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Objective. To screen for potential endoplasmic reticulum stress- (ERS-) related biomarkers of periodontitis using machine learning
methods and explore their relationship with immune cells. Methods. Three datasets of periodontitis (GSE10334, GES16134, and
GES23586) were obtained from the Gene Expression Omnibus (GEO), and the samples were randomly assigned to the training set
or the validation set. ERS-related differentially expressed genes (DEGs) between periodontitis and healthy periodontal tissues were
screened and analyzed for GO, KEGG, and DO enrichment. Key DEGs were screened by two machine learning algorithms,
LASSO regression and support vector machine-recursive feature elimination (SVM-RFE); then, the potential biomarkers were
identified through validation. The infiltration of immune cells of periodontitis was calculated using the CIBERSORT algorithm,
and the correlation between immune cells and potential biomarkers was specifically analyzed through the Spearman method.
Results. We obtained 36 ERS-related DEGs of periodontitis from the training set, from which 11 key DEGs were screened by
further machine learning. SERPINA1, ERLEC1, and VWF showed high diagnostic values (AUC > 0:85), so they were
considered as potential biomarkers for periodontitis. According to the results of the immune cell infiltration analysis, these
three potential biomarkers showed marked correlations with plasma cells, neutrophils, resting dendritic cells, resting mast cells,
and follicular helper T cells. Conclusions. Three ERS-related genes, SERPINA1, ERLEC1, and VWF, showed valuable
biomarker potential for periodontitis, which provide a target base for future studies on early diagnosis and treatment of
periodontitis.

1. Introduction

Periodontitis is an inflammatory disease caused by bacteria
[1]. As a global health care problem, it affects approximately
50% of the world’s population, of which 1.1 billion people
suffer from severe periodontitis [2]. Typical clinical symp-
toms of periodontitis include alveolar bone loss, clinical
attachment loss (CAL), and periodontal pocket formation,
which, if not treated promptly, may lead to pain, aesthetic
concerns, progressive tooth loosening, and eventually tooth
loss [3]. Currently, periodontitis diagnosis relies mainly on
clinical parameters such as bleeding on probing (BOP),

probing pocket depth (PPD), CAL, and radiological exami-
nations [4], but these modalities have a certain lag.

Endoplasmic reticulum stress (ERS) is a cellular response
that can activate the unfolded protein response (UPR) path-
way. As a protective response, accumulation of misfolded
and unfolded proteins in cells can induce ERS, which
removes misfolded proteins to restore proteostasis, but it
can also trigger cell death when overloaded with stress [5].
In addition, ERS can trigger an immune response and inflam-
mation through the crosstalk signaling pathways [6, 7]. It has
been found that ERS is closely associated with many condi-
tions, such as cancer, allergic diseases, and cardiovascular
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diseases, and has brought new diagnostic and treatment
strategies [8–10].

The initiation and progression of periodontitis are
closely related to multiple factors, but the exact underlying
mechanisms remain unclear, especially at the molecular
level. However, bacteria and their metabolites and the
immune-inflammatory response of the body have been
shown to play a joint role in that mechanism [11]. A study
has shown that the exposure of human gingival cells to high
glucose could increase collagen synthesis and secretion by
inducing an ERS response, which corroborated the involve-
ment of ERS in periodontal soft tissue damage [12]. A corre-
lation between ERS and bone metabolism was also found, as
UPR was involved in the destruction of alveolar bone in
experimental periodontitis in mice [13]. In addition, studies
have proven that upregulated ERS in periodontitis partici-
pates in the immune response process [14, 15]. The above
evidence suggested that ERS was related to the pathological
process of periodontitis, which provides clues to studying
the pathogenesis of this disease and makes early diagnosis
possible. Therefore, specific biomarkers associated with
ERS are urgently needed to assist in the diagnosis of peri-
odontitis to compensate for the drawbacks of the existing
diagnostic modalities.

