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Purpose: To estimate T1 for each distinct fiber population within voxels containing 
multiple brain tissue types.
Methods: A diffusion-T1 correlation experiment was carried out in an in vivo human 
brain using tensor-valued diffusion encoding and multiple repetition times. The ac-
quired data were inverted using a Monte Carlo algorithm that retrieves nonpara-
metric distributions � (D, R1 ) of diffusion tensors and longitudinal relaxation rates 
R1 = 1∕T1. Orientation distribution functions (ODFs) of the highly anisotropic 
components of � (D, R1 ) were defined to visualize orientation-specific diffusion-
relaxation properties. Finally, Monte Carlo density-peak clustering (MC-DPC) was 
performed to quantify fiber-specific features and investigate microstructural differ-
ences between white matter fiber bundles.
Results: Parameter maps corresponding to � (D, R1 )’s statistical descriptors were 
obtained, exhibiting the expected R1 contrast between brain tissue types. Our ODFs 
recovered local orientations consistent with the known anatomy and indicated differ-
ences in R1 between major crossing fiber bundles. These differences, confirmed by 
MC-DPC, were in qualitative agreement with previous model-based works but seem 
biased by the limitations of our current experimental setup.
Conclusions: Our Monte Carlo framework enables the nonparametric estimation of 
fiber-specific diffusion-T1 features, thereby showing potential for characterizing de-
velopmental or pathological changes in T1 within a given fiber bundle, and for inves-
tigating interbundle T1 differences.
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1  |   INTRODUCTION

While diffusion MRI1-5 has provided enhanced sensitivity 
to tissue microstructure in vivo by capturing the transla-
tional motion of water molecules, diffusion-relaxation MRI 
(drMRI)6-14 additionally reports on the local chemical com-
position of the aqueous phase. For instance, the longitudi-
nal relaxation time T1 is mainly determined in vivo by cross 
relaxation, magnetization transfer, and spin diffusion with 
macromolecules in general,15-17 by myelin lipids in particu-
lar,18-22 and by the interplay between relaxation and diffu-
sion.23 However, microstructural studies have been hindered 
by the fact that the measured drMRI signal is only sensitive to 
the voxel-averaged diffusion-relaxation profile, with typical 
cubic-millimeter voxels comprising multiple cell types and 
the extracellular space.24-28

Three strategies were explored to alleviate the lack of 
specificity of the drMRI signal. First, multiple models and 
signal representations have been developed to relate either 
the diffusion-T2 

29-32 or diffusion-T1 
7,8,33 MRI signal to the 

voxel content. However, these approaches rely on compart-
mental/functional assumptions and/or on model-selection 
strategies that may disagree with the underlying tissue micro-
structure.34-36 Second, while nonparametric inversion of the 
diffusion-relaxation NMR signal is already common practice 
in the porous media field,37-40 nonparametric inversion tech-
niques of the drMRI signal have also been developed,14,41,42 
with applications ranging from porous media6 to biological 
tissues such as the heart,43 spinal cord,44,45 placenta,11 and 
brain.46 However, these techniques have so far only been 
employed to retrieve 2D or 3D diffusivity–relaxation distri-
butions.14,42 Their lack of specificity in terms of diffusion 
orientation thus render them unable to isolate subparts of the 
distribution belonging to distinct subvoxel anisotropic dif-
fusion environments, for example, white matter (WM) fiber 
populations. Third, “tensor-valued” diffusion-encoding gra-
dient waveforms have enhanced the specificity of the data 
itself by targeting specific features of the intravoxel diffusion 
profile47-54 via an axisymmetric encoding tensor b intro-
duced in Refs. [3,55,56]. Tensor-valued diffusion acquisition 
schemes have since been used to further investigate signal 
representations50,57-59 and models.32,60-64

The advent of tensor-valued diffusion measurements has 
resulted in the development of nonparametric Monte Carlo 
signal inversion algorithms of the 2D diffusion65 and 6D dif-
fusion-T1-T2 

