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Abstract: Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide) is a unique alkaloid isolated from hot
chili peppers of the capsicum family. Capsaicin is an agonist of transient receptor potential vanilloid
subtype 1 (TRPV1), which is expressed in nociceptive sensory neurons and a range of secretory
epithelia, including salivary glands. Capsaicin has analgesic and anti-inflammatory properties in
sensory neurons. Recently, increasing evidence has indicated that capsaicin also affects saliva secretion
and inflammation in salivary glands. Applying capsaicin increases salivary secretion in human and
animal models. Capsaicin appears to increase salivation mainly by modulating the paracellular
pathway in salivary glands. Capsaicin activates TRPV1, which modulates the permeability of tight
junctions (TJ) by regulating the expression and function of putative intercellular adhesion molecules
in an ERK (extracelluar signal-regulated kinase) -dependent manner. Capsaicin also improved
dysfunction in transplanted salivary glands. Aside from the secretory effects of capsaicin, it has
anti-inflammatory effects in salivary glands. The anti-inflammatory effect of capsaicin is, however,
not mediated by TRPV1, but by inhibition of the NF-κB pathway. In conclusion, capsaicin might be a
potential drug for alleviating dry mouth symptoms and inflammation of salivary glands.
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1. Introduction

Salivary glands are exocrine glands, and saliva plays a critical role in maintaining oral health.
Xerostomia—or dry mouth—is common in the elderly, but the etiology of xerostomia has remained
elusive. Aging, radiation therapy for head and neck cancer, and drugs such as antidepressants
may induce xerostomia. Decreased salivary flow results in deteriorating oral health, including
rampant caries, burning mouth syndrome, and candidiasis. Xerostomia also accompanies autoimmune
diseases—for example, primary Sjögren’s Syndrome (pSS) [1–4], which also affects another exocrine
organ, the lacrimal glands [5,6]—and significant changes of cytokines and nitric oxide [7].

Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide) is a colorless alkaloid (capsaicinoid) found
in various capsicum chilies that gives “heat” to peppers widely consumed for hot flavor or
spice. Capsaicin induces inflammation of the oral cavity that can lead to stomatitis and orofacial
pain. Capsaicin has also been shown to impair sensory nerve endings. However, continually
applying capsaicin deteriorates the cutaneous autonomic nerve fibers, decreasing pain sensation [8].
The pharmacological actions of capsaicin have been broadly explored in sensory neurons, and now
capsaicin is widely used as a drug to alleviate chronic pain [9,10]. Topically applying capsaicin to
the skin has an analgesic effect; capsaicin creams and lotions are broadly prescribed to treat arthritis,
neuralgia, pruritus and pain due to their antioxidant and anti-inflammatory properties. Recently,
capsaicin has also been shown to enhance salivary secretion and have anti-inflammatory effects in
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salivary glands or via the trigeminal-parasympathetic pathway [11–14], but its mechanism of action
has not been rigorously studied.

Transient receptor potential (TRP) channels are nonselective cation channels that participate in
various cellular functions, including sensory transduction, mechanosensation, and thermosensation,
and capsaicin is a well-known agonist for transient receptor potential vanilloid subtype 1 (TRPV1).
TRPV1 is a member of the TRP family that can also be activated by acidic conditions and heat [15].
TRPV1 consists of 838 amino acids and it was identified and cloned in human and rodent [16].
Although TRPV1 is mainly expressed in specialized sensory neurons, recent reports showed that
TRPV1 is also expressed in various non-neuronal cells, including bronchial and bladder epithelial cells,
dental pulp fibroblasts, and salivary glands [17–22]. Applying capsaicin promoted saliva secretion in
rabbit, rat, and human submandibular glands (SMG) [17,18,22].

In this paper, we provide a comprehensive review of the properties and mechanism of action of
capsaicin, along with a review of its potential as a drug for salivary gland dysfunction and inflammation.

2. Modulation of Salivary Secretion by Capsaicin

Primary saliva is produced by end piece cells in salivary gland acinar cells, and is finally secreted
into the mouth through ducts. Secretion of saliva is induced by stimulating muscarinic cholinergic
receptors or α-adrenoceptors in the basal membrane of the acinar cells [23]. Salivary secretion is
also controlled by diverse peptides through linked receptors (such as TRPV1) in sensory neurons or
directly in the salivary glands under diverse physiological conditions. TRPV1 is mainly expressed
in trigeminal ganglion neurons and small-diameter dorsal root ganglia, where it plays a critical role
in recognizing noxious painful stimuli. Recently, TRPV1 expression was reported in the secretory
epithelia; for example, ductal and acinar cells in human and rabbit submandibular glands. However,
the role of TRPV1 in secretory epithelia has remained elusive.

