words, 3-character
words, average words per sentences, ratio of noun phrases,
normalised frequency of noun phrases, average number of

2 Computational Intelligence and Neuroscience



idioms per sentence, content words (verbs, nouns, adverbs,
and adjectives), adverbs of negation, sentences with complex
semantic (polysemous) categories, density of content
words, average logarithmic frequency of content words,
pronouns, personal pronouns, conjunctions, positive
conjunctions, negative conjunctions, and difficult words
ratio. ,ese MLS features were studied extensively in
Chinese readability research.

2.3. Parts of Speech (POS) Features. A POS tagging system
developed by Academia Sinica as one of the most com-
prehensive automatic analysers of Chinese was applied. ,e
POS features collected included nonpredicate adjective (A),
coordinate conjunction (Caa), conjunctions (Cab), con-
junctions (Cba), correlative conjunctions (Cbb), adverbs
(D), nominal/adverbial/complement markers (DE), adver-
bial noun-modifiers (Da), adverbs of degree before verbs
(Dfa), adverbs of degree after verbs (Dfb), tense markers
(Di), sentential adverbs (Dk), interjections (I), common
nouns (Na), proper nouns (Nb), geographical names (Nc),
location names (Ncd), time adverbs (Nd), attributive ad-
juncts (Nep), modifiers of quantitative measures (Nes),
quantities (Neu), measure words (Nf), post-positions (Ng),
pronouns (Nh), prepositions (P), Be verbs (SHI), auxiliary
words (T), intransitive predicates (VA), causative verbs
(VAC), transitive verbs placed after objects (VB), transitive
verbs (VC), verbs placed before locations (VCL), predicates
used with both direct and indirect objects (VD), action verbs
as sentence objects (VE), action verbs as predicate objects
(VF), classification verbs (VG), modifiers of verbs and nouns
(VH), causative modifiers (VHC), adjectives or past particles
placed after objects (VI), transitive verbs to describe states
(VJ), mental states and processes (VK), causative predicates
(VL), and have verbs (V_2).

2.4. Statistical Analysis. Table 1 shows that, among the 72
natural language features (26 MLS, 46 POS), statistically
significant differences (p< 0.05 of nonparametric Mann-
Whitney U tests) between regular health resources (RHR)
and vulnerable people-oriented (VPO) health resources
were present in 88.9% of the entire feature set: 96.15% (25/
26) of morphological-lexical-structural (MLS) features and
84.78% (39/46) of part-of-speech (POS) features. In addition
to 2-sided p values, we computed Hedges’ g [34] as corrected
Cohen’s d (1, 36, and 37) and 95% confidence interval of the
effect size estimates. We also provided common language
effect sizes (CLES), also known as probability of supe-
riority [35–37]. In our study, CLES allowed an intuitive
interpretation of the likelihood of the mean of a certain
natural language feature randomly selected from VPO as
higher than the mean of that feature in RHR on infec-
tious diseases. We calculated Hedges’ g and CLES
alongside commonly reported p values for two purposes:
first, this was to help us interpret the result of automatic
feature selection using Bayesian machine learning
classifiers (Gaussian Naı̈ve Bayes selected due to the
presence of normally distributed continuous variables as
features); second, this facilitated the determination of

sample sizes for follow-up studies or the comparison of
effects across studies.

,e following formula shows the corrected effect size or
Hedges’ g:

Hedges′ gs � Cohen′s ds × 1 −
3

4 n1 + n2( 􏼁 − 9
􏼠 􏼡. (1)

,e following formula shows common language effect
size (CLES):
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When computing effect sizes (Hedges’ gs) and associated
probabilities of superiority (CLES), we used RER as refer-
ence class. As a result, positive values indicated that features
were statistically higher in more difficult regular health
resources; and negative values suggested that features were
prevalent in highly accessible, vulnerable people-oriented
public health advice. MLS features which had large (absolute
value larger than 1), corrected effect sizes, Hedges’ gs, and
CLES included the following: average sentences per para-
graph (VPO: M� 0.601, SD� 0.345; RHR: M� 3.316,
SD� 1.163, p< 0.001, Hedges’ gs � 2.588, 95% CI [2.301,
2.874], and CLES� 0.966); type token ratio (TTR) (VPO:
M� 0.461, SD� 0.119; RHR: M� 0.623, SD� 0.079,
p< 0.000, Hedges’ gs � 1.828, 95% CI [1.568, 2.088], and
CLES� 0.902); frequency of difficult words (VPO:
M� 141.813, SD� 96.381; RHR: M� 70.872, SD� 35.986,
p< 0.001, Hedges’ gs � −1.311, 95% CI [−1.558, −1.065], and
CLES� 0.823); single sentences (VPO: M� 0.883,
SD� 0.114; RHR: M� 0.460, SD� 0.191, p< 0.001, Hedges’
gs � −2.376, 95% CI [−2.655, −2.098], and CLES� 0.954);
pronouns (VPO: M� 41.692, SD� 35.043; RHR: M� 1.469,
SD� 1.652, p< 0.001, Hedges’ gs � −2.530, 95% CI [−2.814,
−2.245], and CLES� 0.963); personal pronouns (VPO:
M� 37.868, SD� 31.838; RHR: M� 0.705, SD� 1.139,
p< 0.001, Hedges’ gs � −2.577, 95% CI [−2.864, −2.291], and
CLES� 0.966); low-stroke characters (VPO: M� 641.593,
SD� 444.264; RHR: M� 284.707, SD� 140.930, p< 0.001,
Hedges’ gs � −1.507, 95% CI [-1.758, −1.256], and
CLES� 0.857); 2-character words (VPO: M� 256.637,
SD� 176.783; RHR: M� 114.341, SD� 56.262, p< 0.001,
Hedges’ gs � −1.509, 95% CI [−1.76, −1.258], and
CLES� 0.857); and average logarithmic frequency of content
words (VPO: M� 1.738, SD� 0.169; RHR: M� 1.337,
SD� 0.183, p< 0.001, Hedges’ gs � −2.225, 95% CI [−2.498,
−1.952], and CLES� 0.942).