12 NMR signals in porous media, and of the 4D 
diffusion66 and 5D diffusion-T2 

13 MRI signals in the in vivo 
brain. Although noise sensitive,36 these algorithms do not rely 
on any compartmental/functional assumption regarding the 
voxel content, nor on any regularization67-70 narrowing the 
space of suitable solutions to the inverse problem. They are 
also not limited by constraints regarding data compression, or 

restricted to dense acquisition sampling schemes that are dif-
ficult to extend to higher dimensions, unlike previous works 
in Ref. [71] and Refs. [41,45,72-74], respectively. Enhanced 
by methods aiming to visualize and quantify fiber-specific 
properties, Monte Carlo signal inversions have recently pro-
vided critical sensitivity and specificity to fiber-specific T2 
values.75-77 However, this work has yet to be extended to fi-
ber-specific T1-values, which are of particular interest to eval-
uate changes in bundle-specific myelin contents78 relevant to 
the study of neurodevelopment, plasticity, aging, and neuro-
logical disorders.79-81

In this work, we leverage nonparametric distributions 
� (D, R1 ) of diffusion tensors D and longitudinal relaxation 
rates R1 = 1∕T1 obtained via Monte Carlo inversion of a 
5D diffusion-T1 weighted in vivo human brain dataset to re-
solve subvoxel diffusion-R1 components. We first estimate 
parameter maps of � (D, R1 )’s statistical descriptors and ex-
tract orientation-resolved T1 values within the pool of highly 
anisotropic components output by the Monte Carlo inver-
sion algorithm. These T1 values are then color-mapped onto 
nonparametric orientation distribution functions (ODFs)75,76 
and quantified in terms of median value and precision using 
Monte Carlo density-peak clustering (MC-DPC).77 In par-
ticular, we identify significant differences with respect to T1 
relaxation between major WM bundles without relying on 
limiting assumptions, albeit in a single healthy volunteer.

After describing how our in vivo human brain data was 
acquired in Section 2.1, we lay down the theory underlying 
the Monte Carlo inversion algorithm and the statistical de-
scriptors of � (D, R1 ) in Section 2.2, and detail our ODF and 
MC-DPC procedures in Section 2.3. We then present our re-
sults in Section 3 and discuss them in Section 4, and conclude 
in Section 5.

2  |   METHODS

2.1  |  In vivo human brain data

Data collection was approved by the Spectrum Medical 
Imaging local ethics committee. A healthy volunteer was 
scanned on a 3T GE 750w equipped with a 32-channel re-
ceiver head and neck GEM coils (only 12-16 channels used 
for head) using a prototype GE multidimensional diffusion 
(MDD) spin-echo sequence with EPI readout, echo time 
�E = 120 ms, FOV = 240 × 240 × 12 mm3, voxel size = 
3 × 3 × 3 mm3, fat saturation pulses,82 and ASSET accel-
eration factor=2, customized for tensor-valued diffusion en-
coding,57,83 and variable repetition time �R. Tensor-valued 
diffusion encoding was performed with numerically opti-
mized84 Maxwell-compensated85 waveforms whose gradi-
ent power spectra share similar frequency contents.86-88 The 
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same tensor-valued diffusion-weighted sequence, includ-
ing linear, planar, and spherical b-tensors with a maximal 
b-value of 2 ms∕μm2, was repeated for �R = 1, 2 and 5 
seconds. The five dimensions of the resulting 20-minute 363-
point acquisition scheme, shown in Figure 1, encode infor-
mation allowing estimation of the 5D distribution � (D, R1 ).  
The signal-to-noise ratio (SNR) of this dataset, estimated 
across voxels of the corona radiata by computing the mean-
to-standard-deviation ratio of the spherically encoded dif-
fusion signal at b  =  0.1 ms/μm2 and �R = 5  seconds (see 
Supporting Information of Ref. [83]), equals 40. As indicated 
above, only 4 axial slices were acquired in order to limit the 
acquisition time. While an inversion-recovery slice-shuffling 
sequence could drastically reduce acquisition time,9,10 our 
prototype sequence is currently limited to sequential slices 
and lacks eddy current nulling.89

