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Recent progress in the field of organoid-based cell culture systems has enabled the use of
patient-derived cells in conditions that resemble those in cancer tissue, which are better
than two-dimensional (2D) cultured cell lines. In particular, organoids allow human cancer
cells to be handled in conditions that resemble those in cancer tissue, resulting in more
efficient establishment of cells compared with 2D cultured cell lines, thus enabling the use
of multiple patient-derived cells with cells from different genetic background, in keeping
with the heterogeneity of the cells. One of the most valuable points of using organoids is
that human cells from either healthy or cancerous tissue can be used. Using genome
editing technology such as clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein, organoid genomes can be modified to, for
example, cancer-prone genomes. The normal, cancer, or genome-modified organoids
can be used to evaluate whether chemicals have genotoxic or non-genotoxic carcinogenic
activity by evaluating the cancer incidence, cancer progression, and cancer metastasis. In
this review, the organoid technology and the accompanying technologies were
summarized and the advantages of organoid-based toxicology and its application to
pancreatic cancer study were discussed.

Keywords: organoid, human cell, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR
associated protein 9)-mediated genome editing, iPS (induced pluripotent stem) cell, pancreatic cancer, toxicology

INTRODUCTION

Carcinogenesis modeling using chemicals has been used to study cancer biology. Recently, studies
using chemical carcinogenesis models have shifted to use genetically engineered mouse models
(GEMMs), and the use of chemical carcinogenesis models has decreased. The exploration of cancer
risk is important for society and to know each individual’s cancer risk, which can lead to early
detection or even prevent cancer. It is now known that there are genetic and non-genetic risks for
cancer. Non-genetic risks (i.e., environmental risks) include environmental radiation and chemicals,
and we encounter these environmental non-genetic risks daily in the atmosphere and in food and
drink. Among the non-genetic risks, exposure to toxic chemicals can be avoided if there is proper
knowledge regarding these risks. In the past, as well as maybe at present, toxic chemicals have been
used without knowledge of their toxicity and the resultant outcomes. The evaluation of such toxicity
is essential to guarantee the safety of what we are exposed to. In addition, sophisticated models, such
as GEMMs, are too simple and have included only a few mutations, however human cancer patients
have several mutations and variations in mutations, most of which are still not well elucidated.
GEMMs also have discrepancies regarding tumor onset, because most GEMMs have genetic
mutations in all, or at least many, of the cells in the tissue, in contrast to human cancer or
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chemically induced carcinogenesis, in which a small fraction of
cells acquires a precancerous mutation and, subsequently, the
accumulation of mutations in these cells grants cancer onset.
Therefore, detailed analysis of chemically induced carcinogenesis
is still needed to elucidate the nature of cancer. Additionally, it is
important to elucidate the characteristics of chemicals to induce
and/or promote carcinogenesis. Some chemicals may not only
induce cancer but can also accelerate progression or metastasis
through additional mutation or epigenetic alteration. Toxicity has
been evaluated using animals such as mice, rats, rabbits, and dogs,
and for drugs, primates have also been used. However, the use of
animals is time-consuming and labor-intensive. High-dose
administration of chemicals to animals may sometimes affect
animal health, which necessitates the humane sacrifice of
animals, thus highlighting the need for an alternative to animal
use, such as cell-based assays, for evaluating chemical
carcinogenesis. Recent progress on organoid-based cell culture
systems has enabled us to use patient-derived cells in conditions
that better resemble cancer tissue compared to 2D cultured cell
lines. In particular, organoids allow the handling of human cancer
cells in conditions that resemble those in cancer tissue, and cells
can be established more efficiently than in 2D cultured cell lines,
which enable the use of multiple patient-derived cells with cells
from different genetic backgrounds, in keeping with the
heterogeneity of the cells. A remarkable benefit of using
organoids is that human cells from either healthy or cancerous
tissue can be used. Furthermore, genome editing technology, such
as clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas), can modify
organoid genomes to, for instance, cancer-prone genomes.

Normal, cancer, or genome-modified organoids can be used for
evaluating whether specific chemicals possess genotoxic or non-
genotoxic carcinogenic activity by assessing the rate of cancer
incidence, progression, and metastasis. This review summarizes
human organoid and supporting technologies (Figure 1). The
benefits of organoid-based toxicology and its application to studies
of pancreatic cancer are also discussed.