The Gene Expression Omnibus (GEO) is a public func-
tional genomics database that contains high-throughput
gene expression data submitted by research institutions
worldwide [16]. Much of the data in GEO is only briefly ana-
lyzed and underutilized, so in-depth data analysis has
become a common approach in bioinformatics research
[17]. Machine learning is an emerging field in medicine,
where computers analyze existing data, identify trends and
patterns, and then predict the output values [18]. As an arti-
ficial intelligence technology, machine learning has broad
applications in the medical field and can show powerful
information mining and data computing capabilities when
combined with bioinformatics frameworks.

In the present study, we obtained three periodontitis-
related microarray datasets from the GEO database and
randomized all samples into two sets. After identifying dif-
ferentially expressed genes (DEGs) associated with ERS in
the training set, machine learning algorithms were used to
further screen out key DEGs, which were later verified in
the validation set to identify potential biomarkers of peri-
odontitis. We also analyzed immune cell infiltration in
periodontitis tissues and explored the correlation between
these potential biomarkers and immune cells.

2. Materials and Methods

2.1. Data Acquisition and Process. Three datasets of peri-
odontitis (GSE10334, GES16134, and GES23586) were
downloaded from the GEO database (https://www.ncbi.nlm
.nih.gov/geo/). All three microarray datasets were based on
the GPL570 platform. Next probe IDs were converted to
gene symbols according to the annotation information of
the platform. For the data in which a similar gene corre-
sponded to multiple probes, gene expression was expressed
as the average of multiple probes [19].

The three datasets were then merged and implemented
with a batch correction to eliminate batch effects by using
the “limma” and “sva” packages in the R software (version
4.1.1) [20]. Before further analysis, a total of 427 diseased
and 136 healthy samples were randomly assigned in a 2 : 1
ratio using the R software, respectively. Two-thirds of the
diseased samples and two-thirds of the healthy samples were
randomly selected into the training set for subsequent
screening of DEGs. The remaining diseased and healthy
samples were assigned to the validation set.

ERS-related genes were acquired from the GeneCards
database (https://www.genecards.org), and genes with rele-
vance scores ≥ 10 were extracted for this study [21].

2.2. Identification of DEGs. ERS-related genes and their
expression values in each sample were extracted from the
expression profile of the training set. Differential expression
analysis was performed using the “limma” package in the R
software, and the selected conditions for DEGs were jlog 2
FoldChangej>0.5 and adjusted p value < 0.05. Moreover, the
“pheatmap” package and the “ggplot2” package were used to
create the “heat plot” and “volcano plot” of the DEGs.

2.3. Functional Enrichment Analysis of DEGs. Functional
enrichment analysis of all DEGs was performed with the
“clusterProfiler” package in the R software [22]. Gene Ontol-
ogy (GO) enriched the functional genes in different biologi-
cal processes, cellular components, and molecular functions.
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Disease Ontology (DO) were enriched by gene pathways
and diseases, respectively, to achieve effective clustering
of DEGs.

2.4. Identification of Key DEGs Using Machine Learning and
Construction of PPI Network. LASSO is a machine learning
algorithm based on linear regression, which can assist
researchers in improving prediction accuracy by screening
gene expression data and is now widely used in bioinformat-
ics [23]. Support vector machine-recursive feature elimina-
tion (SVM-RFE) is another machine learning algorithm
that can iteratively filter out the feature subset with the high-
est accuracy rate for a large amount of data and can thus be
used to identify potential biomarkers for diseases [24]. In
this study, DEGs were further filtered by the LASSO algo-
rithm from the “glmnet” package in the R software for 10-
fold cross-validation. Meanwhile, the SVM-RFE algorithm
from the “e1071” package has also been used; specifically,
the size was set to 2 to 40 with a step size of 3, the rfeControl
was set to functions with “caretFuncs” and method with
“cv”, and the methods were set to “svmRadial.” To further
improve the prediction accuracy and minimize the error
rate, the Venn plot was used to obtain the overlapping genes
of these two algorithms for subsequent analysis, which were
identified as key DEGs.