2.2  |  Nonparametric Monte Carlo inversion

2.2.1  |  Signal fitting and bootstrapping

We modified the 5D Monte Carlo inversion algorithm found 
in Ref. [13] and pioneered by Ref. [37] to analyze the dif-
fusion-T1 dataset described in Section 2.1. Let us consider 
axisymmetric diffusion tensors, parameterized by their axial 
diffusivity D‖, radial diffusivity D⊥, and orientation (�,� ).  
An alternative parameterization includes the isotropic dif-
fusivity Diso = (D‖ + 2D⊥ ) ∕3 and normalized anisotropy 
DΔ = (D‖ − D⊥ ) ∕ (D‖ + 2D⊥ ) ∈ [ − 0.5, 1] . 4 9 , 5 4 , 9 0 , 9 1  
Our Monte Carlo inversion technique re-
trieves nonparametric intravoxel 5D distributions 
� (D, R1 ) ≡� (D‖ , D⊥ , 𝜃, 𝜙, R1 ) by fitting diffusion-T1 
weighted signals with a weighted sum of N components 

F I G U R E  1   Visualization of our acquisition scheme. (A, B, and C) Gradient waveforms g(t) yielding linear, planar, and spherical diffusion 
encoding, respectively. Each color relates each gradient component to a given orthogonal axis of the spatial frame of reference. Tensor glyphs 
represent the b-tensor progressively acquiring its final size (trace) b, shape (normalized anisotropy) bΔ ∈ [ − 0.5, 1 ] and orientation (Θ,Φ ) at the 
end of a given waveform.49,54 D, Acquisition parameters as a function of sorted acquisition point index nacq. �R denotes the varying repetition time 
of our acquisition scheme
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(Dn, R1,n ) ≡ (D‖ ,n, D⊥ ,n, 𝜃n, 𝜙n, R1,n ), with 1 ≤ n ≤ N. 
Given that the T1-weighting of the dataset detailed in Section 
2.1 is provided through a spin-echo sequence with constant 
echo time �E and variable repetition time �R, the algorithm 
inverts the following discretized signal equation92: 

where �m is the mth acquired signal, wn is the weight of the n th  
component (normalized so that ∑ N

n=1
wn = �0 = � (b = 0, �R → +∞)),  

b is the diffusion-encoding tensor (b-tensor),47-51,54 and “:” is the 
Frobenius inner product. The Monte Carlo inversion algorithm 
randomly samples components (D‖ ,n, D⊥ ,n, 𝜃n,𝜙n, R1,n ) within 
the following ranges, D‖ , D⊥ ∈ [5 × 10−3, 5] μm2∕ms,  
cos � ∈ [0, 1), � ∈ [0, 2� ) and R1 ∈ [0.1, 2] s−1, and esti-
mates the weights wn quantifying the components’ propensity to 
fit the acquired signals via non-negative least-squares fitting 69-

71,93,94 of Equation (1). This process is repeated iteratively fol-
lowing a quasi-genetic filtering detailed in Refs. [12,13,65,95]. 
Using the same wording as these references, we used Nin = 200 
initial components, Np = 30 proliferation steps, Nm = 30 mu-
tation/extinction steps, and Nout = 50 output components. 
Embracing the inherent ill-conditioning of Laplace inversion 
problems, we performed bootstrapping with replacement96,97 on 
the data and estimated for each voxel an ensemble of Nb = 96 
plausible sets of components, also called “bootstrap solutions,” 
each denoted by { (D‖ ,n, D⊥ ,n, 𝜃n, 𝜙n, R1,n, wn ) }1≤n≤N = 50.

