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Background: Analysis of histopathological slices of gastric cancer is the gold

standard for diagnosing gastric cancer, while manual identification is time-

consuming and highly relies on the experience of pathologists. Artificial

intelligence methods, particularly deep learning, can assist pathologists in

finding cancerous tissues and realizing automated detection. However, due

to the variety of shapes and sizes of gastric cancer lesions, as well as many

interfering factors, GCHIs have a high level of complexity and difficulty in

accurately finding the lesion region. Traditional deep learning methods cannot

effectively extract discriminative features because of their simple decoding

method so they cannot detect lesions accurately, and there is less research

dedicated to detecting gastric cancer lesions.

Methods:We propose a gastric cancer lesion detection network (GCLDNet). At

first, GCLDNet designs a level feature aggregation structure in decoder, which

can effectively fuse deep and shallow features of GCHIs. Second, an attention

feature fusion module is introduced to accurately locate the lesion area, which

merges attention features of different scales and obtains rich discriminative

information focusing on lesion. Finally, focal Tversky loss (FTL) is employed as a

loss function to depress false-negative predictions and mine difficult samples.

Results: Experimental results on two GCHI datasets of SEED and BOT show

that DSCs of the GCLDNet are 0.8265 and 0.8991, ACCs are 0.8827 and

0.8949, JIs are 0.7092 and 0.8182, and PREs are 0.7820 and 0.8763,

respectively.

Conclusions: Experimental results demonstrate the effectiveness of GCLDNet

in the detection of gastric cancer lesions. Compared with other state-of-the-

art (SOTA) detection methods, the GCLDNet obtains a more satisfactory
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performance. This research can provide good auxiliary support for pathologists

in clinical diagnosis.
KEYWORDS

artificial intelligence, deep learning, image segmentation, convolutional neural
network, gastric cancer lesion detection, level feature aggregation, attention
feature fusion
1 Introduction

Gastric cancer is a type of cancer caused by the immortal

proliferation of abnormal cells in the stomach, and it is the fifth

most common type of cancer all over the world (1, 2), which

seriously affects people’s health. Gastric cancer has a high

morbidity and mortality rate and is the world’s third largest

disease related to cancer deaths (3). The specific survival period

of gastric cancer is 12 months, and 90% of patients will die

within 5 years (4). It is one of the most aggressive and most

deadly cancer types (5); thus, accurate diagnosis of gastric cancer

as early as possible is extremely important.

In actual clinical practice, methods such as endoscopy and

imaging examination can detect abnormalities in the stomach.

However, whether there is gastric cancer can only be diagnosed

through histopathological examination, and histopathological

diagnosis is the gold standard for clinical medicine diagnosis

(6, 7). Therefore, it is significant to perform a biopsy on the

patient’s stomach; biopsy refers to removing epithelial tissue

from the patient to make a section for further examination

during gastroscopy. However, histopathological images (HIs)

are characterized by a large amount of data, and pathologists

have a large amount of manual identification work, and

continuous work for a long time will also affect the reliability

of results. At the same time, pathologists in this field are scarce,

and it is essential to find new ways to address these issues (8).

With the rapid development of computer vision technology

(9), the utilization of artificial intelligence (AI) methods,

especially deep learning, can not only omit the time-

consuming procedure where doctors search for cancerous

tissues, but also improve the accuracy of diagnosis (10), and

this is beneficial to realizing the automated and accurate

detection of gastric cancer.

The good performance of deep learning has brought great

opportunities to medical image analysis. Therefore, various

methods based on deep learning are designed in HI

segmentation. Xiao et al. (11) proposed a polar representation-

based algorithm for non-small lung cancer segmentation from

HIs. In cell nucleus segmentation, Pan et al. (12) developed

an algorithm combining sparse reconstruction and deep

convolution network to overcome the variability and
02
complexity of size, shape, and texture of breast cancer cell

nucleus. In liver cancer cell nucleus segmentation, Shyam et al.

(13) designed a NucleiSegNet, which includes a residual block, a

bottleneck block, and an attention module. Anirudh et al. (14)

presented an encoder–decoder network combined with atrous

spatial pyramid pooling and attention module for kidney cell

nucleus segmentation. In prostate cancer detection, Massimo

et al. (15) adopted a hybrid segmentation strategy based on gland

contour structure and deep learning. Li et al. (16) applied an

EM-based semi-supervised deep learning method for prostate

HI segmentation on limited annotated datasets. In breast cancer

HI segmentation, David et al. (17) proposed a deep multi-

magnification network to extract spatial features within a class

and learn spatial relationships among classes. Blanca et al. (18)

designed an encoder–decoder network combining separable

atrous convolution and conditional random field. In addition,

Meng et al. (19) introduced a triple upsampling segmentation

network with distribution consistency loss for HI lesion

diagnosis and achieved excellent performance on three HI

datasets of cervical cancer, colon cancer, and liver cancer.

Amit et al. (20) introduced a separable convolution pyramid

pooling network and achieved good performance on kidney and

breast HIs. These research works in the above various HIs show

that deep learning can improve the detection efficiency of some

diseases, and this will reduce the workload of pathologists.