Part of speech (POS) features which had large (absolute
value larger than 1), corrected effect sizes, Hedges’ gs, and
CLES included the following: Nh (pronouns) (VPO:
M� 41.692, SD� 35.043; RHR: M� 1.469, SD� 1.652,
p< 0.000, Hedges’ gs � −2.530, 95% CI [−2.814, −2.245], and
CLES� 0.963); VF (action verbs as predicate objects) (VPO:
M� 4.198, SD� 3.964; RHR: M� 0.222, SD� 0.629,
p< 0.001, Hedges’ gs � −2.119, 95% CI [−2.388, −1.849], and
CLES� 0.933); VA (intransitive predicates) (VPO:
M� 11.659, SD� 10.140; RHR: M� 2.088, SD� 2.214,
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Table 1: Mann-Whitney U test.

MLS features
(1–26) POS
(27–72)

EHR
mean

EHR
std.

RHR
mean

RHR
std.

Asymp. sig.
(2-tailed)

Effect size
dCohen

(corrected
effect size or
Hedges’ g)

Common
language
effect size
CLES

95% CI
Mann-
Whitney

U

Wilcoxon
W Z

Average
sentences per
paragraph

0.601 0.345 3.316 1.163 0.000 2.588 0.966 2.301 to
2.874 52.00 4238.00 −14.669

TTR 0.461 0.119 0.623 0.079 0.000 1.828 0.902 1.568 to
2.088 4389.00 8575.00 −10.680

Difficult
words 141.813 96.381 70.872 35.986 0.000 −1.311 0.823

−1.558
to

−1.065
8769.50 70897.50 −6.657

Low-stroke
characters 641.593 444.264 284.707 140.930 0.000 −1.507 0.857 -1.758

to−1.256 8108.00 70236.00 −7.264

Middle-stroke
characters 120.396 80.348 51.810 27.695 0.000 −1.562 0.865 −1.814

to−1.31 7357.00 69485.00 −7.955

High-stroke
characters 0.055 0.229 0.452 1.604 0.005 0.277 0.578 0.045 to

0.508 14144.00 18330.00 −2.815

Average
strokes per
character

7.677 0.274 7.711 0.342 0.195 0.103 0.529 −0.127
to 0.334 14604.00 18790.00 −1.297

2-character
words 256.637 176.783 114.341 56.262 0.000 −1.509 0.857 −1.76 to

−1.258 8100.50 70228.50 −7.271

3-character
words 13.000 11.824 8.298 6.372 0.008 −0.603 0.665

−0.837
to

−0.369
13139.50 75267.50 −2.647

Average
words per
sentences

11.592 4.963 11.893 1.962 0.018 0.106 0.530 -0.125 to
0.336 13438.00 17624.00 −2.368

Single
sentences 0.883 0.114 0.460 0.191 0.000 −2.376 0.954

−2.655
to

−2.098
949.00 63077.00 −13.851

Ratio of noun
phrases 0.267 0.104 0.415 0.198 0.000 0.810 0.717 0.573 to

1.046 8396.50 12582.50 −6.999

Frequency of
noun phrases
per 10K

322.369 37.240 314.664 37.002 0.028 −0.208 0.558 −0.439
to 0.023 13620.50 75748.50 −2.200

Average
idioms per
sentences

0.001 0.004 0.012 0.029 0.004 0.424 0.618 0.192 to
0.656 13969.00 18155.00 −2.894

Content
words 392.582 265.421 163.074 80.538 0.000 −1.642 0.877

−1.896
to

−1.387
6988.50 69116.50 −8.293

Adverbs of
negation 2.758 3.067 0.935 1.228 0.000 −1.032 0.767

−1.272
to

−0.792
9522.50 71650.50 −6.283

Sentences
with complex
semantic
categories

25.396 22.039 7.614 4.758 0.000 −1.643 0.877
−1.898
to

−1.388
6696.50 68824.50 −8.578

Density of
content words 0.828 0.026 0.815 0.031 0.000 −0.433 0.620 −0.665

to −0.2 11857.50 73985.50 −3.820

Average
logarithmic
frequency of
content words

1.738 0.169 1.337 0.183 0.000 −2.225 0.942
−2.498
to

−1.952
1854.00 63982.00 −13.009

Idioms 0.077 0.268 0.224 0.510 0.009 0.312 0.587 0.081 to
0.544 14168.00 18354.00 −2.623

Pronouns 41.692 35.043 1.469 1.652 0.000 −2.530 0.963
−2.814
to

−2.245
620.50 62748.50 −14.398

Personal
pronouns 37.868 31.838 0.705 1.139 0.000 −2.577 0.966

−2.864
to

−2.291
326.00 62454.00 −15.334
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Table 1: Continued.