2.2.2  |  Statistical descriptors and binning

The final solution of the Monte Carlo inversion algorithm, 
� (D, R1 ), can be understood as the median of all bootstrap 
solutions. Following previous works,13,36 we quantified the 
main features of this final solution by computing the me-
dian across bootstrap solutions of the per-bootstrap means 
Med( nb ) (E[� ]nb

), variances Med( nb ) (V[� ]nb
), and co-

variances Med( nb ) (C[� ,� ′ ]nb
) of � ,� � = Diso, D2

Δ
, R1, 

with 1 ≤ nb ≤ Nb = 96. The median operator Med( nb ) ( ⋅ ) 
acts across bootstrap solutions, and E[ ⋅ ]nb

, V[ ⋅ ]nb
 and 

C[ ⋅ , ⋅ ]nb
 denote the per-bootstrap average, variance, and 

covariance over bootstrap solution nb, respectively. For 
simplicity, we implicitly omit the median operator when 
addressing a statistical descriptor, thereby writing aver-
ages, variances, and covariances as “E[� ],” “V[� ],” and 
“C[� ,� ′ ],” respectively.

Tissue-specific statistical descriptors can be extracted by 
subdividing the 5D configuration space of � (D, R1 ) into 
multiple bins. For instance, the “thin,” “thick,” and “big” 
bins introduced in Refs. [13,54] aim to isolate the signal 

contributions from WM, gray matter (GM), and cerebrospi-
nal fluid (CSF), respectively. The bin boundaries, illustrated 
in the panels C, D, and E of Figure 2, were defined as follows:

•	 “thin” bin within Diso ∈ [0.1, 2] μm2∕ms, D | | , D⊥ ∈ [4, 1000] 
and R1 ∈ [0.01, 10] s−1.

•	 “thick” bin within Diso ∈ [0.1, 2] μm2∕ms, D‖ ∕D⊥ ∈ [0.01, 4] 
and R1 ∈ [0.01, 10] s−1.

•	 “big” bin within Diso ∈ [2, 10] μm2∕ms, 
D‖ ∕D⊥ ∈ [0.01, 1000] and R1 ∈ [0.01, 10] s−1.

Bin-specific statistical descriptors were estimated fol-
lowing the above process for the retrieved components spe-
cifically falling into each bin. Note that this manual binning 
consists merely in a preliminary attempt to comprehend the 
rich information contained in � (D, R1 ), and is as such a 
limitation that could be mitigated by automatic clustering 
methods or by higher dimensional versions of data-driven 
techniques such as those of Refs. [46,98].

2.3  |  Orientation distribution functions and 
Monte Carlo density-peak clustering

Orientation distribution functions were defined from 
the thin-bin components output by the Monte Carlo in-
version of Section 2.2.1 using the procedure detailed in 
Refs. [75,76,95]. This procedure consists in mapping 
the set of thin-bin components onto the nodes of a dense 
spherical mesh { (�mesh,�mesh ) }, building up the ODF 
radii from the thin-bin component weights w and ori-
entations (�,� ). In addition, it enables to compute per-
bootstrap orientation-specific diffusion-relaxation means 
Ê [� ]nb

(�mesh, �mesh ), with � ≡ Diso, D2
Δ

, R1. Besides 
coloring ODFs according to local orientation, this map-
ping allows to color ODFs according to the local value 
Med( nb )

(
Ê [� ]nb

(�mesh, �mesh )
)
, which we used to visu-

alize orientation-specific diffusion-relaxation quantities. 
For simplicity, the short-hand notation “Ê [� ]” is now re-
tained for Med( nb )

(
Ê [� ]nb

(�mesh, �mesh )
)
.

MC-DPC,77 that is, a combination of the Monte 
Carlo inversion algorithm of Section  2.2.1 and densi-
ty-peak clustering,99 was used to quantify the median 
value and precision of orientation-resolved means of 
� ≡ Diso, D2

Δ
, R1, T1 = 1∕R1 across bootstrap solutions, 

which we employed to detect differences between sub-
voxel fiber populations. Briefly, MC-DPC first delineates 
subvoxel clusters as orientational aggregates of thin-bin 
solutions, which are interpreted as orientational regions of 
interest associated with subvoxel fiber populations. MC-
DPC then computes per-bootstrap cluster-specific (ori-
entation-resolved) means 

◦

E [� ]
nb,nc

, where nc denotes the 

(1)�
m
=

N∑

n= 1

w
n
exp( − b

m
: D

n
)

×
[
1 − 2exp( [�E∕2 − �R,m ]R1,n ) + exp( − �R,mR1,n )