Protein-protein interaction (PPI) networks were con-
structed using the STRING online platform (https://www
.string-db.org) for the ERS-related key DEGs [25]. The min-
imum required interaction score was set at 0.4 of medium
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confidence, and the strength of data support was indicated
by line thickness.

2.5. Verification of the Key DEGs’ Diagnostic Value. Key
DEGs were verified using samples from the validation set.
Box plots were created using the “ggplot2” and “ggpubr”
packages in the R software to show the expression of key
DEGs in periodontitis and healthy tissues. The receiver
operating characteristic (ROC) curves were plotted using
the “pROC” package, and the area under the curve (AUC)
was used to indicate the diagnostic value of genes [26]. In
the present study, a gene was considered to have high pre-
dictive diagnostic efficiency and could be identified as a
potential biomarker if its AUC was greater than 0.85 in both
the training and validation sets.

2.6. Evaluation of Immune Cell Infiltration. Twenty-two
immune cell subsets were evaluated for infiltration in peri-
odontitis tissue using the CIBERSORT algorithm [27]. The
“ggplot2” and “pheatmap” packages in the R software were
used to visualize the relative content of these immune cells
from all samples. The “corrplot” package was used to create
the correlation heat map of individual immune cell subsets,
and the “vioplot” package was used to create a violin plot,
which showed the differences in immune cell infiltration
between periodontitis and healthy periodontal tissues.
Finally, we calculated the relationship between potential bio-
markers and immune cell infiltration using Spearman corre-
lation analysis and generated the visualization results using
the “ggplot2” and “ggpubr” packages.

3. Results

The overall process of the study is shown in Figure 1.

3.1. Identification of DEGs of Periodontitis. Three microarray
datasets for periodontitis were downloaded from the GEO
database; the detailed characteristics of these datasets are
shown in Table 1. The GSE10334, GES16134, and
GES23585 datasets were merged and implemented with
batch correction, and the principal component analysis
(PCA) plot indicated that batch effects between samples
had been removed after correction (Figure 2(a)). Next, all
diseased and healthy samples were randomly portioned into
the training and validation sets with a 2 : 1 ratio. The training
set comprised 285 diseased and 91 healthy tissue samples,
and the validation set comprised 142 diseased and 45
healthy tissue samples. The exact sample assignments are
shown in Supplementary Materials: Table S1.

We obtained a total of 376 ERS-related genes with rele-
vance scores ≥ 10 from the GeneCards database (Supple-
mentary Materials: Table S2), 354 of which were present in
the training set and used for differential expression
analysis. A total of 36 DEGs were identified to meet the
selection criteria of jlog 2FoldChangej > 0:5 and adjusted p
value < 0.05. The 32 genes significantly upregulated in
diseased tissues were indicated in red in the volcano plot,
and the 4 markedly downregulated genes were indicated in
green (Figure 2(b)). The heat map showed the global
expression variation of the 36 DEGs in the samples

(Figure 2(c)). The DEGs and their log2foldchange, average
expression, p values, and adjusted p values are shown in
Supplementary Materials: Table S3.

3.2. Functional Enrichment Analysis. To explore the biologi-
cal processes and potential functions involved in 36 peri-
odontitis DEGs within and outside the cell, we performed
GO, KEGG, and DO enrichment analyses. The biological
processes were mainly enriched in response to ERS, UPR,
topologically incorrect protein, retrograde protein transport,
ER to cytosol, and ER to cytosol transport. Enriched cellular
components were also closely related to ERS, including ER
lumen, ER quality control compartment, and ER protein-
containing complex. The molecular functions were signifi-
cantly correlated with antioxidant activity, misfolded protein
binding, and protease binding (Figure 3(a)). The KEGG
analysis showed that protein processing in ER, NOD-like
receptor signaling pathway, lipid and atherosclerosis, and IL-
17 signaling pathway were the most enriched (Figure 3(b)).
Moreover, these DEGs were linked to lung disease, atheroscle-
rosis, arteriosclerotic cardiovascular disease, and arteriosclero-
sis, according to the DO analysis (Figure 3(c)).