In recent years, deep learning algorithms have been widely

explored to perform classification and segmentation in

GCHIs (21). Qu et al. (22) proposed an improved deep

learning algorithm for GCHI classification based on step-by-

step fine-tuning and alleviating data shortage problems by

establishing an intermediate dataset. Harshita et al. (23)

employed the AlexNet deep convolutional networks to

extract feature information of GCHIs for classification, and

final overall accuracy is 69.90%. Osamu et al. (24) combined

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) to classify gastric HIs; the AUC value of

model reached 97.00% and 99.00% for gastric adenocarcinoma

and adenoma, respectively. However, the classification of

GCHIs is of limited significance, because not all regions in

images are cancer tissues. At the same time, pixel-based

segmentation can achieve more accurate detection of gastric
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https://doi.org/10.3389/fonc.2022.901475
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2022.901475
cancer lesions; thus, many studies focus on segmentation

methods. To solve the problems of complexity and small

morphological difference between diseased cells and normal

cells of GCHIs, Chen et al. (6) designed an ADEU-Net, which

uses transfer learning model to enhance feature extraction

ability, and short connection is employed to promote fusion

of deep and shallow features. Aghababaie et al. (25) developed a

V-Net (a fully convolution neural network) for normal and

diseased tissue segmentation from GCHIs, Dice coefficient

reached 96.18%, and Jac index reached 92.77%. Furthermore,

obtaining and utilizing the multi-scale features of GCHIs is key

to getting satisfactory segmentation performance in gastric

cancer detection. Sun et al. (26) introduced deformed

convolution and multi-scale embedding networks for GCHI

segmentation, which used spatial pyramid modules and

encoding–decoding-based embedding networks to achieve

multi-scale segmentation. Accuracy reached 91.60%, and IoU

coefficient reached 82.65%. Li et al. (27) proposed a GastricNet

network, which employed different structures to deep and

shallow layers for better feature extraction. Qin et al. (10)

presented a detection algorithm based on the feature pyramid

structure, which can focus on global context information from

high-level features. Although the aforementioned methods

have achieved impressive results, most of these studies only

use existing algorithms in natural image detection. These

studies do not consider the effective fusion of deep and

shallow features in the decoding stage, resulting in

unsatisfactory detection results.

The problems from previous work can be summarized as

follows: (1) The characteristics of GCHIs themselves: as shown

in Figure 1, GCHIs have the problems of high complexity and

difficulty in localization of gastric cancer lesions. The specific

manifestations include different sizes of gastric cancer lesions,

large differences in the morphology of different lesions, and

many surrounding interference factors, among others. (2)

Research on detection algorithms is not targeted enough:

classic segmentation network is not necessarily suitable for

GCHIs, because the traditional segmentation network is

mainly used in natural images, and few networks are

dedicatedly designed for the characteristics of GCHIs, resulting

in traditional deep learning methods that cannot effectively
Frontiers in Oncology 03
extract deep features and detect gastric cancer lesions. (3)

Many works do not consider the effective fusion of deep and

shallow features and the extraction of discriminative features,

resulting in limited segmentation performance.

To solve the above-mentioned problems, the GCLDNet is

proposed. The main contributions of the GCLDNet in detecting

gastric cancer lesions are as follows.
1. The GCLDNet designs a level feature aggregation (LFA)

structure in the decoding stage, which aggregates rich

feature information in the last layer under different

receptive fields. It can make the most out of the deep

and shallow feature information to effectively extract

deeper features of GCHIs.

2. An attention feature fusion module (AFFM) is proposed

to accurately locate the gastric cancer lesion area. It

merges attention features of different scales, and finally

obtains rich discriminative feature information focusing

on the gastric cancer lesion area.
The rest of this paper is arranged as follows. Section 2 mainly

introduces the two datasets used in this paper and presents

the proposed GCLDNet method in detail. To evaluate the

performance of the GCLDNet method, Section 3 discusses the

experimental results on SEED and BOT datasets. Finally, Section

4 concludes this paper and gives some suggestions for our

future work.
2 Materials and methods

2.1 Materials

2.1.1 Two datasets
a. SEED dataset: This dataset comes from The Second

Jiangsu Big Data Development and Application

Competition (Medical and Health Track, https://www.

jseedata.com). It contains 574 normal images,

1,196 images with gastric cancer lesions, and the

corresponding annotated mask images. The format of
FIGURE 1

Example images demonstrating the complexity of GCHIs lesions.
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both image and mask is.png, and images are all collected

under a 20× magnification field of view. Example images

are shown in Figure 2.

b. BOT dataset: This dataset comes from The 2017 China

Big Data Artificial Intelligence Innovation and

Entrepreneurship Competition (Pathology Slice

Recognition AI Challenge, https://data.mendeley.com/

datasets/thgf23xgy7). It contains 560 HIs of gastric

cancer and the corresponding annotated mask images.