]
,



      |  2819REYMBAUT et al.

cluster index. Finally, one extracts cluster-specific medi-
ans and interquartile ranges of 

◦

E [� ]
nb,nc

 across bootstrap 
solutions. For simplicity, the short-hand notation “

◦

E [� ]”  
is now used to describe the collection of orientation-re-
solved means 

◦

E [� ]
nb,nc

 originating from all bootstrap 
solutions nb and all clusters nc. Also, 

◦

E [T1 ] and 
◦

E [R1 ] were 
computed separately, as both quantities are commonly 
found in the MRI literature and 

◦

E [T1 ] does not generally 
equal 1∕

◦

E [R1 ].
The ODF and MC-DPC procedures are detailed for the 

diffusion-T1 case in Supporting Information. In addition, 
an in silico evaluation of these techniques is provided in 
Supporting Information Figures S1 and S2, demonstrating 
their accuracy in capturing relaxation-based differences 
across distinct subvoxel fiber populations at intermedi-
ate-to-high SNR levels.

3  |   RESULTS

Figure  2 presents the fitted signals and distributions 
� (D, R1 ) estimated by our Monte Carlo inversion algorithm 
in typical voxels associated with WM in the corpus callo-
sum (CC), cortical GM, and CSF in the ventricles. Figure 3 
displays typical axial maps of � (D, R1 )’s global and bin-
specific statistical descriptors. Figure 4 shows orientation-
colored and Ê [R1 ]-colored ODFs in a typical axial slice. 
Figure  5 investigates possible microstructural differences 
between subvoxel fiber populations by leveraging MC-
DPC in regions of interest that target specific fiber cross-
ings, namely the crossing between the CC and the cingulum 
(CING), and the crossing between the corpus callosum, the 
arcuate fasciculus (AF), and the corticospinal tract (CST) in 
the posterior corona radiata.

F I G U R E  2   Monte Carlo fitted signal and retrieved 5D distributions � (D, R1 ) in typical voxels. A, �0 map estimated by the Monte Carlo 
inversion. The colored squares delineate typical WM (red), GM (green), and CSF (blue) voxels. B, Normalized signal S̃ = � ∕ max (� ) measured 
(black points) and fitted (colored points) in the archetypal voxels of panel A as a function of the sorted acquisition point index nacq of Figure 1. 
(C, D, E) Nonparametric distributions � (D, R1 ) estimated for the archetypal voxels of panel A and reported as scatter plots in a 3D space of the 
logarithms of the longitudinal relaxation rate R1, isotropic diffusivity Diso, and axial-radial diffusivity ratio D ‖ ∕D⊥. Diffusion orientations (�,� ) are 
color-coded according to 

[
red, green, blue

]
= [sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃] ×

|||D|| − D⊥
||| ∕ max

(
D||, D⊥

)
. Symbol area is proportional to the statistical 

weight wn ∕�0 of the corresponding component n. The contour lines on the sides of the plots represent projections of the 5D distributions � (D, R1 ) 
onto the respective 2D planes. The “thin,” “thick,” and “big” bins defined in Section 2.2.2 are illustrated as colored boxes in the panels where they 
are most relevant. The colors bounding panels C, D, and E match those of the highlighted voxels in panel A



2820  |      REYMBAUT et al.

4  |   DISCUSSION

As observed in previous works,13,66,95 Figure 2 demonstrates 
that the Monte Carlo inversion algorithm yields distributions 
consistent with the features of measured raw signals in vari-
ous voxels pertaining to WM, cortical GM, and CSF in the 
ventricles. In particular, the diffusion isotropy of GM and 
CSF implies bΔ- and b-tensor orientation-independent meas-
ured signals, and the �R-dependence of the b = 0.1 ms∕μm2 
signals shows that R1 increases when going from CSF to GM, 
and from GM to WM. In addition, the three bins capture 
these distinct environments in accordance with their original 
design.