3.3. Identification of Key DEGs by Machine Learning. In
order to select key DEGs valuable for periodontitis diagno-
sis, we used two machine learning methods, LASSO and
SVM-RFE, to further filter the above obtained DEGs. The
LASSO regression screened 16 genes (Figure 4(a)), and the
SVM-RFE algorithm yielded 28 outputs (Figure 4(b)). The
11 upregulated genes obtained by intersecting the results of
the two methods were identified as key DEGs, including
SERPINA1, ERLEC1, VWF, DERL3, PDIA4, FOS, CXCL8,
EDEM2, APOE, KDELR1, and IL6 (Figure 4(c)).

In addition, we constructed the PPI network between
proteins encoded by the 11 key DEGs in the STRING data-
base to explore their interactions. The PPI network consisted
of 23 edges and 11 nodes (Figure 4(d)), and the node degree
of each protein had an average of 4.18 (Figure 4(e)). More-
over, the PPI enrichment p value was 1.58e-10.

3.4. Validation of Key DEGs and Screening of Potential
Markers. To verify the generalizability of the key DEGs, we
separately analyzed the ERS-related DEGs in GSE10334
and GSE16134. The GSE23586 was not worth analyzing as
a separate dataset for its relatively small sample size. The
results showed 29 and 39 ERS-related DEGs in GSE10334
and GSE16134, respectively. Moreover, we found that 10 of
the 11 key DEGs identified by machine learning mentioned
above were significantly upregulated in both major datasets,
while KDELR1 was only upregulated in GSE16134 (Supple-
mentary Materials: Figure S1).

We then plotted the ROC curves of the above key DEGs
separately in the training and validation sets to further
examine their diagnostic efficacy. Genes with AUC greater
than 0.85 in both datasets were considered potential bio-
markers. SERPINA1 (AUC: 0.867, 95% CI: 0.823-0.906),
ERLEC1 (AUC: 0.885, 95% CI: 0.844-0.919), and VWF
(AUC: 0.908, 95% CI: 0.867-0.945) showed a preferable
diagnostic value in the training set (Figure 5(a)). After
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further confirmation by the validation set, the expression of
these three genes was significantly higher in the diseased
samples than in the healthy ones (Figure 5(c)), and the
ROC curves of SERPINA1 (AUC: 0.867, 95% CI: 0.793-
0.929), ERLEC1 (AUC: 0.878, 95% CI: 0.813-0.935), and
VWF (AUC: 0.893, 95% CI: 0.830-0.945) also displayed a
high diagnostic value (Figure 5(b)). Therefore, SERPINA1,
ERLEC1, and VWF were selected as potential biomarkers
of periodontitis. The ROC curves of the other key DEGs
are shown in Supplementary Materials: Figure S2.

3.5. Immune Cell Infiltration Analysis. As an inflammatory
disease, periodontitis has a host immune response that pro-
motes tissue destruction, which may also involve ERS [14,
28]. To further investigate the role played by immune cells
in periodontitis and the correlation between ERS-related
genes and immune cells, we calculated immune cell infiltra-
tion using the CIBERSORT algorithm and the Spearman
method separately. The relative proportions of immune cells
in 427 diseased and 136 healthy periodontal tissue samples
from GSE10334, GES16134, and GES1613 are shown in
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GSE23586 Training
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ERS-related
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STRING
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Acquisition of expression of

ERS-related genes 
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Upregulated gene

Downregulated gene

Figure 1: The overall process of the study.
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Figure 6(a). According to the correlation analysis among 22
immune cell subsets, resting dendritic cells and resting mast
cells had the strongest positive correlation (r = 0:56), while
plasma cells and resting dendritic cells had the strongest
negative correlation (r = −0:63) (Figure 6(b)). Additionally,
compared with healthy samples, periodontitis samples con-
tained significantly lower resting dendritic cells, resting mast
cells, follicular helper T cells, memory B cells, and M1 mac-
rophages, while plasma cells and neutrophils were signifi-
cantly higher (Figure 6(c)).