All images are collected under a 20× magnification field

of view. These slices are stained with hematoxylin–eosin

(H&E) by the anatomic pathologist. An example image

is displayed in Figure 3. It is worth noticing that only

part of the lesion area in the GT image of the BOT

dataset is annotated (28). This will have a serious impact

on the training of the model. To address this problem,

we invited relevant experienced pathologists to fully

annotate this dataset.
2.1.2 Data preprocessing
In data preprocessing, data augmentations are employed to

improve the performance of image segmentation, including

sample centering, horizontal flipping, and vertical flipping.

The sample centering operation refers to subtracting the

sample mean so that the mean of the new sample is zero. The

horizontal flipping and vertical flipping operations refer to

flipping image horizontally and vertically, respectively. Two

datasets are randomly divided into a training set and a test set

at a ratio of 8:2. To preserve image details as much as possible

while reducing the number of parameters of the model, the

image sizes of the two datasets are uniformly resized to 512 × 512

during training.

2.1.3 Experimental software and hardware
environment

In the experiment, the hardware environment is based on

the PANYAO 7048GR server, the memory is 256G, and the

graphics card is NVIDIA TITAN RTX (Memory is 24G, Tensor

Cores is 576, CUDA Cores is 4608). To implement our proposed
tiers in Oncology 04
GCLDNet method, the deep learning framework Tensorflow 2.2

is employed, and the programming language is Python 3.8.
2.2 Methods

The overall framework of the GCLDNet is presented in

Figure 4. It includes LFA and AFFM. The GCLDNet aggregates

shallow and deep features through skip connections then

adopts the AFFM to better extract discriminative features in

GCHIs and merges deep features at different scales to improve

segmentation accuracy.

2.2.1 Level feature aggregation
In GCHIs, there are large variances in the shape and size of

the lesion area, as well as many surrounding interfering factors.

The general U-Net network cannot effectively extract deep

features, or cannot extract some discriminative features due to

its simple decoder structure (29). To alleviate these problems, we

employ multiple skip connections to form a feature aggregation

structure. Through aggregating features among various levels,

the GCLDNet can extract in-depth features from GCHIs, to

make the segmentation results of model better.

As can be seen from Figure 4, the GCLDNet redesigns the

decoder structure by using multiple skip connections. In this

paper, we assume that Xi,j is the output feature map of the jth

position of the ith layer (the possible values of i and j are both

{1,2,…,6}), and it should be noted that Xi,1 is the output feature

map at each stage of the encoder. The overall idea of the

decoder structure is to perform feature aggregation from

bottom to top and from left to right. First, for the bottom

feature X6,1, perform five times consecutive transposed

convolutions on it to obtain feature maps X5,2, X4,2, X3,2,

X2,2, and X1,2, respectively (the upsampling rate is 2). Then,

the feature maps X5,1 and X5,2 are aggregated by skip

connections in the direction from left to right to obtain the

depth feature X5,3. Finally, the depth aggregation features X4,4,

X3,5, X2,6, and X1,6 under the remaining receptive fields are also

obtained through similar operations. In this way, the depth

features obtained by aggregating the deep and shallow features
FIGURE 2

Example images and masks of the SEED dataset.
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contain richer semantic information, which is helpful for the

identification of gastric cancer lesions. This is the general idea

of designing the decoder, and the details of implementation

will be introduced next.

In the following, we will explain feature aggregation at each

resolution. Taking X1,i (i = 1,2,…,6) layer features as an instance,

the initial feature is X1,1, and the final aggregated feature map is

X1,6. X1,1 is the first feature map to be aggregated. The second

feature map to be aggregated is X1,2, which is obtained after five

times consecutive upsampling operations to X6,1. The expression

to get feature maps X1,2 can be computed as follows:

X1,2 = F1
U(X

2,2) = F2
U(X

3,2) = F3
U(X

4,2) = F4
U(X

5,2)

= F5
U(X

6,1) (1)
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where Fi
U (•) means that the number of consecutive upsampling

operations (transposed convolution) is i. The third feature map

to be aggregated is X1,3, which is gained by X5,3 after four times

consecutive upsampling operations. It can be denoted as

X1,3 = F1
U(X

2,3) = F2
U(X

3,3) = F3
U(X

4,3) = F4
U(X

5,3) (2)

For the remaining features to be aggregated, X1,4, X1,5, and

X1,6
U are obtained to the same size by the same consecutive

upsampling methods from X4,4, X3,5, and X2,6. This series of

operations can be expressed as the following:

X1,4 = F1
U(X

2,4) = F2
U(X

3,4) = F3
U(X

4,4) (3)

X1,5 = F1
U(X

2,5) = F2
U(X

3,5) (4)
FIGURE 4

The overall framework of the GCLDNet.
FIGURE 3

Gastric cancer histopathological image, original annotated mask image, and supplementary annotated mask image of the BOT dataset.
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X1,6
U = F1

U(X
2,6) (5)

Finally, the aggregated feature X1,6 is presented as

X1,6 = X1,1 ⊕ X1,2 ⊕ X1,3 ⊕ X1,4 ⊕ X1,5 ⊕ X1,6
U (6)

Equation (6) is the expression of the final aggregated features

of first level. The expressions of the remaining layers can be

summarized as follows:

X i,j¼o
i
⊕ X  i,ki ¼ 2,3,4,5; j ¼ 8-i; k ¼ 1,2,…,j-1: (7)

where ∑⊕ represents continuous concatenation operation.