MLS features
(1–26) POS
(27–72)

EHR
mean

EHR
std.

RHR
mean

RHR
std.

Asymp. sig.
(2-tailed)

Effect size
dCohen

(corrected
effect size or
Hedges’ g)

Common
language
effect size
CLES

95% CI
Mann-
Whitney

U

Wilcoxon
W Z

Conjunctions 18.967 16.440 11.520 6.407 0.001 −0.795 0.713
−1.031
to

−0.558
12507.50 74635.50 −3.228

Positive
conjunctions 16.824 14.159 9.000 5.193 0.000 −0.991 0.758 −1.23 to

-0.751 10808.00 72936.00 −4.795

Negative
conjunctions 0.846 1.584 1.440 1.393 0.000 0.414 0.615 0.182 to

0.646 10710.50 14896.50 −5.070

Difficult
words ratio 30.384 5.724 35.847 8.175 0.000 0.706 0.691 0.471 to

0.941 9400.50 13586.50 −6.077

A 3.099 3.774 3.026 2.969 0.236 −0.023 0.507 −0.254
to 0.207 14740.50 18926.50 −1.184

VI 0.143 0.485 0.159 0.424 0.348 0.037 0.510 −0.194
to 0.267 15418.50 19604.50 −0.938

Dk 0.011 0.105 0.017 0.130 0.680 0.048 0.514 −0.183
to 0.278 15919.00 20105.00 −0.413

VG 2.154 2.454 2.054 1.919 0.505 −0.049 0.514 −0.28 to
0.181 15305.00 19491.00 -0.666

Nv 9.967 10.390 9.290 6.711 0.083 −0.089 0.525 −0.32 to
0.142 14132.00 18318.00 −1.734

Neqb 0.033 0.180 0.057 0.277 0.590 0.092 0.526 −0.138
to 0.323 15810.00 19996.00 −0.539

Cab 0.121 0.390 0.398 0.799 0.000 0.377 0.605 0.145 to
0.609 13151.00 17337.00 −3.534

I 0.033 0.180 0.000 0.000 0.001 −0.406 0.613
−0.638
to

−0.174
15488.00 77616.00 −3.414

VAC 0.154 0.392 0.048 0.215 0.001 −0.406 0.613
−0.638
to

−0.174
14493.00 76621.00 −3.214

Nd 4.253 7.872 2.298 3.408 0.002 −0.418 0.616 -0.65 to
−0.186 12764.50 74892.50 −3.050

Nb 1.451 2.423 0.739 1.420 0.000 −0.425 0.618
−0.657
to

−0.193
12369.50 74497.50 −3.789

Dfb 0.066 0.291 0.003 0.053 0.000 −0.451 0.625
−0.683
to

−0.219
15181.00 77309.00 −3.831

Neu 4.505 6.339 2.395 3.209 0.001 −0.521 0.644
−0.754
to

−0.288
12438.00 74566.00 −3.347

VJ 10.011 8.836 6.455 5.125 0.000 −0.586 0.661 −0.82 to
−0.352 11896.00 74024.00 −3.797

VL 2.912 2.946 1.710 1.741 0.001 −0.588 0.661
−0.821
to

−0.354
12457.00 74585.00 −3.343

Cba 0.110 0.379 0.003 0.053 0.000 −0.602 0.665
−0.836
to

−0.369
14652.50 76780.50 −5.125

Caa 12.846 11.117 8.705 5.150 0.103 −0.608 0.666
−0.842
to

−0.374
14244.50 76372.50 −1.631

VB 0.912 1.488 0.321 0.722 0.000 −0.635 0.673
−0.869
to

−0.401
12839.50 74967.50 −3.789

VHC 0.527 1.089 1.705 1.958 0.000 0.649 0.677 0.415 to
0.884 9100.00 13286.00 −6.641

Da 0.516 1.058 0.125 0.348 0.000 −0.686 0.686
−0.921
to

−0.451
12813.00 74941.00 -4.647
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Table 1: Continued.

MLS features
(1–26) POS
(27–72)

EHR
mean

EHR
std.

RHR
mean

RHR
std.

Asymp. sig.
(2-tailed)

Effect size
dCohen

(corrected
effect size or
Hedges’ g)

Common
language
effect size
CLES

95% CI
Mann-
Whitney

U

Wilcoxon
W Z

Nes 2.033 2.100 0.960 1.278 0.000 −0.723 0.696 −0.959
to -0.488 10783.50 72911.50 −5.088

Dfa 3.473 3.854 1.608 1.752 0.000 −0.797 0.713
−1.033
to

−0.561
10952.00 73080.00 −4.769

VH 22.154 15.913 13.767 8.222 0.000 −0.817 0.718 −1.053
to −0.58 11401.00 73529.00 −4.243

Nf 7.418 8.071 3.094 3.956 0.000 −0.852 0.727
−1.089
to

−0.615
9110.50 71238.50 −6.401

Nc 7.780 7.781 2.688 5.303 0.000 −0.864 0.729 −1.101 to
−0.627 8121.00 70249.00 −7.430