Correlation analysis between the potential biomarkers
and immune cells showed that the expression of SERPINA1
was positively correlated with M0 macrophages (r = 0:42,
p = 2:8e − 25) and neutrophils (r = 0:4, p = 2:1e − 23) and
negatively correlated with resting dendritic cells (r = −0:56,
p = 4e − 47) and resting mast cells (r = −0:49, p = 3:3e − 35)
(Figure 7(a)). The expression of ERLEC1 was positively cor-
related with plasma cells (r = 0:78, p = 3:5e − 116) and nega-
tively correlated with resting dendritic cells (r = −0:66,
p = 3:1e − 71), follicular helper T cells (r = −0:58, p = 5:8e −
51), resting mast cells (r = −0:48, p = 9:2e − 34), and CD8+
T cells (r = −0:41, p = 8:2e − 24) (Figure 7(b)). Similarly, the
expression of VWF was positively correlated with plasma
cells (r = 0:65, p = 5:3e − 68) and negatively correlated with
resting dendritic cells (r = −0:66, p = 1:2e − 72), resting mast
cells (r = −0:47, p = 1:5e − 32), and follicular helper T cells
(r = −0:42, p = 5e − 25) (Figure 7(c)).

4. Discussion

Periodontitis is an inflammatory disease caused by the inter-
actions between oral microorganisms and the host, but its
pathogenesis is complex and still not fully investigated
[29]. Currently, the diagnostic criteria for periodontitis are
clinical parameters, which are not timely and accurate
enough. Due to the lack of early diagnostic biomolecules,

periodontal therapy is often conducted when periodontitis
is already severe, which means a poor prognosis. Using bio-
informatics methods to identify biomarkers can contribute
to the early and accurate diagnosis of oral diseases and
reduce the risk of disease progression, thus improving prog-
nosis. However, there are no generally accepted specific bio-
markers of periodontitis at present. ER is the main site of
cellular protein folding, and the disruption of ER homeosta-
sis can trigger ERS when misfolded proteins accumulate
excessively, or calcium levels are altered too much. If the
stress lasts too long or is too severe, it can cause irreversible
damage to the cells and even induce cell death [30]. The
association between ERS and periodontitis is being increas-
ingly revealed, in which the activation of ERS can exacerbate
periodontitis [31, 32]. Therefore, searching for ERS-related
biomarkers and revealing their correlations with periodonti-
tis could provide an important parameter for early diagnosis.

To our knowledge, this was the first study to identify
ERS-related biomarkers of periodontitis based on microar-
ray datasets. Single-cell sequencing and RNA-seq data that
do not rely on predesigned probes are now increasingly used
because of their high sensitivity and ability to detect novel
genes [33, 34]. However, the samples of periodontitis using
these two methods are now too few in the public platform
to be analyzed on a large scale. Based on the clinical indexes
provided in three datasets, CAL, PPD, and BOP, all patients
included in the study met the criteria for periodontitis.
Moreover, all sample data came from the same sequencing
platform, all patients were nonsmokers and had no systemic
diseases, and more than 98% were from the same country,
which avoided interference from these confounding factors.
The enrichment analysis results confirmed the strong corre-
lation between DEGs and ERS-related biological functions,
which further verified the involvement of ERS in periodonti-
tis. The GO enrichment analysis of DEGs revealed that these
genes are mainly associated with ERS-related biological

Table 1: Detailed information of the datasets used for analysis.