Organoids
Organoid culture is similar to organ culture in developmental
biology studies, but can be cultured from single cells isolated from
the epithelial tissues of various species. Organoids can be also
established from cancer tissue or induced pluripotent stem cell
(iPSC)-derived epithelial cells. The main advantage of organoid
technology is that human-derived cells can be more easily
handled compared to classical 2D culture (Sato et al., 2009;
Belair et al., 2018; Lou and Leung, 2018; Augustyniak et al.,
2019; Sakib et al., 2019). In addition, human iPSC technology
provides various human tissue-derived cells, which are almost
impossible to obtain from human bodies; thus, iPSC technology
allows us to explore human biology (Takahashi and Yamanaka,
2006; Takahashi and Yamanaka, 2016; Takahashi et al., 2007;
Takebe et al., 2013; Camp et al., 2017).

Organoids From Human Tissue
(Patient-Derived Organoids)
Organoids can be established from healthy or diseased human
tissue obtained by surgical resection, biopsy, autopsy, or abortion.
Organoids can be used to compare and analyze normal and
diseased states (Huch et al., 2013; Boj et al., 2015; Broutier et al.,
2017). Patient-derived organoids are often compared with
patient-derived xenograft (PDX) models. Both are established
from patient specimens and demonstrate the characteristics of the
tissue of origin, such as genomic and transcriptomic
characteristics, and they can also potentially maintain the
phenotypic responses of the primary tumor. Although they are
similar, both have benefits and drawbacks. PDXs are established
by directly transplanting the cancer tissue into immunodeficient
mice, which enables the evaluation of drugs using cancer with
human stromal cells that are originally present in tumors,
although this stroma is gradually replaced by the host stromal
cells with an increase in the number of xenograft passages (Delitto
et al., 2015; Ben-David et al., 2017; Invrea et al., 2020). In vitro
systems can be used to screen for drugs and to elucidate the
mechanism of cancer survival and drug resistance. Patient-
derived cancer organoids allow for chemical screening and
genetic screening in human cells, which can lead to the
identification of the genes involved in cancer cell survival and
progression. Organoids derived from cancer tissue can also be
transplanted into immunodeficient mice to form xenograft
tumors that resemble the original tumor. Organoid-derived
tumors are superior to PDX models because organoids can be
modified before transplantation, such as by gene perturbation,
gene overexpression, gene modification, or fluorescent protein
labeling (Hidalgo et al., 2014; Aparicio et al., 2015; Bleijs et al.,
2019; Koga and Ochiai, 2019). Organoid culture has evolved to

FIGURE 1 | Schematic illustration of human organoid and supporting
technologies for cancer and toxicological research. Human organoids can be
established from patient- or human-induced pluripotent stem cells that are
either cancerous, precancerous, normal, or genome-edited. These
organoids serve as screening tools for toxic chemicals in combination with
CRISPR/Cas technologies. Cutting-edge techniques, such as genome
sequencing using NGS and RNA sequencing technologies, imaging
technologies, culture devices, and the use of immunodeficient animal models
for in vivo experiments support organoid-based human biology research.
CRISPR/Cas, clustered regularly interspaced short palindromic repeats/
CRISPR-associated protein; gRNA, guide RNA; iPSC, induced pluripotent
stem cell; NGS, next-generation sequencing.
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mimic cancer tissues more precisely, including co-culture with
stromal cells, such as fibroblasts or immune cells (Pape et al.,
2021).

iPSC-Derived Organoids
iPSC technology has enabled us to obtain and study human cells.
Theoretically, researchers can obtain any type of human cell at
any developmental stage. Human iPSC technology is mainly used
for regenerative medicine and drug screening (Aurora and
Spence, 2016; Sekine et al., 2020; Marsee et al., 2021; Yasui
et al., 2021). From a cancer biology perspective, human iPSC
technology is suitable for obtaining normal, healthy cells in order
to study tumor onset (Kim et al., 2013; Sun et al., 2019; Frum and
Spence, 2021). These normal cells, either from human iPSCs or
tissue, can be used to evaluate tumor-inducing chemotoxicity.
Because human iPSCs can be propagated infinitely, iPSC
technology makes it possible to obtain a large number of cells
with certain qualities. This characteristic also makes single-cell
cloning for genome editing easy. In addition, human iPSC-
derived cells can serve as a stromal cell population to mimic
cancer-stromal cell interaction.