Nep 3.527 4.388 1.327 1.653 0.000 −0.890 0.736
−1.128
to

−0.653
12279.50 74407.50 −3.559

T 1.165 1.662 0.261 0.649 0.000 −0.953 0.750
−1.192
to

−0.715
10192.00 72320.00 −6.926

Di 2.901 3.169 0.912 1.538 0.000 −1.003 0.761
−1.243
to

−0.763
9200.50 71328.50 −6.755

SHI 4.396 4.942 1.676 1.709 0.000 −1.006 0.762
−1.246
to

−0.766
10776.00 72904.00 −4.917

VD 1.703 2.355 0.375 0.861 0.000 −1.012 0.763
−1.252
to

−0.772
9587.50 71715.50 −7.241

Cbb 5.890 6.402 2.415 2.001 0.000 −1.022 0.765
−1.263
to

−0.782
10325.50 72453.50 −5.297

Neqa 6.011 5.997 2.537 2.227 0.000 −1.034 0.768
−1.274
to

−0.794
10036.50 72164.50 −5.553

Na 113.209 77.721 64.639 32.606 0.000 −1.065 0.774
−1.306
to

−0.824
11326.50 73454.50 −4.308

Ng 6.473 8.048 2.068 1.980 0.000 −1.090 0.780
−1.331
to

−0.848
8874.50 71002.50 −6.668

V_2 4.560 5.879 1.128 1.214 0.000 −1.197 0.801 −1.44 to
−0.953 9003.50 71131.50 −6.676

VE 7.824 7.207 2.670 2.913 0.000 −1.237 0.809
−1.482
to

−0.993
8111.50 70239.50 −7.335

DE 27.396 21.300 11.653 7.618 0.000 −1.336 0.828 −1.583
to −1.09 8606.50 70734.50 −6.816

P 22.571 16.570 9.330 6.188 0.000 −1.424 0.843
−1.672
to

−1.175
8358.00 70486.00 −7.045

Ncd 6.747 5.960 1.869 1.933 0.000 −1.526 0.86
−1.777
to

−1.274
7167.50 69295.50 −8.263

VCL 5.242 5.730 0.693 1.033 0.000 −1.656 0.879
−1.911
to

−1.401
5248.50 67376.50 −10.615
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p< 0.000, Hedges’ gs � −1.919, 95% CI [−2.181, −1.656], and
CLES� 0.913); VK (mental states and processes) (VPO:
M� 9.736, SD� 7.688; RHR: M� 2.293, SD� 2.086,
p< 0.000, Hedges’ gs � −1.889, 95% CI [−2.151, −1.627], and
CLES� 0.909); D (adverbs) (VPO: M� 44.110, SD� 31.491;
RHR: M� 14.489, SD� 8.247, p< 0.001, Hedges’
gs � −1.849, 95% CI [−2.11, −1.589], and CLES� 0.905); VC
(transitive verbs) (VPO: M� 48.791, SD� 35.985; RHR:
M� 14.759, SD� 10.551, p< 0.001, Hedges’ gs � −1.812, 95%
CI [−2.071, −1.552], and CLES� 0.900); Ncd (location
names) (VPO: M� 6.747, SD� 5.960; RHR: M� 1.869,
SD� 1.933, p< 0.001, Hedges’ gs � −1.526, 95% CI [−1.777,
−1.274], and CLES� 0.860); P (prepositions) (VPO:
M� 22.571, SD� 16.570; RHR: M� 9.330, SD� 6.188,
p< 0.001, Hedges’ gs � −1.424, 95% CI [−1.672, −1.175], and
CLES� 0.843); and V_2 (have) (VPO:M� 4.560, SD� 5.879;
RHR: M� 1.128, SD� 1.214, p< 0.001, Hedges’ gs � −1.197,
95% CI [−1.44, −0.953], and CLES� 0.801).

2.5. GaussianNaı̈ve Bayes. Gaussian Näıve Bayes (GNB) is a
variant of Näıve Bayes which is supervised machine learning
classification algorithm based on the Bayes theorem [38–42].
Various strengths of GNB are its convenience, computation
speed (suitability for making real time prediction), scal-
ability, generalisability with small data like most Bayesian
machine learning classifiers, and flexibility with continuous
and discrete features. In our study, the size of the training
(205) and testing data (88) was relatively small. Bayesian
machine learning classifiers like GNB, relevance vector
machine (RVM), and multinominal Näıve Bayes (MNB) are
more suitable, as they are unlikely to overfit small datasets.
Furthermore, the two sets of public health resources that we
collected, regular and vulnerable people-oriented sets,
contained continuous features and their distributions in the
Chinese translations of regular health resources followed
Gaussian normal distribution (Table 2, Figure 1). As a result,

GNB was selected as the most suitable machine learning
classifier in our study to ensure the generalisability and
reliability of the classifiers.

2.6. Training and Testing Machine Learning Classifiers. To
train machine learning classifiers for automatic information
accessibility evaluation, the total number of RHR used was
202 and the total number of VPO used was 91. Next, 73.3%
(148) of RHR and 62.6% (57) of VPO were used as the
training data and the remaining texts (54 RHR and 34 VPO)
were used as testing data. We applied 5-fold cross-validation
with the training data to produce the mean and standard
deviation of area of curve (AUC) of the GNB classifier.
Review of the model performance was on the remaining 30%
test data in terms of AUC, accuracy, sensitivity, specificity,
and macro F1 (Table 3).