Increasing evidence indicates that capsaicin—a TRPV1 agonist—enhances salivary secretion.
Capsaicin increased salivary secretion in humans and in a rabbit model [18,24–26]. Capsaicin appears
to increase salivary secretion directly by affecting paracellular permeability of the tight junction (TJ).
Increased permeability of the TJ induced by capsaicin has also been reported in human intestinal
cells [27]. Activating TRPV1 modulates the expression and function of intercellular adhesion molecules
in TJ. Reduced TJ expression and its destruction in transplanted submandibular glands are improved
by applying capsaicin [17,28]. While capsaicin can indirectly increase salivary secretion, topically
applying capsaicin to the skin around the mouth increased salivary secretion from the submandibular
and sublingual glands in humans [25]. Capsaicin considerably increased resting salivary secretion in
healthy volunteers compared to subjects with dry mouth in a hyposalivation group [26]. Contrary to
the effects of capsaicin on salivary glands, TRPV1 knockout mice did not have a significant difference
in salivary flow induced by capsaicin when compared to wild-type mice [11]. These results suggest
that, although capsaicin increases salivary flow in humans and some animal models, its effects depend
on the species.

3. Mechanism of Capsaicin Action in Salivary Secretion

Muscarinic acetylcholine receptors (mAChRs) are a well-established upstream mediator of salivary
secretion [29]. Various studies have reported the distribution of mAChRs in salivary glands. M1 and
M3 receptors are expressed in the sublingual and submandibular glands, and M3 receptor expression
was predominant in the parotid gland [30]. Moreover, knockout mouse studies have verified that
mAChRs mediate cholinergic stimulation of salivary flow [31,32]. Activating mAChRs mediates
signaling downstream of G-protein coupled receptors, including the phospholipase g (PLCg) pathway.
The inositol-3-phosphates (IP3) generated by PLCg induce [Ca2+]i to mobilize from ER storage through
IP3 receptors on the ER membrane. The increased [Ca2+]i level initiates saliva secretion by activating
calcium-activated chloride channels (CACC) [23,33]. CACC activation is the rate-limiting step for fluid
secretion in various exocrine tissues [34]. CACCs are locally expressed on the apical membrane of
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acinar cells, and CACC activation evokes the efflux of chloride ions toward the ductal space, generating
an electrochemical gradient across the apical membrane of acinar cells [35]. The spatial difference in
ionic concentration triggers osmotic pressure that promotes water transport to the intercalated duct.
In salivary glands, TMEM-16A (a CACC) was found to be an essential component in saliva secretion
induced by a muscarinic agonist [34] (Figure 1a).
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mechanism underlying AQP5 trafficking is still unclear. Broken lines are used for tentative 
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MLCK: myosin light chain kinase; ROCK: RhoA-Rho-associated protein kinase. 
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Figure 1. Capsaicin mediates saliva secretion via transient receptor potential vanilloid subtype 1
(TRPV1). (a) Calcium-activated chloride channel (CACC)-induced saliva secretion. Activation of
Muscarinic acetylcholine receptors (mAChRs) via acetylcholine (Ach) mediates G-protein coupled
signaling downstream, including the phospholipase Cg (PLCg) pathway. The generated inositol
1,4,5-triphosphate (IP3) by PLCg induces Ca2+ mobilization from ER storage. Capsaicin increased
[Ca2+]i level by increasing the cation conductance of TRPV1. The increased [Ca2+]i promotes the
saliva secretory process by activating CACC, leading the efflux of chloride ions toward ductal space,
and the subsequent generation of an electrochemical gradient beyond the apical border of acinar cells.
(b) The role of TRPV1 in trans- and paraceulluar routes. TRPV1 activation enhances paracellular
permeability by regulating the spatial distribution of F-actin linked to tight junction (TJ). The expression
level of TJ proteins—including zonula occludin (ZO)-1 and Claudin (Cldn)-3—is also increased by
TRPV1 activation. In the transcellular route, capsaicin treatment enhances the aquaporin 5 (AQP5)
trafficking to the plasma membrane and its mRNA expression level. However, the accurate mechanism
underlying AQP5 trafficking is still unclear. Broken lines are used for tentative interactions. For details,
see text. PIP2: Phosphatidylinositol 4,5-bisphosphate; DAG: diacylglycerol; MLCK: myosin light chain
kinase; ROCK: RhoA-Rho-associated protein kinase.