Then, the feature aggregation of each layer is completed.

2.2.2 Attention feature fusion module
The details of the AFFM are shown in Figure 5. To restore

feature map size to the original GCHI size, the GCLDNet first

performs an upsampling operation on features of different scales

(the specific method is bilinear interpolation). In AFFM, the

GCLDNet utilizes the attention mechanism (29, 30) to make

extracted features pay more attention to the gastric cancer lesion

area so that the extracted features are more discriminative. Then,

features of different scales are fused to make good use of feature

information under different receptive fields to improve

segmentation accuracy of GCHIs.
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Taking the X1 layer feature as an example, the feature map

obtained by upsampling operation to X1,6 is X1,U. To enhance the

expression of features, the GCLDNet first applies a 3×3

convolution operation on X1,U. Assuming that the obtained

feature is XC, it can be computed as

XC¼f o
C

j¼1
X  1,U
j *W+b

 !
(8)

where W and b are the weight parameters that can be learned,

f (•) is the activation function, and * indicates convolution

operation. Moreover, each convolution layer on the feature

map are followed by batch normalization (BN) operation,

which can speed up the convergence speed and increase the

stability of model. Assuming that the feature obtained through

the BN layer is XB, it can be calculated via

XB¼g
XC-E XCð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var XCð Þp +b (9)

where E(•) and Var(•) represent the mathematical expectation

and variance functions, respectively, and g and b are learnable

parameters in the BN layer of the network. To fully extract the

attention weight features, the GCLDNet uses global average

pooling and global maximum pooling operations. Assuming

that the obtained attention weights are PAvg and PMax,
FIGURE 5

Details of the AFFM.
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respectively, they can be formulated as

PAvg  ¼  
1

H�Wo
H

i¼1
o
W

j¼1
XBði,jÞ (10)

PMax¼Max XBð Þ (11)

where PAvg∈RC×1×1, PMax∈RC×1×1. To further extract more in-

depth discriminative features, the GCLDNet uses a multi-layer

perception (MLP) with a hidden layer and shared weights. At the

same time, considering the computational cost, the number of

neurons in the middle layer is reduced to C/r, where r is the

reduction rate. The weights of two groups are added according to

the corresponding elements, and finally the sigmoid activation

function s is adopted to obtain the attention weight coefficient,

denoted asWA. The above process can be given as the following:

WA = s (MLP(PAvg) +MLP(PMax)) (12)

It is worth noticing that WA∈RC×1×1 and the value range of

WA is [0,1].

After that, the weightWA and the input feature map X1,U are

correspondingly multiplied to obtain the attention feature map,

denoted as X1,A; it can be expressed as

X1,A = WA ⊗X1,U (13)

Lastly, the features obtained under different receptive fields

are concatenated (31). The final feature is XF, and the feature

fusion strategy can be represented by

XF¼o
i
⊕ X i,Ai ¼ 1,2,…,5 (14)

where XF is the final output feature of AFFM.

2.2.3 Focal Tversky loss function
In deep learning, the loss function measures the predictive

ability of the model. Loss function is minimized to make the

model reach a stable state of convergence. At the same time, the

error between the predicted value and the true value is

the smallest.

In the field of medical image segmentation, commonly used

loss functions include cross entropy loss function (BCE-Loss)

and dice loss function (Dice-Loss). However, BCE-Loss is

susceptible to category imbalance. To evaluate the similarity

between the gastric cancer area predicted by the model and the

real area, the Dice similarity coefficient is often used as

evaluation index; hence, the loss function Dice-Loss can be

designed according to Dice (32). However, Dice-Loss has

equal predictive weights for false positives and false negatives.

This is an obvious limitation such that the impairment of false

negatives is greater than false positives in actual medical

applications. Predicting the tissue in the gastric cancer area as

normal tissue will have a serious impact on the doctor’s

diagnosis and cause patients to miss the best treatment time.
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At the same time, the small gastric cancer area does not

contribute much to loss function; thus, loss function is not

sensitive to it during the training process. To address the above

challenges, the GCLDNet uses focal Tversky loss (FTL) (33) as a

loss function to reduce false-negative predictions and mine

difficult samples in GCHIs. It can be defined as

LFTL¼ 1 −
YGT ∩ YPre
�� ��

YGT ∩ YPrej j  + a  YGT  − YPrej j  + b  YPre  − Y  GTj j

 !1
l

(15)

where a and b are balance parameters. By adjusting a and b,
fewer false-negative predictions can be obtained. l is adopted to

increase the contribution of a small gastric cancer area to the loss

function. Generally speaking, the suitable value range of l is

[1,3]. YGT represents the GT image, and YPre is the

corresponding predicted image. |•| indicates the number of a

set. |YGT∩YPre| represents the overlap between the predicted area

and the ground truth area (true positive, TP). |YGT-YPre|

measures the number of misclassified gastric cancer tissue to

the background (false negative, FN). |YPre-YGT| denotes the

region that misclassified the background to gastric cancer

tissue (false positive, FP). |YGT-YPre|+|YPre-YGT| represents the

number of all misclassified pixels.