2.7. Classifier Optimisation. High dimensional features can
reduce the performance of machine learning classifiers due
to the forced inclusion of irrelevant parameters in the model.
To counter the issue of classifier underperformance caused
by the presence of redundant features, we applied different
classifier optimisation techniques to reduce the original
features collected. First, we applied integral optimisation by
selecting the optimised feature set from the combined MLS
and POS features (72 in total). ,is led to a combinedly
optimised feature set of 6 features (around 8% of the original
total features): average sentences per paragraph (ASPP)
(p< 0.000, Hedges’ gs � 2.588, 95% CI [2.301, 2.874], and
CLES� 0.966), personal pronouns (p< 0.001, Hedges’
gs � −2.577, 95% CI [−2.864, −2.291], and CLES� 0.966), Di
(tense markers) (p< 0.001, Hedges’ gs � −1.003, 95% CI
[−1.243, −0.763], and CLES� 0.761), Nd (time adverbs)
(p � 0.002, Hedges’ gs � −0.418, 95% CI [−0.65, −0.186], and
CLES� 0.616), VF (action verbs as predicate objects)
(p< 0.001, Hedges’ gs � −2.119, 95% CI [−2.388, −1.849],

Table 1: Continued.

MLS features
(1–26) POS
(27–72)

EHR
mean

EHR
std.

RHR
mean

RHR
std.

Asymp. sig.
(2-tailed)

Effect size
dCohen

(corrected
effect size or
Hedges’ g)

Common
language
effect size
CLES

95% CI
Mann-
Whitney

U

Wilcoxon
W Z

VC 48.791 35.985 14.759 10.551 0.000 −1.812 0.900
−2.071
to

−1.552
5672.50 67800.50 −9.506

D 44.110 31.491 14.489 8.247 0.000 −1.849 0.905 −2.11 to
−1.589 5603.00 67731.00 −9.573

VK 9.736 7.688 2.293 2.086 0.000 −1.889 0.909 −2.151 to
−1.627 5158.50 67286.50 −10.096

VA 11.659 10.140 2.088 2.214 0.000 −1.919 0.913 −2.181 to
−1.656 4616.50 66744.50 −10.605

VF 4.198 3.964 0.222 0.629 0.000 −2.119 0.933
−2.388
to

−1.849
4026.50 66154.50 −13.780

Nh 41.692 35.043 1.469 1.652 0.000 −2.530 0.963
−2.814
to

−2.245
620.50 62748.50 −14.398
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and CLES� 0.933), and V_2 (have verbs) (p< 0.001, Hedges’
gs � −1.197, 95% CI [−1.44, −0.953], and CLES� 0.801).

,ese optimised features were also those with the most
significant statistical differences (indicated by p values, corrected
effect size Hedges’ g, common language effect sizes CLES)
between regular and vulnerable people-oriented health re-
sources (Table 1). Next, we applied feature optimisation in the
two sets of MLS (26) and POS (46) features separately. ,is led

to an optimised MLS feature set of 2 features only (7.7% of the
total MLS features): ASPP and ALFCW (p< 0.001, Hedges’
gs � −2.225, 95% CI [−2.498, −1.952], and CLES� 0.942). ,e
optimised POS feature set of 8 features (17.4% of the total POS
features): A (nonpredicate adjectives) (p< 0.000, Hedges’
gs � −0.023, 95% CI [−0.254, 0.207], and CLES� 0.507), Cbb
(correlative conjunctions) (p< 0.001, Hedges’ gs � −1.022, 95%
CI [−1.263, −0.782], and CLES� 0.765), Dfa (adverbs of degree

Table 2: Continuous feature distribution in regular health resources (RHR) translated to Chinese.

Continuous MLS features Min Max Mean SE.
95% confidence
interval for

mean
SD. Skewness SE. Kurtosis SE.

ASPP 0.122 8.857 2.759 0.072 2.617 2.90 1.518 0.145 0.116 −0.194 0.231
DCW 0.691 0.896 0.817 0.001 0.814 0.820 0.030 −0.210 0.116 0.382 0.231
RNP 0.000 1.271 0.385 0.009 0.367 0.403 0.192 0.826 0.116 1.207 0.231
ALFCW 0.808 2.228 1.420 0.012 1.397 1.442 0.242 0.365 0.116 -0.18 0.231
NFNP 200.00 458.33 316.25 1.765 312.78 319.71 37.14 0.268 0.116 0.616 0.231
ASPC 6.505 8.705 7.704 0.016 7.673 7.734 0.329 -0.264 0.116 1.059 0.231
ASPP: average sentences per paragraph; DCW density of content words; RNP: ratio of noun phrases; ALFCW: average logarithmic frequency of content
words; NFNP: normalised frequency of noun phrases; ASPC average strokes per character.
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Figure 1: Continuous feature distribution in regular health resources (RHR) translated into Chinese.

Table 3: Performance of Gaussian Näıve Bayes (GNB) classifiers with different feature sets.