Figure 3 shows that the Monte Carlo inversion algorithm 
can estimate maps of � (D, R1 )’s statistical descriptors. In 
particular, it retrieves non-R1-related maps that are consis-
tent with those thoroughly discussed in Ref. [13]. Let us thus 
mainly discuss the R1-related maps. The bin-specific E[R1 ] 

maps of Figure 3C present a clear contrast between our tis-
sue-specific bins, due to high-R1 WM, intermediate-R1 GM, 
and low-R1 CSF. In Figure 3D, the global E[R1 ] map resem-
bles an expected low-resolution conventional R1 map, that is, 
bright in WM, slightly darker in GM, and very dark in CSF. 
The V[R1 ] map resembles a noisier version of the V[Diso ] 
map, as both give high values in mixed CSF-WM/GM voxels. 
The noise in V[R1 ] could be reduced by adding more repe-
tition times in the acquisition scheme. The C[Diso, R1 ] map 
is negative at the interface between CSF and either WM or 
cortical GM. Indeed, upon entering CSF from WM/GM, Diso 
increases and R1 decreases rapidly. Finally, the C[D2

Δ
, R1 ] 

map exhibits no specific pattern. We emphasize the fact that 
although Diso and R1 are often correlated in the brain, they 
nevertheless report on different properties, namely micro-
structure and chemical composition. Therefore, it may still 
be useful to map them separately (means and variances) and 
jointly (covariance), especially in pathological cases.

F I G U R E  3   Typical axial maps of the statistical descriptors described in Section 2.2.2. While panel (A) shows the non-diffusion-
weighted and non-R1-weighted signal �0, panel (B) presents a segmentation map of the brain into the thin, thick, and big bins defined in 
Section 2.2.2, colored according to [ red, green, blue ] = [ fthin, fthick, fbig ] ∕max( fthin, fthick, fbig ). Panel (C) features maps of the bin-specific 
means of Diso, D2

Δ
, R1 and orientation. The bin-specific averaged subvoxel orientation E[orientation ] is color-coded for orientation according to 

[ red, green, blue ] = [E [Dxx ] , E [Dyy ] , E [Dzz ] ] ∕max(E[ Dxx ] , E [Dyy ] , E [Dzz ] ), where the average diffusivities E[Dii ] are associated with the 
directions i = x, y, z corresponding to the “left-right,” “anterior-posterior,” and “superior-inferior” directions, respectively. For a given bin, the 
intensity of the bin-specific maps equals the voxel-wise average fraction fbin of components belonging to this bin. Finally, panel (D) contains the 
global means, variances, and covariances of Diso, D2

Δ
, and R1
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Figure  4 features nonparametric ODFs capturing local 
orientations that are consistent with the known anatomy. 
Regarding Ê [R1 ]-colored ODFs (see Section  2.3), they 
change colors when approaching tissue interfaces with CSF. 
This gradual change in Ê [R1 ] may originate from molecular 
exchange and/or magnetization transfer between tissues and 
CSF. Importantly, Figure 4 shows that potential differences in 
T1 relaxation may exist between major fiber bundles, namely 
CC and CING (insets in Figure  4), and CC, AF, and CST 
(greener Ê [R1 ]-colored ODFs in the CST’s pyramidal tracts).

These potential microstructural differences are quanti-
fied in Figure  5. Focusing on relaxation-based differences, 
Figure 5A shows that CC and CING exhibit significant dif-
ferences in 

◦

E [R1 ] that are qualitatively consistent with those 
found in Refs. [8,33], that is, R1 tends to be lower in CING 
compared to CC. As for Figure 5B, it shows that CST features 
significant differences in 

◦

E [R1 ] and 
◦

E [T1 ] with CC and AF, 
with no statistically significant differences between CC and 
AF. These differences are qualitatively consistent with those 
identified for CST in Ref. [8], that is, T1 tends to be higher in 
CST compared to CC and AF. These differences justify the 
need for a 5D inversion of the drMRI signal. Indeed, while a 
3D inversion of the powder-averaged drMRI signal is possi-
ble, it would only be useful if R1 were independent of orien-
tation, which is often not the case.8,33