In gastric cancer image detection, there are two categories,

namely, gastric cancer tissue and background. Therefore, the

above equation can be transformed into the following

calculation equation:

LFTL¼ 1- oN
i¼1p1ig1i

oN
i¼1p1ig1i + aoN

i¼1p1ig0i + boN
i¼1p0ig1i

 !1
l

(16)

where N indicates the total number of pixels, p0i and p1i
respectively represent the probability that the ith pixel is

predicted to be the background and gastric cancer. g0i means

that the value is 1 when the ith pixel is the background;

otherwise, it is 0. g1i indicates that the value is 1 when the ith

pixel is gastric cancer; otherwise, it is 0.

The gradient of the loss in Equation (16) with respect to p1i
and p0i can be calculated as

∂ LFTL
∂ p1i

= 1
l 1- oN

i¼1
p1ig1i

oN
i¼1

p1ig1i+aoN
i¼1

p1ig0i+boN
i¼1

p0ig1i

� �1
l−1

g1i oN
i¼1

p1ig1i+aoN
i¼1

p1ig0i+boN
i¼1

p0ig1ið Þ- g1i+ag0ið Þ oN
i¼1

p1ig1ið Þ
oN

i¼1
p1ig1i+aoN

i¼1
p1ig0i+boN

i¼1
p0ig1ið Þ2

= 1
l 1- oN

i¼1
p1ig1i

oN
i¼1

p1ig1i+aoN
i¼1

p1ig0i+boN
i¼1

p0ig1i

� �1
l

o
N
i¼1p1ig1i+aoN

i¼1
p1ig0i+boN

i¼1
p0ig1i

aoN
i¼1

p1ig0i+boN
i¼1

p0ig1i

g1i oN
i¼1

p1ig1i+aoN
i¼1

p1ig0i+boN
i¼1

p0ig1ið Þ � g1i+ag0ið Þ oN
i¼1

p1ig1ið Þ

oN
i¼1

p1ig1i+aoN
i¼1

p1ig0i+boN
i¼1

p0ig1ið Þ2

= 1
l 1- oN

i¼1
p1ig1i

oN
i¼1

p1ig1i+aoN
i¼1

p1ig0i+boN
i¼1

p0ig1i

� �1
l

g1i oN
i¼1p1ig1i+aoN

i¼1p1ig0i+boN
i=1p0ig1i

� �
- g1i+ag0ið Þ oN

i¼1p1ig1i
� �

aoN
i¼1p1ig0i+boN

i=1p0ig1i
� � oN

i=1p1ig1i+aoN
i=1p1ig0i+boN

i=1p0ig1i
� �

(17)
frontiersin.org

https://doi.org/10.3389/fonc.2022.901475
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2022.901475
∂ LFTL
∂ p0i

= 1
l 1- oN

i=1
p1ig1i

oN
i=1

p1ig1i+aoN
i=1

p1ig0i+boN
i=1

p0ig1i

� �1
l−1 � bg1i oN

i=1
p1ig1ið Þ

oN
i=1

p1ig1i+aoN
i=1

p1ig0i+boN
i=1

p0ig1ið Þ2

= 1
l 1- oN

i=1
p1ig1i

oN
i=1

p1ig1i+aoN
i=1

p1ig0i+boN
i=1

p0ig1i

� �1
l oN

i=1
p1ig1i+aoN

i=1
p1ig0i+boN

i=1
p0ig1i

ao
N
i=1p1ig0i+boN

i=1
p0ig1i

� bg1i oN
i=1

p1ig1ið Þ
oN

i=1
p1ig1i+aoN

i=1
p1ig0i+boN

i=1
p0ig1ið Þ2

= � 1
l 1- oN

i=1
p1ig1i

oN
i=1

p1ig1i+aoN
i=1

p1ig0i+boN
i=1

p0ig1i

� �1l bg1i oN
i=1

p1ig1ið Þ
aoN

i=1
p1ig0i+boN

i=1
p0ig1ið Þ oN

i=1
p1i g1i+aoN

i=1
p1ig0i+boN

i=1
p0ig1ið Þ

(18)

It is noticed that the FTL is the same as the dice loss when

a =b = 0.5 and l =1.
3 Results and discussion

3.1 Training process

Stochastic Gradient Descent (SGD) (34) is employed as a

model optimizer during training, and prediction results of model

at different depths are used for joint collaborative training. In

addition, the batch size is set to 6, the total number of training

epochs is set to 150 in experiments, and the initial learning rate is

1e-2. During model training, when the dice coefficient does not

increase for five consecutive epochs, the learning rate will be

halved, and the minimum learning rate is 1e-6. All parameters

are optimal values or better values obtained after many

experiments. In addition, to ensure the accuracy of

experimental results, the average of five experimental results is

used as final results.
3.2 Evaluation metrics

Four metrics are employed to quantitatively evaluate the

performance of the GCLDNet, including Dice similarity

coefficient (DSC), Jaccard index (JI), Accuracy (ACC), and

Precision (PRE). The specific formulas are as follows:

DSC ¼ 2 YGT ∩ YPre
�� ��
YGTj j+ YPrej j (19)

JI ¼ YGT ∩ YPre
�� ��
YGT ∪ YPrej j (20)

ACC ¼ TP + TN
TP + FP + TN + FN

(21)

PRE ¼ TP
TP + FP

(22)

where YGT is the region-of-interest (ROI) pixel point set marked

by the expert, YPre is the predicted ROI pixel point set, TN is true

negative, TP is true positive, FN is false negative, and FP is false
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positive. These four metrics evaluate the effect of model

segmentation from four different angles, making the evaluation

results more reasonable and objective.
3.3 Comparative experiment

In order to prove the effectiveness of the GCLDNet

method, we selected some SOTA networks for comparison,

including FCN (35), U-Net (36), UNet++ (37), FPN (38),

PSPNet (39), SegNet (40), LinkNet (41), DeepLabV3 (42),

MultiResUNet (43), CCBANet (44), U2net (45), and UNet3+

(46). To ensure the fairness of comparison process,

comparative methods also adopt the same preprocessing

method as GCLDNet and the parameters are adjusted to the

optimal state.

The comparison results of different algorithms on the

SEED dataset are presented in Table 1 and Figure 6.

Furthermore, these methods are separated into two

categories, namely, Encoder–Decoder-based methods (†) and

Multi-scale-based methods (◊). Experimental results show that

our proposed method achieves the best performance on four

metrics. Based on the basic Encoder–Decoder structure,

SegNet improves the simple decoder structure of FCN so that

it achieves relatively good results. However, SegNet has the

problem of ineffective integration of deep and shallow features.

UNet has made great progress in medical image segmentation,

which indicates the importance of skip connections for

accuracy improvement. Nevertheless, the decoding processes

of UNet++ and UNet3+ fail to make good use of in-depth

features from skip concatenations, which results in a poor

effect. Notably, U2Net performs an impressive segmentation

effect because of its embedded encoding–decoding structure,

but the accuracy is inferior to the GCLDNet and the number of

parameters also exceeds our proposed method. In multi-scale

structure models, the results of PSPNet and DeepLabV3 reveal

that extracting certain multi-scale features contributes to

segmentation performance. The number of parameters of

DeepLabV3 is the highest among these networks, but the

segmentation performance does not achieve the best, which

demonstrates that the DeepLabV3 fails to use the multi-scale

features of lesions adequately. In summary, the proposed

GCLDNet performs better than other SOTA methods and

the number of parameters are moderate.

As far as the DSC is concerned, our method is 1.1% higher

than the second-ranked method, and about 22.6% higher than

the lowest method. Moreover, the other highest evaluation

indicators were also obtained by our proposed method. This

effect shows that the GCLDNet can fuse the level feature

information of deep and shallow gastric cancer lesions, and

the feature fusion module adopted the attention mechanism

to accurately locate the gastric cancer lesion area.

Furthermore, the proposed GCLDNet has the advantage of
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fewer parameters, only 59.6M, while maintaining high

accuracy. This fully proves the effectiveness of our method

to detect gastric cancer lesions.

To comprehensively assess the superiority of the proposed

GCLDNet, the same comparative experiment is also carried out

on the BOT dataset. As displayed in Table 2 and Figure 7, the
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GCLDNet still outperforms other SOTA methods in terms of all

evaluation metrics, which once again exhibits the universality

and robustness of our method in detecting gastric cancer lesions.

In particular, the DSC of our method achieves more than about

1% improvement compared with the second-best method and

7.9% improvement compared with the lowest method. Other
TABLE 1 Segmentation performance of different models on the SEED dataset.