Model Techniques Training (5-fold CV) Testing
AUC mean (SD) AUC Accuracy Macro F1 Sensitivity Specificity

1 MLS+POS full (69) 0.971 (0.0212) 0.940 0.921 0.992 0.944 0.8824
2 MLS+POS jointly optimised (6) 0.998 (0.0026) 0.993 0.940 0.943 0.963 0.9118
3 MLS full (26 features) 0.997 (0.003) 1.0 0.966 0.963 1.0 0.9118
4 MLS optimised (2 features) 0.998 (0.004) 1.0 0.943 0.938 1.0 0.8529
5 POS full (46 features) 0.959 (0.0238) 0.907 0.852 0.843 0.889 0.7941
6 POS optimised (8 features) 0.982 (0.0166) 0.968 0.955 0.951 1.0 0.8824
7 MLS +POS separately optimised (10) 1.0 (0) 1.0 0.955 0.951 1.0 0.8824
8 Refined MLS+POS separately optimised (2) 0.995 (0.0079) 0.999 0.989 0.988 0.982 1.0
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before verbs) (p< 0.001, Hedges’ go � −0.797, 95% CI [−1.033,
−0.561], and CLES� 0.713), Nd (time adverbs) (see above), Ng
(postpositions) (p< 0.001, Hedges’ gs � −1.090, 95% CI
[−1.331,−0.848], andCLES� 0.780), Nh (pronouns) (p< 0.001,
Hedges’ gs � −2.530, 95% CI [−2.814, −2.245], and
CLES� 0.963), VCL (verbs placed before locations) (p< 0.001,
Hedges’ gs � −1.656, 95% CI [−1.911, −1.401], and
CLES� 0.879), and VHC (causative modifiers) (p< 0.001,
Hedges’ gs � 0.649, 95% CI [0.415, 0.884], and CLES� 0.677).
For both integral and parallel classifier optimisations, we used
backforward feature elimination known as recursive feature
elimination (RFE) with support vector machine as base esti-
mator. Maximal validation accuracy/minimal classification
errors were used as the feature optimisation criteria (Table 4 and
Figure 2).

3. Results

Table 3 shows the performance of GNB classifiers using
different feature sets. Overall, Bayesian classifiers using
optimised features outperformed those using original, larger
feature sets. For example, on the testing data, the integrally
optimised GNB with 2 MLS and 6 POS features achieved a
higher AUC (0.993), sensitivity (0.963), specificity (0.9118),
and accuracy (0.940) than the classifier using the full feature
set which had AUC (0.940), sensitivity (0.944), specificity
(0.8824), and accuracy (0.921). ,e separately optimised
POS feature set (8 POS features) achieved a higher AUC
(0.968), sensitivity (1.0), specificity (0.8824), and accuracy
(0.955) than the original POS feature set (46 POS features)
(AUC� 0.852, sensitivity� 0.889, specificity� 0.7941, and
accuracy� 0.852). After comparing the 3 optimised feature
sets: MLS/POS jointly optimised (6), MLS optimised (2), and
POS optimised (8), we added the 2 sets of separately opti-
mised features of 2 MLS features (ASPP, ALFCW) and 8
POS features (A, Cbb, Dfa, Nd, Ng, Nh, VCL, and VHC)
together and further refined the feature set to 2 features only:
ALFCW and Nh (pronouns) using the same backward
elimination RFE_SVM procedure. ,is resulted in a highly
simplified model (model 8) which achieved largely com-
parable performance to the best-performing model, the one
which integrated the 2 separately optimised features (model
7). Optimised model 8 achieved higher specificity (1.0) than
the model 7 (0.8824), which indicated better detection of
public health resources and advice suitable for use under
health emergencies and crises for maximal social
accessibility.

3.1. Bayesian Probabilistic Outputs. ,e outputs of Bayesian
machine learning classifiers are in the form of a probability
of belonging to the regular public health advice training data.
In our study, for the best-performing classifier (model 8:
refined MLS and POS separately optimised: 2 features:
ALFCW and Nh), average mean output (probability) was
0.9557 (SD� 0.152; range: 0.02, 1; 95% CI: 0.915, 0.996) for
regular public health resources and 0.022 (SD� 0.069; range:
0, 0.28; 95% CI: −0.00118, 0.04518) for vulnerable people-
oriented public health advice. ,e differences among public

health advice on infectious diseases (translated to Chinese)
in terms of public accessibility (high: vulnerable people-
oriented resources; low: regular resources) were statistically
significant (p< 0.001, Hedges’ gs � 7.367, 95% CI: 6.197,
8.536, and CLES� 1). Figure 3 is a histogram which shows
the number of regular (restricted accessibility) and vul-
nerable people-oriented (high accessibility) health pieces of
advice that fell into each 10% probability bin based on the
GNB outputs. One hundred percent of vulnerable people-
oriented health advice was assigned a probability of highly
accessible health resource equal to or smaller than 50%
(specificity� 1); and 98.15% of regular public resources were
assigned a probability of public advice of restricted/low
accessibility larger than 50% (sensitivity� 98.15%). Around
2% of regular public health resources were misclassified as
highly accessible information and advice for the public.

3.2.:resholds andPositive/Negative LikelihoodRatios (LR+).
Although it is intuitive to use 0.5 as the probability threshold
(Figure 3), this is not the case in real life scenarios, because
the criterion for a meaningful cut-off depends on the desired
pair of sensitivity and specificity or the diagnostic utility of
the research instrument. In our study, higher classifier
sensitivity is indicative of higher precision with the pre-
diction of regular public health advice (from WHO re-
sources) which have restricted public accessibility; and
higher classifier specificity implies increased accuracy with
the detection vulnerable people-oriented health advice (from
3 national health authorities) which were designed by ex-
perienced health professionals to maximally enhance the
language, cognitive accessibility, informational actionability,
and communicative effectiveness of these emergency pieces
of advice among diverse vulnerable populations with limited
education, health literary, socioeconomic abilities, and
varying intellectual/cognitive capabilities.