Genome Editing With CRISPR/Cas9
CRISPR/Cas technology has provided us with tools to modify
arbitrary nucleotides in the genome (Jinek et al., 2012). Cancer
research has rapidly adopted the CRISPR/Cas technology because
of the frequently reported genetic mutations in this field.
Organoid models are amenable to the CRISPR/Cas technology.
Moreover, low efficiency of genomic modification requires
selection and cloning of modified cells in limited quantity;
therefore, the characteristics of organoid technology pave the
way to adopt and spread CRISPR/Cas technology in cancer
research. The DNA endonuclease Cas has been found to give
adaptive immunity against viruses and plasmids in bacteria and
archaea. There are several CRISPR/Cas systems but the CRISPR/
Cas9 system is the most widely used in mammalian cell genome
editing. Within this system, Cas9 proteins are preloaded with
small CRISPR RNAs (crRNAs) that act as guides for targeting a
complementary target sequence, the protospacer, and the trans-
activating crRNA (tracrRNA), which consists of stem-loop
structure to bind to Cas9. The crRNA and tracrRNA are
simplified as a chimeric single-guide RNA (sgRNA). A PAM
(protospacer-adjacent motif) sequence is required immediately
after the target DNA locus to be recognized by the Cas9-
guideRNA ribonucleoprotein complex. The Cas9-guideRNA
ribonucleoprotein complex induces a site-specific double
strand break (DSB), which activates cellular DNA repair
machinery. The CRISPR/Cas9 system is superior in terms of
simplicity and cost- and time-efficiency over other nuclease
platforms, such as transcription activator-like effector
nucleases and zinc-finger nucleases. CRISPR/Cas9-based
genome editing expresses its power in combination with
organoid technology. The CRISPR/Cas9 system has several
applications in cancer biology. One application of the
CRISPR/Cas9 system is to knock out genes using the cellular
mechanisms of DNA repair and non-homologous end joining
(NHEJ). Knocking out tumor suppressor genes, such as TP53, in

combination with toxic chemical administration might enhance
the efficiency of screening. Arrays of guide RNAs to knockout
genes is also used for screening important genes, and this
approach can also be combined with toxic chemical
administration to identify the oncogenic potential of chemicals
in certain conditions (Agrotis and Ketteler, 2015). In any case,
NHEJ usage of the CRISPR/Cas9 system only functions to
knockout tumor suppressor genes if the researcher tries to
enhance the tumorigenicity of the cells. Modification of the
target gene is the ideal goal of genome editing. DSBs or single-
strand nicks introduced by the Cas9-guideRNA
ribonucleoprotein complex induce another DNA repair
mechanism, known as homology-directed repair (HDR), which
is suitable for genetic engineering because it introduces
complementary DNA with desired modifications, such as
activating mutations found in cancer patients. There are
plenty of reviews on HDR-mediated nucleotide replacement,
and many have detailed the use of genome editing and its
utility for toxicological study in organoid technology (Drost
et al., 2017; Roy et al., 2018; Fujii et al., 2019; Tang et al.,
2019; Hendriks et al., 2020). HDR requires donor DNA with
desired modifications in addition to the Cas9-guideRNA
ribonucleoprotein complex. HDR takes place in order to repair
the DNA damage introduced into the target gene by the Cas9-
guideRNA ribonucleoprotein complex, and the donor DNA is
used as a template to repair the damage. The desired mutation in
the donor DNA is replaced and introduced into the genome of the
target DNA. Although the probability of successful genome
editing is still low, the CRISPR/Cas9 system using this method
is enhanced compared to when it is used without double/single-
strand breaks. The modifications introduce desired mutations,
such as a certain oncogenic mutation, or fix mutations in the
genome. It is even possible to fabricate cancer cells from normal
cells by introducing multiple driver mutations. It is also useful to
validate a mutation found in chemical screening by fixing it to
check whether the mutation is responsible for the observed
phenotype. The CRISPR/Cas9 system has several other useful
applications, one of which is CRISPR activation (CRISPRa), in
which modified Cas enzymes without endonuclease activity are
fused to transcriptional activators such as VP64. The CRISPRa
complex is recruited to the target promoter sequence, defined by
gRNA-activated promoters and the endogenous gene expression
of the target gene. CRISPR interference (CRISPRi) interferes with
gene expression by fusing Cas proteins with or without inhibitors
such as Krüppel-associated box proteins, and is therefore the
opposite technology to CRISPRa. Both technologies are useful to
precisely modify gene expression. Thus, CRISPR/Cas-based
technologies extend our options to explore toxicology and
cancer biology using organoids.