Method type Methods DSC JI ACC PRE Params

FCN 50.12 ± 0.12 34.66 ± 0.32 34.43 ± 0.38 34.50 ± 0.47 40.2M

SegNet 77.06 ± 0.55 62.47 ± 0.73 83.39 ± 0.65 69.13 ± 1.40 81.7M

† U-Net 79.06 ± 0.43 65.64 ± 0.74 85.43 ± 0.23 71.95 ± 0.77 190.3M

UNet++ 73.52 ± 0.60 58.55 ± 0.71 79.31 ± 1.47 63.05 ± 2.28 39.4M

MultiResUNet 77.00 ± 0.56 63.40 ± 0.52 83.33 ± 0.85 70.95 ± 1.79 59.1M

UNet3+ 76.61 ± 1.09 62.61 ± 1.30 82.32 ± 0.74 66.96 ± 1.87 146.9M

LinkNet 78.25 ± 0.50 64.79 ± 0.66 84.65 ± 0.35 70.99 ± 1.08 163.0M

FPN 77.93 ± 0.38 64.32 ± 0.56 84.30 ± 0.64 70.44 ± 1.75 140.9M

U2net 80.38 ± 0.53 67.74 ± 0.67 86.66 ± 0.63 74.87 ± 3.56 216.4M

FTL_U-Net 76.39 ± 0.59 62.32 ± 0.67 82.55 ± 0.21 67.22 ± 0.71 35.4M

CCBANet 81.54 ± 0.82 70.76 ± 0.99 84.85 ± 0.48 74.56 ± 1.44 118.0M

◊ DeepLab-V3 79.42 ± 0.97 66.48 ± 1.39 85.62 ± 1.27 76.14 ± 2.81 331.5M

PSPNet 79.14 ± 0.57 65.91 ± 0.79 85.27 ± 0.52 72.24 ± 0.49 80.3M

Ours GCLDNet 82.65 ± 0.36 70.92 ± 0.53 88.27 ± 0.58 78.20 ± 1.00 59.6M
front
†: Encoder–decoder-based methods. ◊: Multi-scale-based methods.
The bold values indicate the best results achieved by the corresponding method.
FIGURE 6

Visual comparison of the performance of different models on the SEED dataset.
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experimental conclusions are basically similar to the

SEED dataset.

As displayed in Figures 8 and 9, we visualize some

representative qualitative segmentation results of the

GCLDNet and some other SOTA networks on the SEED

dataset and BOT dataset, respectively. These experimental

results show that the GCLDNet is more accurate in detecting
Frontiers in Oncology 10
small lesion areas and more complete in detecting large

lesion areas.

3.4 Ablation study experiment

To validate the individual contribution of each part of the

GCLDNet, ablation experiments are carried out on two
TABLE 2 Segmentation performance of different models on the BOT dataset.

Method type Methods DSC JI ACC PRE

FCN 82.04 ± 0.13 60.69 ± 0.28 78.26 ± 0.43 62.61 ± 0.56

SegNet 85.78 ± 0.23 74.55 ± 0.28 50.60 ± 0.31 80.73 ± 0.66

† U-Net 88.76 ± 0.11 79.72 ± 0.44 88.10 ± 0.67 84.51 ± 1.67

UNet++ 84.1 ± 0.59 73.30 ± 0.90 83.30 ± 0.55 79.92 ± 0.43

MultiResUNet 87.63 ± 0.20 78.33 ± 0.34 87.56 ± 0.38 84.07 ± 0.86

UNet3+ 87.91 ± 0.75 79.02 ± 1.00 87.88 ± 0.60 85.24 ± 1.48

LinkNet 87.83 ± 1.08 78.14 ± 1.73 87.13 ± 1.21 82.71 ± 2.73

FPN 88.58 ± 0.38 79.41 ± 0.87 88.16 ± 0.93 84.95 ± 1.95

U2net 88.12 ± 0.68 79.03 ± 1.03 87.65 ± 0.58 86.38 ± 1.09

FTL_U-Net 86.94 ± 0.51 77.41 ± 0.74 86.13 ± 0.38 81.93 ± 0.71

CCBANet 86.12 ± 0.88 77.26 ± 1.12 89.36 ± 0.71 86.23 ± 0.83

◊ DeepLab-V3 87.02 ± 0.21 77.27 ± 0.42 87.43 ± 0.53 86.25 ± 1.05

PSPNet 88.56 ± 0.45 79.08 ± 1.48 88.07 ± 0.82 83.80 ± 2.88

Ours GCLDNet 89.91 ± 0.40 81.82 ± 0.62 89.49 ± 0.44 87.63 ± 1.60
fro
†: Encoder–Decoder-based methods. ◊: Multi-scale-based methods.
The bold values indicate the best results achieved by the corresponding method.
B C D E F GA

FIGURE 7

Visualization of the results of gastric cancer dectionon SEED dataset. (A) Image; (B) Mask; (C) GCLDNet; (D) PSPNet; (E) LinkNet; (F) U-Net; (G)
UNet3+.
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datasets of SEED and BOT. The specific method is to divide

the GCLDNet into three parts: Baseline, LFA, and AFFM. The

specific settings are as follows: (1) The EfficientNet-B4

network (47, 48) is used as Backbone in encoding stage and

network and is similar in shape to U-Net, which is called the

Baseline method; (2) Baseline+LFA; and (3) Baseline+LFA

+AFFM. The experimental results on the SEED dataset are

displayed in Table 3.

Table 3 describes that compared with the Baseline method,

adding the LFA module can effectively enhance the segmentation

accuracy, the Dice coefficient is increased by more than 11%, and

other indicators are also greatly improved; the improvement

effect is also obvious. This illustrates that the LFA module

helps aggregate the deep features of image between different

levels and achieve higher-precision segmentation. After

continuing to add the AFFM, the Dice coefficient has increased

by about 1.6%, and other indicators have also improved. This

phenomenon suggests that the AFFM can effectively locate

gastric cancer lesion areas through attention mechanism and

integrate features of different depths, which can better improve

the segmentation performance.