GEO accession ID GSE10334 GES16134 GSE23586

Platform
GPL570 GPL570 GPL570

Affymetrix Human Genome U133
Plus 2.0 Array

Affymetrix Human Genome U133
Plus 2.0 Array

Affymetrix Human Genome
U133 Plus 2.0 Array

Participants 90 120 3

Systemically healthy Yes Yes Yes

Smoking No No No

Samples 247 310 6

Case (diseased)

183 241 3

BOP (+), PPD ≥ 4mm,
and CAL ≥ 3mm

BOP (+), PPD ≥ 4mm,
and CAL ≥ 3mm

BOP (+), GI ≥ 1, PPD ≥ 5mm,
and CAL ≥ 5mm

Control (healthy)

64 69 3

BOP (-), PPD ≤ 4mm,
and CAL ≤ 2mm

BOP (-), PPD ≤ 4mm,
and CAL ≤ 2mm

No gingival inflammation,
PPD ≤ 2mm, and no CAL

Country USA USA Japan

Authors Demmer et al. Demmer et al. Kubota et al.

BOP: bleeding on probing; PPD: probing pocket depth; CAL: clinical attachment loss; GI: gingival index.
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processes and cellular components. Consistently, we
obtained similar results in the KEGG pathway analysis,
further probing that these DEGs are involved in protein
processing in the ER. Moreover, our enrichment results
are consistent with existing experimental studies, demon-
strating the involvement of ER in the pathological pathway
of periodontitis and proving the correlation between ERS
and periodontitis [35].

To ensure that the key DEGs have a reliable prediction
ability, we set a stringent selection criterion for the intersec-
tion between the two machine learning methods, LASSO
and SVM-RFE. Because different algorithms produce differ-
ent computing results, it is difficult to choose only one of the

methods to achieve reliable findings. The STRING-based
PPI network revealed significant interactions among key
DEGs. In fact, cellular functions are completed by multiple
proteins, rather than by individual proteins. SERPINA1,
ERLEC1, and VWF, as crosstalk nodes, appear to be closely
associated with other key genes and play an important core
role in the whole biological molecular network. After further
screening by the validation set, SERPINA1, ERLEC1, and
VWF were selected as potential biomarkers of periodontitis.

SERPINA1 is the protein-encoding gene of alpha-1 anti-
trypsin (AAT). AAT is a serine protease inhibitor that
inhibits neutrophil elastase, trypsin, and chymotrypsin by
covalent binding [36]. A recent study found that SERPINA1
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Figure 2: Identification of DEGs of periodontitis. (a) PCA plot of diseased and healthy periodontal tissue samples after the batch effect
between GSE10334, GES16134, and GES1613 was removed. (b) Volcano plot of DEGs in training the set; green represented
downregulated DEGs, black represented genes with no significant difference, and red represented upregulated DEGs. (c) Heat map of 36
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was a critical gene in breast cancer and periodontitis and was
significantly associated with the prognosis of patients [37].
SERPINA1 also has anti-inflammatory effects in LPS-
stimulated monocytes, which can enhance the release of

the anti-inflammatory cytokine IL-10 and inhibit the syn-
thesis and release of TNF-α and IL-1β in a concentration-
dependent manner [38]. Besides, AAT has been found to
have a potential role in mitigating bone loss [39]. In order
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to resist the tissue damage caused by tissue-destructive
enzymes and reactive oxygen species (ROS) in periodontitis,
a series of anti-inflammatory mediators were produced in
response by cells [40]; this could explain the increase of SER-
PINA1 in the diseased samples of our study. In our study,
SERPINA1 was the core gene in PPI and correlated with
seven ERS-related genes including ERLEC1, VWF, EDEM2,
DERL3, APOE, IL6, and CXCL8, suggesting that SERPINA1

may play an essential role in the pathological process of
periodontitis.