The TRPV1 channel plays an important role in capsaicin-induced saliva secretion, which
is independent of PLCg-IP3 signaling. The TRP superfamily encodes TRP proteins, which act
as multimodal sensing channels for a variety of stimuli—such as pain, acidosis, temperature,
and osmolality from outside and inside the cell. Such chemical or physical stimulation enables TRP
channels to increase the [Ca2+]i level by activating cation conductance [15]. TRPV1 plays a main role
in inflammatory hyperalgesia and thermal nociception [36,37]. TRPV1 is a ligand-gated nonselective
cation channel that is permeable to calcium and sodium ions. Capsaicin, noxious heat, protons
and endogenous lipid compounds regulate TRPV1 activity directly or indirectly. TRPV1 is broadly
distributed in various tissues, such as the bowel, kidney, bladder, brain and salivary glands [22,38].
Capsaicin reportedly increased [Ca2+]i levels in cells isolated from the human submandibular gland
(SMG). This effect was abolished by capsazepine (TRPV1 antagonist) treatment. These results
demonstrate that capsaicin can evoke Ca2+ influx via TRPV1 in human SMGs [18]. Capsazepine
also blocked salivation after capsaicin treatment in isolated rabbit SMGs, indicating that TRPV1
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mediates capsaicin-induced saliva secretion [22]. In addition to the role of TRPV1 in saliva secretion,
the interaction between TRPV and CACC has also been explored. TRPV4 agonist increased the chloride
current mediated by TMEM16A (transmembrane member), resulting in water efflux from choroid
plexus epithelial cells [39]. Moreover, TRPV1-TMEM16A interaction enhanced neuronal depolarization
in mouse dorsal root ganglion neurons [40]. Immunoprecipitation data in both studies revealed direct
physical binding between TRPV and CACC, strengthening the functional relationship between the
two channels. In the salivary gland, whether the TRPV-CACC functional complex is involved in fluid
secretion is unclear. Resolving this question will be important in dissecting the mechanism triggering
saliva secretion. The gustatory–salivary reflex is well known. Chemical sensation, or taste, is a strong
agonist of salivation. Our group found that capsaicin inhibits outward-rectifying K+ channels in taste
receptor cells (TRCs) isolated from circumvallate papillae in rat. Inhibiting the K+ channel may evoke
TRC excitation, activating the solitary nucleus tract (SNT) in the brain. Thus, activating the TRC via
TRPV1 may activate the salivatory nucleus adjacent to the SNT. These results suggest that stimulating
TRPV1 in TRC may induce salivary secretion through the gustatory–salivary reflex [11].

In the late phase of saliva secretion, water including saliva components moves across the
epithelial barrier through the apical membrane and intercellular junction of acinar cells—known
as the transcellular and paracellular routes, respectively [41]. Various studies have reported that
capsaicin dynamically modulates the permeability of both routes via TRPV1. In the paracellular
route, TJ proteins organize a primary barrier to the diffusion of saliva components, and these proteins
are a major modulator of TRPV1-mediated paracellular transport. TRPV1 activation increases the
paracellular permeability by regulating the spatial distribution of the cytoskeleton linked to the
TJ as well as the expression of TJ components, such as zonula occludens (ZO) and claudin [17].
Especially, the intracellular location of occludin is tightly regulated by F-actin reorganization due to the
capsaicin-TRPV1-myosin light chain kinase (MLCK) pathway [42]. ZO-1 and -2 were redistributed after
TRPV1 activation, but the RhoA-Rho-associated protein kinase (ROCK) pathway was also involved [43].
Such delicate regulation of TJ proteins by cytoskeletal organization has a crucial role in regulating the
permeability of paracellular space and determining the flow rate of saliva (Figure 1b).