To make the results of the ablation experiment more

convincing, the BOT dataset is selected for another ablation

experiment. The method and settings of the experiment are

consistent with the SEED dataset. The experimental results

on the BOT dataset are presented in Table 4. From Table 4,

compared to the Baseline method, the addition of the LFA
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module once again proves that the segmentation accuracy

can be effectively improved, the Dice coefficient is increased

by more than 7%, and other indicators have also been greatly

improved; the improvement effect is also very obvious. This

once again proves that the LFA module can effectively

aggregate deep features between different levels. When the

AFFM continues to be added, the Dice coefficient increases

by about 2.6%. The effectiveness of the AFFM is mainly

because of the appropriate utilization of the attention

mechanism and the fusion of output features from

different depths.
3.5 The effectiveness of loss function

To evaluate the effectiveness of the FTL, comparative

experiments are carried out on the SEED dataset, and

experimental results are shown in Table 5 and Figure 10.

It is clear that the Dice coefficient obtained by using the FTL

is the highest, followed by BCE-Loss. FTL is about 0.8%

higher than BCE-Loss. Dice-Loss has the lowest Dice

coefficient. At the same time, BCE-Loss and Dice-Loss are

jointly used as the loss function, and the Dice coefficient is

between BCE-Loss and Dice-Loss. These indicate that the

FTL can reduce the prediction of false-negative samples,

mine difficult samples, and improve the detection accuracy

of gastric cancer lesions.
FIGURE 8

Visual comparison of the performance of different models on BOT Dataset.
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4 Conclusions

In this paper, a gastric cancer lesion detection network

(GCLDNet) is proposed for the automatic and accurate

segmentation of gastric cancer lesions from HIs. At first,

the GCLDNet explores an LFA structure in the decoding stage

by adding multiple skip connections. The LFA aggregates rich

feature information and can make full use of the deep and

shallow feature information of GCHIs. Meanwhile, an AFFM
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is proposed to accurately locate gastric cancer lesions. The

AFFM merges attention feature information of different

scales, and obtains rich discriminative feature information

focusing on gastric cancer lesion areas. Finally, FTL is

employed as a loss function to reduce false-negative

predictions and mine difficult samples. Experimental results

on two GCHI datasets of SEED and BOT show that DSCs of

GCLDNet are 0.8265 and 0.8991, ACCs are 0.8827 and

0.8949, JIs are 0.7092 and 0.8182, and PREs are 0.7820 and
B C D E F GA

FIGURE 9

Visualization of the results of gastric cancer detection on the BOT dataset. (A) Image; (B) mask; (C) GCLDNet; (D) PSPNet; (E) LinkNet; (F) U-Net;
(G) UNet3+.
TABLE 3 Ablation study of the GCLDNet method on the SEED dataset.

Methods DSC JI ACC PRE

Baseline 69.13 ± 3.55 50.18 ± 0.35 75.43 ± 2.85 56.75 ± 6.41

Baseline + LFA 80.96 ± 0.11 68.44 ± 0.17 88.21 ± 0.27 76.87 ± 2.38

Baseline + LFA + AFFM 82.65 ± 0.36 70.92 ± 0.53 88.27 ± 0.58 78.20 ± 1.00
fro
The bold values indicate the best results achieved by the corresponding method.
ntiersin.org

https://doi.org/10.3389/fonc.2022.901475
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2022.901475
0.8763, respectively. Experiments demonstrate that the

GCLDNet obtains the best lesion detection effect compared

to some SOTA methods. In future research, we will explore

the practical application of the model, and use or improve this

method for the detection of other cancers.
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data can be found here: https://www.jseedata.com, https://data.

mendeley.com/datasets/thgf23xgy7.
TABLE 4 Ablation study of the GCLDNet method on the BOT dataset.

Methods DSC JI ACC PRE

Baseline 80.11 ± 1.17 67.04 ± 1.54 78.63 ± 1.75 75.25 ± 3.16

Baseline + LFA 87.28 ± 0.32 77.38 ± 0.66 86.43 ± 0.22 82.50 ± 0.38

Baseline + LFA + AFFM 89.91 ± 0.40 81.82 ± 0.62 89.49 ± 0.44 87.63 ± 1.60
fro
The bold values indicate the best results achieved by the corresponding method.
TABLE 5 Effectiveness experiment of FTL loss function.

Loss function DSC JI ACC PRE

Dice-Loss 81.15 ± 0.61 68.81 ± 0.86 88.04 ± 0.90 78.51 ± 2.26

Dice-Loss + BCE-Loss 81.68 ± 0.61 68.01 ± 1.44 88.08 ± 0.73 79.38 ± 1.03

BCE-Loss 81.87 ± 0.52 60.90 ± 1.90 88.26 ± 1.18 72.71 ± 1.23

FTL 82.65 ± 0.36 70.92 ± 0.53 88.27 ± 0.58 78.20 ± 1.00
The bold values indicate the best results achieved by the corresponding method.
FIGURE 10

Comparison of loss function performance.
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