ER lectin 1 (ERLEC1), also known as XTP3-B, is an ER-
resident protein that selectively recognizes sugar moieties
and targets improperly folded luminal proteins to the ER-
associated degradation (ERAD) pathway, functioning as an
ER quality control [41]. ERAD can protect cells from the
adverse effects of ERS, but excessive ERAD can be harmful

KDELR1 PDIA4 EDEM2

DERL3

CXCL8

FOSIL6

SERPINA1

APOE

VWF

ERLEC1

(d)

0 1 2 3 4  5  6  7

7

5

5

5

4

4

4

4

4

2

2

SERPINA1

ERLEC1

CXCL8

IL6

DERL3

EDEM2

PDIA4

APOE

FOS

KDELR1

VWF

(e)

Figure 4: Machine learning and construction of PPI network. (a) Further screening of DEGs by LASSO regression algorithm. (b) Further
screening of DEGs by SVM-RFE algorithm. (c) Venn plot of intersection genes between LASSO regression algorithm and SVM-RFE
algorithm. (d) PPI network of 11 key DEGs of periodontitis. (e) Bar plot of 11 key genes’ node degree in the PPI network.
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by disrupting cellular homeostasis and inducing apoptosis
via UPR [42]. Moreover, when ERS induces excessive tissue
apoptosis, destruction of periodontal soft tissues can occur
[35]. A recent study has shown that proper expression levels

of ERLEC1 are critical in osteogenic differentiation, and the
occurrence of abnormal jaw development could be associ-
ated with pathogenic variants of ERLEC1 [43]. ERLEC1,
the second highest scoring gene in the PPI network, was
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Figure 5: Evaluation of the diagnostic efficacy of three potential biomarkers of periodontitis. (a) ROC curves of SERPINA1, ERLEC1, and
VWF in the training set. (b) ROC curves of SERPINA1, ERLEC1, and VWF in the validation set. (c) Box plots of differential expression
levels of SERPINA1, ERLEC1, and VWF in diseased and healthy periodontal samples of the validation set.
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associated with five key DEGs, SERPINA1, EDEM2, DERL3,
PDIA4, and KDELR1, showing that it may be a key linker
molecule in the ERS functional module. However, there
are still relatively few studies on ERLEC1, and no studies
on the role of ERLEC1 in periodontitis have been reported
so far. The correlation between them was presented for the
first time in this paper, and future research is needed to
confirm it.

Von Willebrand factor (VWF) is a multimeric glycopro-
tein synthesized in endothelial cells and megakaryocytes,
which is mainly distributed in the plasma and plays a vital
role in hemostasis by mediating platelet adhesion to suben-
dothelial components after vascular injury [44]. There are
intricate indirect and direct links between VWF and inflam-
mation, and VWF can be massively released by endothelial
cells to the extracellular milieu via cytokinesis as a response
to inflammatory stimuli [45]. A study with 63 participants
confirmed that VWF in peripheral blood was higher in
patients with periodontitis than in controls [46]. It was also
found that ERS in homocysteine-induced endothelial cells
was accompanied by VWF deposition [47], which is consis-
tent with our result. Meanwhile, the PPI network also

revealed interrelationships between VWF and four ERS-
related key genes, including SERPINA1, APOE, IL6, and
CXCL8. However, VWF, as a marker of inflammation,
remains to be investigated further in periodontitis.