Table 5 shows various probability cut-offs and their
associated sensitivity and specificity pairs using the best-
performing GNB classifier that we developed using 2 fea-
tures only (ALFCW: average logarithmic frequency of
content words; Nh: pronouns). It shows that when setting
the cut-offs lower than 0.1, sensitivity was the highest
(0.9815) and specificity was 0.9118. ,is means that if this
machine learning system were used to assist with public
health advice design and dissemination, less than 2% of
public health advice with restricted accessibility would be
misclassified as accessible information and less than 10%
of highly accessible materials would be misclassified as
ineffective public health advice, potentially increasing the
budgetary burden to hire experts to review health re-
sources or extend the timeframe of releasing information
to the public. When increasing the threshold from 0.1 to
0.2, sensitivity remained unchanged, and specificity in-
creased. From 0.2 to 0.5, specificity (cost related)
remained the same, but sensitivity deceased from 0.98 to
0.96, suggesting that 2% of health public with limited
accessibility to vulnerable populations would be mis-
classified as suitable health advice and information. In
high-risk scenarios such as the outbreaks of highly
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infectious diseases among some of the most deprived
communities, this misjudgement in health advice plan-
ning can be very costly, as vulnerable people would be
given less effective, accessible, and protective health ad-
vice and information.

Sensitivity continued to decrease when thresholds raised
higher than 0.5, despite the fact that specificity reached 1.
Positive likelihood ratio (LR+) (the ratio between sensitivity and

false positivity) is another measurement of diagnostic utility. A
LR+ larger than 10 indicates a very large effect on posttest
probability of disease or in the case of our study lack of ac-
cessibility of public health advice among some of our most
vulnerable communities and people, who need accessible, ac-
tionable public health advice most. In our study, using the
best-performing Bayesian classifier, the highest LR+
16.685 (95% CI: 4.35, 64.04) was reached when setting

Table 4: Criteria of classifier optimisation.

Techniques Cross-validation accuracy (CVA) Minimal classification error (MCE)� 1-CVA
Joint optimisation (6) 0.9853 0.0147
Optimised MLS features (2) 0.9902 0.0098
Optimised POS features (8) 0.9854 0.0146

Joint Optimization by RFE-SVM

0.985

0.980

0.975

0.970

0.965

0.960

0.955
0 10 20 30 40 50 60 70

Number of Selected Features

Cr
os

s V
al

id
at

io
n 

Ac
cu

ra
cy

1.00

0.95

0.90

0.85

0.80

0.75

0.70

MLS Features Optimization by RFE-SVM

0 10 20 30 40
Number of Selected Features

Cr
os

s V
al

id
at

io
n 

Ac
cu

ra
cy

0.990

0.985

0.980

0.975

0.970

0.965

0.960
0 5 10 15 20

Number of Selected Features

POS Features Optimization by RFE-SVM

Cr
os

s V
al

id
at

io
n 

Ac
cu

ra
cy

Figure 2: Recursive feature elimination using SVM as base estimator.
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the threshold of probability at 0.2 (sensitivity � 0.982,
95% CI: 0.95, 1; specificity � 0.941, 95% CI: 0.86, 1). ,is
represents the safest (highest sensitivity) and the most
cost-effective (lowest budget investment in expert hire)
model of machine learning-assisted predictive design
of accessible public health advice and information for
vulnerable people and populations. We hope that this
promising result based on machine learning develop-
ment using low-cost, relatively easy-to-obtain natural
language tools would provide more support for evi-
dence-based, user-oriented policy making around in-
clusive, accessible public health advice design and
communication under both regular and emergency
circumstances.

4. Discussion

4.1. Retrospective Assessment of Accessibility of Public Health
Advice in Other Languages. Another major strength of our
study was that we translated the best practices of accessible
health advice on infectious diseases developed by English health
authorities during the pandemic into adaptive analytical in-
struments (low-cost, fast-to-buildmachine learning algorithms)
that can be used for the retrospective assessment of existing
health advice in other languages. ,is was achieved by trans-
lating the English materials that we collected to the Chinese
language using the forward and backward translation method
recommended by WHO and comprehensively annotated the
translations using Chinese natural language processing tools to
allow automatic feature engineering and machine learning
classifier development. Table 5 and Figure 4 illustrate how
probabilistic outputs might assist with decision making among
policy makers and health/medical professionals when designing
public health advice for vulnerable people and communities
speaking Chinese or migrants, foreigners living in China or
greater China regions. Next, we adapted the machine learning
classifier to a convenient statistical tool which can be effectively
used in the clinic by health/medical professionals and educators
to assess whether a certain piece of health advice on infectious
diseases is accessible to vulnerable people (both Chinese and
migrants) with limited education and health literacy or Chinese
proficiency while living in Chinese speaking regions.We fitted a
binary Logistic Regression (LR) model with the 70% training
data collected. ,e model contained two independent variables
which were borrowed from the best-performing classifier:

ALFCW (average logarithmic frequency of content words) and
Nh (number of pronouns).,e fittedmodel with the regression
coefficients was shown as follows.