Quantitatively, the T1 values estimated by 
◦

E [T1 ] in 
Figure 5 (around 1.5-2 seconds) are overestimated compared 
to those of Ref.  [8] (around 0.9-1 second) and Ref.  [33] 
(around 0.7 second). This discrepancy can be explained 
by the following factors. First, the acquisition scheme de-
scribed in Section  2. 1 does not maximize the amount of 
diffusion-relaxation correlations built into the inversion ker-
nel of Equation  (1), because the same diffusion-weighting 
block was repeated for each acquired repetition time. Similar 
problems have been suggested to lead to a loss of accuracy 
for the Monte Carlo inversion.36 Besides, the presence of a 
similar T1 overestimation at SNR = 40 in the in silico eval-
uation of MC-DPC presented in Supporting Information 
Figure S2 indicates that our acquisition sampling scheme is 
a limiting factor of this present work. Second, the use of sat-
uration recovery with a spoiled spin echo for T1 encoding is 
very sensitive to flip-angle inaccuracies caused by both B+

1
 

inhomogeneity across the subject and slice-profile imperfec-
tions. Saturation-recovery based T1 mapping is also sensitive 
to magnetization-transfer effects, especially in the pres-
ent setup comprising an additional refocusing pulse and a 
fat-saturation pulse.100-102 These technical limitations should 
be mitigated upon developing a sequence that includes inver-
sion preparation for enhanced T1 sensitivity and slice shuf-
fling for optimized time efficiency.9,10

F I G U R E  4   Axial gray-scale maps of the fraction of non thin-bin components 1 − fthin with superimposed ODFs colored by (A) local 
orientation (with x, y and z corresponding to the “left-right,” “anterior-posterior,” and “superior-inferior” directions, respectively) and by (B) Ê [R1 ] 
(see Section 2.3). The middle insets zoom on a voxel containing a fiber crossing between the corpus callosum (CC) and the cingulum (CING), and 
presents the estimated (C) orientation-colored and (D) Ê [R1 ]-colored ODFs for this voxel. While differences in Ê [R1 ] seem to exist between CC 
and CING, such differences may also exist in the regions where the CST’s pyramidal tracts are located (blue circles), as indicated by the greener 
Ê [R1 ]-colored ODFs therein
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F I G U R E  5   Boxplots of the medians of the orientation-resolved means 
◦

E [� ] obtained from MC-DPC (see Section 2.3) within hand-drawn 
regions of interest (ROIs), represented as white-lined boxes over axial slices of the orientation-colored average fraction of thin-bin components 
fthin. For a given boxplot, the horizontal line and whiskers indicate the median and the range between the first and third quartiles of the medians 
of the orientation-resolved means 

◦

E [� ], respectively. While panel A’s ROIs focus on crossing areas between the corpus callosum (CC) and the 
cingulum (CING), those of panel B focus on crossing areas between the corpus callosum (CC), the arcuate fasciculus (AF) and the corticospinal 
tract (CST) in the posterior corona radiata. Each MC-DPC cluster (and associated orientation-resolved means) is robustly assigned to one of these 
bundles depending on whether its median orientation is closer to the x “left-right” direction (CC), to the y “anterior-posterior” direction (CING 
or AF), or to the z “superior-inferior” direction (CST). The asterisks report the results of nonparametric Mann-Whitney U-tests assessing whether 
or not two orientation-resolved means 

◦

E [� ] assigned to distinct bundles are sampled from identically shaped non-median-shifted continuous 
distributions (null hypothesis ℋ0). The p-values resulting from these tests inform on the acceptance or rejection of ℋ0 at a certain significance level: 
0.05 ≤ p < 0.1 (*), 0.01 ≤ p < 0.05 (**) and p < 0.01 (***)
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5  |   CONCLUSIONS