Other Useful Technologies
With the evolution of next-generation sequencing (NGS)
technology and other technologies, exhaustive evaluation
methods can be utilized in cancer fields. Whole-exome and
whole-genome sequencing has changed the field of cancer
research (Goodwin et al., 2016; Mora-Castilla et al., 2016;
Kamps et al., 2017; McCombie et al., 2019) and has made it
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easy to find mutations after toxic chemical administration. In
addition, we can now investigate whole transcriptomes in cancer
tissues and cells at the single-cell level. Single-cell RNA
sequencing technology is especially suitable to patient-derived
organoids because it preserves the heterogeneity of the cells
(Camp and Treutlein, 2017; Camp et al., 2018). Single-cell
level analysis spans not only transcriptome sequencing but
also whole-genome, proteome, and metabolome analysis (Irish
et al., 2006; Restrepo-Pérez et al., 2018; Das et al., 2020; Xing et al.,
2020; Specht et al., 2021). These single-cell level multi-omics
analyses have good compatibility with organoid technology.

The other important technology relevant to human organoid
technology is the development of immunodeficient animals.
Severely immunodeficient animals are required to develop
human cell transplantation models because of the increased
availability of human samples. In addition to mice such as
NOD/scid/IL-2Rγ-null mice (NOG/NSG), immunodeficient
rats, and even immunodeficient apes have been developed for
transplantation, and human organoid technology can utilize this
technology (Ito et al., 2002; Shultz et al., 2007; Mashimo et al.,
2012; Sasaki et al., 2016). Namely, organoid technology evolves
together with these cutting-edge technologies.

Pancreatic Cancer
This review focuses on pancreatic cancer as a model for the use of
organoid technology in cancer and toxicological research because
of the substandard treatment options currently available and the
need to develop better treatment alternatives. Pancreatic cancer
has one of the worst prognoses, and the five-year survival rate is
around 9% (Vincent et al., 2011; Dreyer et al., 2017; Thompson
et al., 2020). It is speculated that pancreatic cancer will become
the second highest cause of cancer mortality by 2030 in the US
(Siegel et al., 2017). Variations in the mutations in pancreatic
cancer are relatively low, and the major driver mutations are
known as “the big four,” namely, KRAS, TP53, CDKN2A,
SMAD4, which are present in most (50–95%) pancreatic
cancer patients. Even though driver mutations are restricted,
many other genes are mutated in pancreatic cancer and are
known to be related to the prognosis. To find druggable
mutations, patient stratification is necessary to improve patient
prognosis (Singhi et al., 2019; Pishvaian et al., 2020); however,
there are currently no good strategies to achieve this goal. In this
situation, toxic chemical oncogenesis screening using GEMMs
might be a good strategy to find mutations which drive or repress
cancer progression. The GEMMs with the KRASmutation should
be precancerous or have low aggressiveness and is suitable to
assess additional mutations introduced by toxic agents that
promote cancer onset and aggressiveness such as metastasis
(Long et al., 2021). Once mutations related to cancer onset,
dissemination, and metastasis are identified, the gene and its
peripheral signal molecules might serve as a druggable targets to
repress cancer. Although this looks quite possible, the additional
mutations found in GEMMs with the KRAS mutation at tumor
onset are known to be unrelated to the mutations found in human
pancreatic cancer. This leads to the importance of using human
patient-derived cells. PDXs and patient-derived cancer organoids
are suitable for screening toxic agent-induced mutations (Boj