Immune cells and immune responses are extensively
involved in the progression of periodontitis; however, their
specific roles and mechanisms are still unclear. An increas-
ing number of articles have investigated the vital function
of 22 immune cell subsets in periodontitis using the CIBER-
SORT algorithm. A study detected that the difference in
immune cells between healthy periodontal tissues and peri-
odontitis mainly included B cells, activated CD4+ memory
T cells, resting dendritic cells, and neutrophils [48]. Another
study revealed that the most upregulated immune cells in
periodontitis tissues were neutrophils, and the most down-
regulated ones were Tregs [49]. In our study, we found that
the infiltration of plasma cells and neutrophils was increased
in periodontitis tissue samples while resting dendritic cells,
resting mast cells, follicular helper T cells, memory B cells,
and M1 macrophages were significantly reduced. However,
the current evidence is still limited, and these results need
to be supported by more studies.
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Figure 6: Calculation of immune cell infiltration in periodontitis by the CIBERSORT algorithm. (a) Bar plot of the relative proportions of
immune cells. (b) Heat map of correlations between 22 immune cell subsets; red indicated a positive correlation between two cell subsets,
white indicated no correlation between two cell subsets, and blue indicated a negative correlation between two cell subsets. (c) Violin plot of
immune cell differences between diseased and healthy periodontal samples.
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According to the correlation analysis between SPRNINA1,
ERLEC1, and VWF and immune cells, these three potential
biomarkers of periodontitis were positively correlated with
plasma cells and neutrophils and negatively correlated with
resting dendritic cells, resting mast cells, follicular helper T
cells, and CD8+ T cells. Interestingly, these three genes did
not always show the same correlation with every immune cell
subset; for example, SERPINA1 and VWF showed positive
correlations with M0 macrophages, but ERLEC1 did not
show a significant one with this type of cells. According to
available studies, immune cell types are changed during the
progression of periodontitis [50]. In the early lesion stage,
neutrophils and lymphocytes are the major infiltrating cells.
Neutrophils have an immunomodulatory function and are
closely associated with the development of periodontitis.
On the one hand, neutrophils act as the predominant anti-
infection cells that play a protective role in clearing patho-
gens, and on the other hand, they can also produce ROS
and proteases hydrolases that cause tissue damage and
destruction [51–53]. At the same stage, lymphocyte subpop-
ulations present in the gingival tissue are also involved in the
immune response as important components of immune
microenvironment [54]. And as the disease progresses,
plasma cells become the main infiltrating cells in both
established and advanced lesions. Plasma cells, the only
antibody-producing cell type in the human body, account
for approximately 50% of the cells in periodontitis lesions,
with multiple functions and dominant roles in the host’s
immune response [55]. In addition, a recent study suggested
that some IgG+ plasma cells could produce the anti-
inflammatory cytokines IL-35 and IL-37 to regulate alveolar

bone loss in periodontitis [56]. Furthermore, dendritic cells,
as antigen-presenting cells that regulate the differentiation of
T cells and induce destructive immunity, are also involved in
the progression of periodontitis [57]. Although our findings
on the correlations between SPRNINA1, ERLEC1, and VWF
and immune infiltration suggested the possible involvement
of these genes in immune cell regulation, the detailed mecha-
nisms remain unclear and require further confirmation in
future studies.

Our study revealed the role of ERS in periodontitis; in par-
ticular, we screened three important novel biomarkers associ-
ated with immune cell infiltration, which may contribute to
the development of early diagnostic techniques for periodon-
titis and mitigate the risk of disease progression. In addition,
by analyzing the immune microenvironment associated with
biomarkers, we can tell the condition of periodontal tissues.
And these findings may provide clues for precision medicine
and prediction of treatment response in periodontitis.

However, some shortcomings need to be considered.
First, our study was limited to the available data analysis,
and cellular experiments, animal experiments, or clinical
samples are needed for subsequent validation. Second, the
datasets from public open-source databases lacked some
clinicopathological features of periodontitis, such as specific
clinical classification and follow-up information, preventing
us from calculating the correlations between potential bio-
markers and the occurrence, progression, and prognosis of
the disease. Third, most of the data we used were from the
same group in the USA, so the applicability of these results
to populations in other regions is unknown. Lastly, further
studies are required to determine the location of SERPINA1,
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Figure 7: Correlation analysis between potential biomarkers of periodontitis and immune cells. (a) Lollipop plot and correlation plots of the
correlations between SERPINA1 and immune cells. (b) Lollipop plot and correlation plots of the correlations between ERLEC1 and immune
cells. (c) Lollipop plot and correlation plots of the correlations between VWF and immune cells. The correlation plots were displayed if j
rj > 0:4 and p < 0:05.
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ERLEC1, and VWF in ERS and investigate the mechanisms
by which these three genes are linked to periodontitis.

5. Conclusions

Through machine learning, we identified three potential bio-
markers of periodontitis, SERPINA1, ERLEC1, and VWF
and found strong correlations between these ERS-related
genes and immune cell infiltration. Our findings elucidated
the role of ERS in periodontitis and provided a valuable basis
for its accurate diagnosis.
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