Diffusion-T1 weighted datasets incorporating multiple b-
tensor shapes can be inverted without relying on limiting as-
sumptions to obtain nonparametric distributions � (D, R1 ) 
using the Monte Carlo inversion algorithm. The main fea-
tures of the retrieved distributions can be visualized as maps 
of global and bin-specific statistical descriptors related to 
means, variances, and covariances of diffusion-relaxation 
properties. In particular, the bin-specific E[R1 ] maps ex-
hibit the expected R1 contrast between WM, GM, and CSF. 
Further insight into WM microstructure is provided by the 
“thin bin,” which isolates highly anisotropic components 
that should report on WM tissues. From these thin-bin 
components, visualization of fiber-specific information is 
improved upon defining ODFs that can be color-mapped 
with respect to local orientation or diffusion-relaxation 
features.75 While Ê [R1 ]-colored ODFs hint at possible dif-
ferences between fiber bundles, MC-DPC enables their 
quantification in terms of fiber-specific diffusion-relaxation 
measures.77

Importantly, significant relaxation-based differences are 
detected between the CC and the CING, and between the CST 
and the CC and AF. These differences, qualitatively consis-
tent with those found in previous works,8,33 offer a first proof 
of concept for the potential of our Monte Carlo framework in 
terms of nonparametric fiber-specific T1 relaxometry. Such 
approach would be practical in identifying differences in T1 
between distinct subvoxel fiber populations, characterizing 
developmental or pathological changes in T1 within a given 
subvoxel fiber population, and measuring the angular depen-
dence of longitudinal relaxation times in WM with respect to 
the main MRI magnetic field B0.

103,104 Moreover, fiber-spe-
cific T1 values could be relevant for microstructure-informed 
tractography.105-107

Nevertheless, we emphasize that this work can be im-
proved in multiple ways. First, our acquisition setup could 
be optimized in terms of speed9,10 and sensitivity.89,108-110 
Second, our manual binning could be made data-driven 
upon using automatic clustering techniques similar to that of 
Ref. [77], or upon extending recent works to higher dimen-
sions.46,98 Third, better matching between the output of our 
Monte Carlo framework and plausible WM tracts would be 
obtained by integrating tractography111-118 into our analysis 
pipeline. Finally, our framework remains to be applied to 
more subjects to assess its consistency across samples and 
studies.
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 Subvoxel orientations retrieved for the in sil-
ico data described in Section S3 using the Monte Carlo in-
version for various numbers Nb of bootstrap solutions and 
various SNR levels. While the ODFs were obtained via the 
process detailed in Section S1, the orientational clusters, here 
represented on the unit sphere, were extracted via MC-DPC 
according to Section S2. ◦Δ� denotes the angular deviation, 
computed for a given orientational cluster as the shortest 
angle between either the cluster geometric median orienta-
tion (circles, see Equation S7) or the corresponding ODF 
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peak (squares, see Section S1), and the closest ground-truth 
anisotropic component orientation. The color mapped onto 
the ODF codes for local orientation according to [red, green, 
blue] ≡ [|x|, |y|, |z|]/max([|x|, |y|, |z|]). As for the clusters, while 
opacity codes for the weight of the intra-cluster averaged 
components (see Equation S6), color codes for the geomet-
ric median orientation of each cluster (see Equation S7). The 
conditions of the in vivo study presented in the main body of 
the paper are closest to the case (Nb = 100, SNR = 40)

FIGURE S2 Orientation-resolved means ◦
E[χ] (see 

Equation S5) and weights ◦w (see Equation S6) associated 
with the MC-DPC clusters of Figure  S1. While ground 
truth is shown as horizontal lines, the circles and whis-
kers represent the medians and interquartile ranges of the 
orientation-resolved means across bootstrap solutions, re-
spectively. Squares correspond to the estimated ODF-peak 
metrics. Colors match those of the orientational clusters/

ODF peaks presented in Figure  S1. In the rightmost pan-
els, cluster weights ◦w were normalized so that the sum of 
all median weights across clusters equals one. Their ODF-
peak equivalents were simply obtained by taking the mesh- 
projected component weights (ie, ODF radii) along the peaks 
of a given ODF (see Section S1). These ODF-peak weights 
were then normalized to sum up to one, for easier compari-
son with normalized cluster weights. The conditions of the in 
vivo study presented in the main body of the paper are closest 
to the case (Nb = 100, SNR = 40)
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