et al., 2015; Seino et al., 2018; Huang et al., 2020). PDXs and
cancer organoids without metastatic potential can be used to
screen metastatic mutations and mutations that strongly enhance
tumor aggressiveness induced by toxins; however, to assess the
mutations that contribute to cancer development, malignant
PDXs and cancer organoids are not suitable. Non-cancer
normal cells obtained as an accessary tissue at the time of
cancer resection do not establish tissue mass even if
transplanted into immunodeficient mice. Organoid technology
is the only way to utilize non-cancer normal cells. Normal cells
can bemaintained in 3D culture, and driver mutations such as the
KRAS mutation can be introduced by CRISPR/Cas9-based
genome editing. In addition to the KRAS mutation, one or
more of the “big four” mutations may be introduced in a
context-dependent manner. These cells, with a few
fundamental mutations, are not obtained from cancer tissue
because cancer cells already have many other passenger
mutations. The cells with few mutations might not produce
tumors when transplanted to immunodeficient mice. This is
assumed from the evidence that GEMMs that have mutations
from embryonic pancreas development do not develop cancer at
birth, suggesting that additional genetic and/or epigenetic
mutation(s) are required to develop cancer. Therefore, cells
with few mutations are suitable for screening to find
mutations that are important for pancreatic tumorigenesis by
treating them with toxins that introduce additional mutations to
induce tumorigenesis. Throughput is also important for
screening, and organoids are easier to handle in large volumes
compared tomice. As the first step in screening, organoids treated
with individual toxins, which may be different toxins, in
individual culture can be transplanted together into the same
mouse. If cancer emerges, the treated cells can be transplanted
individually or as a small group as the second screening step.
Whole-exome or whole-genome analysis will help to find the
mutations responsible for the observations. However, while
searching for meaningful mutations looks promising, our
efforts may be wasted. It is true that mutations in pancreatic
cancer are restricted to small set of genes, and there is the
possibility that there are no additional key mutations.
Therefore, after transplantation of a toxin-treated organoid, a
resultant tumor may emerge due to epigenetic modification.
Analysis of the gene expression and epigenetic status will help
to understand pancreatic cancer development as well as the
hidden influences of the toxins on epigenetic.

Limitations and Future Research
So far, the advantages of using organoids and the peripheral
technology in cancer toxicology were discussed. However, there
are limitations and issues that need to be solved in the future. Not
only for toxicology, but in in vitro drug/chemical evaluation,
drugs and chemicals are not metabolized in metabolic organs
such as the intestines and/or liver, and also the effect in the whole
body cannot be evaluated. In this context, researchers are
developing the possibility of multi-organ evaluation using a
system such as organs on a chip with multiple organs, in
which several types of tissue-derived cells or organoids derived
from pluripotent stem cells are assembled in a multi-
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compartment or microfluidic chamber to communicate via fluid
to mimic the circulatory system (Khetani and Bhatia, 2008; Lee
et al., 2013; Skardal et al., 2016; May et al., 2017; Takebe et al.,
2017). This sounds promising, but even if it was accomplished,
discrepancies will remain between this system and the in vivo
situation, and it may not be suitable for high-throughput
screening. Regarding the throughput of organoid technology,
unlike 2D cultured cells, the low throughput of 3D cultured
cells might hinder the screening of chemicals. Advances in the
field of robotics may help to improve the handling of thousands of
chemicals; therefore, we need to await the maturation of robotic
technologies in cell handling (Louey et al., 2021; Ostrop et al.,
2021; Yasui et al., 2021). The other limitation is the deficiency of
an immune system in the in vitro system. Several studies have
involved the introduction of immune cells in in vitro culture
systems, but a full response of human immunity is not
reproducible. If the human organoids are transplanted to
immunodeficient mice, the hematopoietic system would need
to be humanized if an immune system is required. Nevertheless,
as in many other situations, there is no absolute experimental
systems, and several experimental systems should be combined to
obtain reliable results.

SUMMARY

Organoid technology in combination with CRISPR/Cas-based
genome editing technology, NGS, and other cutting-edge
technologies presents great promise in the advance of our
knowledge into toxicology. In particular, organoids allow us to
handle human cancer cells in conditions that more closely
resemble cancer tissue compared to 2D cultured cell lines. In

addition, cells can be established more efficiently in organoids
than in 2D cultured cell lines, enabling the use of multiple patient-
derived cells with different genetic background, which sometimes
influences the reactions to chemicals. Furthermore, organoids can
be handled in large quantities, their DNA sequences can be
modified (disrupted and corrected) using genome editing
technology, and they can be analyzed using other cellular and
molecular dissection technologies. We need to explore how
chemicals influence our health. We believe that we have
enough knowledge to exclude unhealthy, toxic chemicals but it
is still unknown why cancer incidence is increasing and whether
this is due to the increase life expectancy. The increase of cancer
incidence of all cancers might be due to the fact that there are
many potentially harmful substances in our food and/or
environment. It will be important to establish a systematic
evaluation strategy and evaluation criteria for toxic agents
using organoids.
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