The transcellular route has also been suggested to explain capsaicin-mediated saliva secretion.
An integral membrane water channel—aquaporin 5 (AQP5)—plays a critical role in fluid transport
through the transcellular pathway [44]. Capsaicin treatment enhanced AQP5 translocation to the
plasma membrane and AQP5 mRNA expression in salivary gland epithelial cell lines and primary
culture cells [18,25] (Figure 1b). Despite these results, the evidence does not support capsaicin
increasing permeability via the transcellular pathway. Secretion through the transcellular pathway
requires ion channel activation to move ions. However, capsaicin has not yet been reported to activate
ion channels (for example, CACC) in salivary glands. TRPV1 stimulation has rarely been reported to
increase Ca2+. Capsaicin hardly increased Ca2+ in mice, although acidity and high temperature did [11].

4. Modulation of Inflammation by Capsaicin

Capsaicin has an anti-inflammatory effect in sensory neurons [45,46]. TRPV1 has a central role
in cell signaling of inflammatory responses and peripheral tissue injury [47]. However, repeatedly
applying capsaicin has an anti-inflammatory effect [48].

The anti-inflammatory effects of capsaicin can also be mediated without TRPV1 activation.
To date, capsaicin has been shown to participate in immunological responses independent of TRPV1
in specific pathological situations, and this response is mainly related to nuclear factor kappa B
(NF-κB) signaling. Capsaicin reportedly inhibits inflammatory responses induced by NF-κB activation.
Capsaicin treatment efficiently blocked cytokine production induced by proinflammatory stimuli or
direct NF-kB activation in immune cells [49–51]. Moreover, capsazepine did not block inhibition of
pro-inflammatory cytokines released by capsaicin, suggesting that a signaling pathway other than
TRPV1 is involved in the capsaicin-mediated anti-inflammatory process [13].
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The anti-inflammatory action of capsaicin in salivary glands appears not to be mediated by TRPV1.
The anti-inflammatory properties of capsaicin have been reported in vitro by using salivary gland
epithelial cells (SGEC) [13]. Capsaicin decreased the expression of pro-inflammatory cytokines such
as TNFα and IL-6, induced by polyinosinic-polycytidylic acid (poly (I:C)) or lipopolysaccharide
(LPS), but capsazepine did not inhibit the anti-inflammatory activity of capsaicin. In addition,
the anti-inflammatory activity of capsaicin was similar in TRPV1 KO mice. Capsaicin inhibited IκB-α
(nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation
and degradation induced by poly (I:C) or LPS, which act through a TRPV1-independent signaling
mechanism. Capsazepine also has hardly any effect on IκB-α phosphorylation. NF-κB also plays a
critical role in the pathogenesis of salivary glands, and increased NF-κB activation has been reported
in salivary gland diseases [52–56]. Therefore, the anti-inflammatory action of capsaicin in SGEC is
mediated by restraining the IκB-α/NF-κB pathway rather than TRPV1-dependent signaling [13].

The anti-inflammatory effect of capsaicin was not inhibited by capsazepine in murine peritoneal
macrophages [50]. Instead, reports revealed that capsaicin inhibits IκB phosphorylation and
subsequent degradation through immunoblot data [13,49–51]. These results suggest the existence of a
non-canonical capsaicin pathway that directly regulates IκB phosphorylation/degradation without
activating TRPV1. Nuclear factor kappa B (NF-κB) is a family of DNA-binding proteins and a protein
complex that controls the transcription of diverse genes related to immune responses. Abnormal
NF-κB activity elicits diverse inflammatory cytokines and chemokines in pathological conditions,
such as inflammatory disorders, autoimmune diseases, and cancer [57]. NF-κB exists in the cytosol
as either homo- or heterodimers-bound inhibitor of κB (IκB). The hallmark of NF-κB activation is
IκBα degradation by pro-inflammatory signals, which releases NF-κB dimers in a free state capable of
nuclear translocation. IκB degradation is initiated by phosphorylation by the IκB kinase (IKK) complex,
leading to polyubiquitination and IκB degradation by the proteasome [58,59].

5. Pharmacokinetics and Therapeutic Potential of Capsaicin

Capsaicin is currently available as patches or cream containing 0.025%–1% capsaicin,
and frequently is used for pain relief. Capsaicin can be administered by various ways, including oral
and topical administration. The oral administration of capsaicin in humans is very rare, but a recent
study provided pharmacokinetic analysis of orally ingested 5 g capsicum in human. The study showed
that capsaicin was detected in plasma after 10 min of oral administration, maximum concentration of
capsaicin was reached at 2.5 ng/mL, which then dropped to zero after 90 min [60].