,e following is the binary regression formula:

scoreLR � −2.67 × ALFCW − 0.663 ×Νh + 7.536. (3)

We then used the Sigmoid Function to scale the scoreLR
to the region of [0, 1]:

Sigmoid(x) �
1

1 + e
− x. (4)

,e following formula shows Chinese health advice
accessibility assessment tool (CHAAAT):

score � 100 × Sigmoid(−2.67 × ALFCW − 0.663

× Nh + 7.536).
(5)

We examined the performance of the CHAAATformula
on the remaining 30% test data which contained 34 highly
accessible COVID-19 prevention resources translated from
3 national health authorities in the USA, Australia, and UK
and 54 regular health resources on infectious diseases de-
veloped by the WHO for the public. Average mean output
(transformed score using the Sigmoid Function) was 5.8958
(SD� 18.128, range: 1.51908E-32, 73.5, and 95% CI: −0.194,
12) for highly accessible, vulnerable people-oriented public
health advice and resources and 88.363 (SD� 2.34, range:
12.119, 99.466, and 95% CI: 83.665, 93.062) for regular
WHO public health resources with limited accessibility
among vulnerable people with low education, limited health
literacy, and limited Chinese proficiency such as foreigner
migrants or people with cognitive impairments.

Differences between the two sets of test data measured by
CHAAAT formula were statistically very significant:
p< 0.001, Hedges’ gs � 7.248, 95% CI: 6.094, 8.401, and
CLES� 1. ,ese effect sizes were comparable to those
(p< 0.000, Hedges’ gs � 7.367, 95% CI: 6.197, 8.536, and
CLES� 1) of probabilistic outputs of the best-performing
GNB classifier using the same feature pair: AFLCW and Nh.
Figure 5 shows the number of regular (restricted accessi-
bility) and vulnerable people-oriented (high accessibility)
health pieces of advice that fell into each 10-score bin based
on the transformed scores computed using the CHAAAT
regression formula. Ninety-four percent of vulnerable
people-oriented health advice were assigned a transformed

Table 5: ,resholds, positive/negative likelihood ratio, and 95% CI of the best-performing GNB classifier on the test data.

Probability
thresholds

Sensitivity
(95% CI)

Specificity
(95% CI)

Positive likelihood ratio (LR+) (95%
CI)

Negative likelihood ratio (LR-) (95%
CI)

0.1 0.982 (0.95, 1.0) 0.9118 (0.82,
1.0) 11.12 (3.77, 32.79) 0.02031 (0.003, 0.142)

0.2 0.982 (0.95, 1.0) 0.941 (0.86, 1.0) 16.69 (4.35, 64.04) 0.01968 (0.003, 0.137)
0.5 0.963 (0.91, 1.0) 0.941 (0.86, 1.0) 16.37 (4.26, 62.87) 0.039 (0.010, 0.154)
0.6 0.963 (0.91, 1.0) 1.0 (1.0, 1.0) Infinity 0.037 (0.010, 0.144)
0.7 0.9444 (0.883, 1.0) 1.0 (1.0, 1.0) Infinity 0.0556 (0.019, 0.167)

0.9 0.9074 (0.830,
0.985) 1.0 (1.0, 1.0) Infinity 0.09259 (0.0402, 0.213)

Machine learning classifier: refined GNB classifier (with ALFCW and Nh features)
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score of highly accessible health resource smaller than 50
(specificity� 94.12%) and 96.3% of regular public resources
were assigned an indicative score of public advice of re-
stricted/low accessibility equal to or larger than 50
(sensitivity� 96.3%).

Around 4% regular (requiring higher literacy and Chinese
proficiency) resources were misclassified as highly accessible
information and advice for vulnerable communities and people
living in Chinese speaking regions. Since the 4% errors can still
result in a costly overestimate of the accessibility or usability of
public health advice among vulnerable populations who require
highly accessible (simple, actionable, and implementable) public
health information and advice, like with machine learning
classifiers, we could adjust the thresholds of the CHAAAT
formula to obtain the desired sensitivity and specificity pair
according to the practical needs in the clinic. Table 6 shows that,
like the threshold of the best-performing GNB classifier, setting
the threshold of the transformed score (Formula (5)) to 29.906
will allow the regression calculator to achieve the same sensi-
tivity and specificity as the GNB classifier. According to
practical needs for accessible public health advice under dif-
ferent circumstances, further decreasing the threshold will lead
to increased sensitivity of the assessment tool, which might be

neededwhen the health risks being communicated are complex,
and the vulnerability of the target populations is high.

,e design and assessment of population-oriented
public health advice are high-stakes activities which re-
quire highly precise, reliable research tools to support
informed, evidence-based public health policy planning
and delivery. Our study showed that valuable experiences
gained in the design of accessible public advice as trig-
gered by the coronavirus pandemic can be translated to
useful, much-needed research instruments and tools to
support the design of public health advice for any future
health events or crises. Furthermore, we developed as-
sessment tools adaptable to other languages to facilitate
international benchmarking and support global public
health policy planning around accessible health risk
communication and public engagement. ,e limitation of
our study is that we used Chinese as an illustrating ex-
ample which is a distinct language from English. How-
ever, the underlying techniques and methods that we
discussed and demonstrated can be conveniently modi-
fied for other languages or writing systems, especially
underresourced languages such as African languages and
minority languages, as we developed high performing
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Figure 4: Receiver operating characteristic (ROC) of Gaussian Naı̈ve Bayes classifiers.
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Figure 5: Percentage of vulnerable people-oriented (VPO) or regular health resources (RHR) assigned by CHAAAT to each 10-score bin.
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Bayesian machine learning classifiers based on small
datasets. For illiterate populations, our methods need
further adaptation for the assessment of oral public ad-
vice and information.
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