Human skin is known to be highly permeable to topically administered capsaicin, and recent
reports showed that 12 human subjects with topically administered 3% capsaicin solubilized in
various solvents such as mineral oil, propylene glycol in 20% alcohol, and 70% isopropyl alcohol.
When capsaicin solubilized in 70% isopropyl alcohol was applied topically on human skin, it got
quickly absorbed and rapidly reached maximum concentration of 16.1 µg, and the half-life time of
capsaicin was 24 h [61].

A highly-concentrated capsaicin patch (NGX-4010) containing 179 mg of capsaicin has been
clinically used for the treatment of neuropathic pain patients. A clinical study of the capsaicin patch
reported that topical application of NGX-4010 provided quick and continuous pain relief to human
patients with postherpetic neuralgia (PHN). Sixty minutes after the topical application of NGX-4010,
plasma concentration of capsaicin was reached at approximately 1.38 ng/mL [62]. Another study
of clinical trials reported that a low-concentration capsaicin patch was not capable of reducing pain
in patients with neuropathy. Safety and availability of low concentration capsaicin patches are
more tolerated, but it offered no significant pain relief at all [63]. These reports suggest that the
high concentration capsaicin patch is more capable of relieving pain than the low concentration
capsaicin patch.

Capsaicin1s pharmacological effect on salivary glands was also examined in several studies.
They reported that topical application of 1.4 µg capsaicin on the skin around the mouth was enough to
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induce a significant increase in salivary secretion from human salivary glands. However, a capsaicin
dose over 2.0 µg caused skin irritation [25,26]. Taken together, although there is a risk of skin irritation,
the topical administration of capsaicin provides simple and efficient ways to treat xerostomia and
neuropathy in the clinical field.

Capsaicin has been used as a therapeutic agent, and new evidence supports the use of capsaicin
in a wide variety of clinical circumstances. Capsaicin has potential antioxidant, anti-proliferative,
anti-inflammatory, and anti-cancer activities [12,64]. The anti-inflammatory and antioxidant
properties of capsaicin can be used to mitigate tissue damages after transplantation, as other
anti-inflammatory drugs prevent graft resorption by reducing inflammation [65]. Recently, capsaicin
was reported to attenuate lung ischemia–reperfusion (IR) injury, which is major complication after lung
transplantation [66]. In a rabbit autotransplantation model, capsaicin treatment promoted functional
recovery of transplanted salivary glands, implying its potential effectiveness as a transplantation
medication [28]. Capsaicin has also been used topically to treat neuropathic pain; however, the side
effects—such as skin irritation—remain to be solved. Capsaicin and its analogues have been used
in creams and high concentration patches (such as NCX-4010) to treat chronic pain syndromes such
as postherpetic neuralgia, osteoarthritis, musculoskeletal pain, and rheumatoid arthritis, but these
applications have not been thoroughly investigated [67,68]. Therefore, the analgesic properties of
capsaicin need to be investigated in diverse pain conditions.

Capsaicin elevated cytoplasmic free [Ca2+], ERK phosphorylation, AQP5 trafficking, and salivary
secretion in salivary glands through TRPV1 [13,18]. Thus, TRPV1 activation might be a novel signaling
mechanism regulating salivary gland function and may lead to a new therapeutic tactic to treat salivary
gland dysfunction and recover natural salivary secretion. Although capsaicin might be a potential drug
to treat dry mouth symptoms and inflammation generated by pro-inflammatory cytokines in salivary
glands, whether capsaicin affects chronic inflammatory disorders such as Sjögren’s syndrome remains
uncertain. An understanding of the exact mechanism of action of capsaicin in various cells—including
SGEC—will allow for the development of more efficient and acceptable therapies.

6. Conclusions

Although capsaicin may be an important molecule in medicine, the current clinical applications
of capsaicin are limited to pain management, and this limitation can be attributed to its associated
potential toxicity and lack of specificity. Moreover, the application of capsaicin to other indications
has been restricted because of the unclear mechanism of action of capsaicin in different physiological
systems [8]. Further studies are essential to explore the interaction of capsaicin with TRPV1,
which might uncover other pharmacological properties and other potential advantages of capsaicin.
Future research must clarify our understanding of the signaling pathways related to capsaicin activity.
Many studies are modifying the capsaicin molecule to overcome the adverse properties, mostly its
pungency and chili taste. Non-pungent analogs of capsaicin molecules have been considered and
are encouraging molecules with many clinical applications, but the lack of clinical trials prevents the
extensive pharmacological use of capsaicin.
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