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Abstract: Despite global research efforts, breast cancer remains the leading cause of cancer death
in women worldwide. The majority of these deaths are due to metastasis occurring years after the
initial treatment of the primary tumor and occurs at a higher frequency in hormone receptor-positive
(Estrogen and Progesterone; HR+) breast cancers. We have previously described the role of NUDT5
(Nudix-linked to moiety X-5) in HR+ breast cancer progression, specifically with regards to the growth
of breast cancer stem cells (BCSCs). BCSCs are known to be the initiators of epithelial-to-mesenchyme
transition (EMT), metastatic colonization, and growth. Therefore, a greater understanding of the
proteins and signaling pathways involved in the metastatic process may open the door for therapeutic
opportunities. In this review, we discuss the role of NUDT5 and other members of the NUDT family
of enzymes in breast and other cancer types. We highlight the use of global omics data based on our
recent phosphoproteomic analysis of progestin signaling pathways in breast cancer cells and how
this experimental approach provides insight into novel crosstalk mechanisms for stratification and
drug discovery projects aiming to treat patients with aggressive cancer.

Keywords: breast cancer; drug discovery; NUDIX; PARP1; inhibitors; cancer stem cells; NUDT
hydrolases; signaling pathways; hormone receptor-positive cancers; metastasis; NUDT5; MTH1

1. Introduction
1.1. Metastatic Breast Cancer

Currently, breast cancer continues to be the leading cause of cancer death in women
worldwide [1,2]. It has been suggested that 1 in 8 women will be diagnosed with breast
cancer in their lifetime, and 1 in 38 will lose their lives to the disease [3]. Breast cancer is
a complex disease characterized firstly as either ductal carcinoma in situ (DCIS), where
the cancer has not grown out of the duct, or invasive breast cancer, which can be further
characterized into either invasive ductal carcinoma (IDC) or invasive lobular carcinoma
(ILC). IDC accounts for around 80% of invasive carcinomas.

Following detection, further characterization is routinely carried out to ascertain the
hormone receptor status of the tumor, which will decide whether the patient may ben-
efit from anti-hormonal therapies. Initially, around 80% of breast cancers are estrogen
receptor alpha (ERa)-positive, and from this, 65% are also progesterone receptor (PR)-
positive. Treatment options for hormone receptor-positive breast cancers include selective
estrogen receptor modulators (SERMs), such as tamoxifen (Novadex™) or Fulvestrant
(Faslodex™), and aromatase inhibitors, which block estrogen production, such as anastro-
zole (Arimidez™) and exemestane (Aromasin™). In addition, 20% of breast cancers are
positive for human epidermal growth factor receptor 2 (HER2) and are routinely treated
with trastuzumab (Herceptin™) [4,5].

Following radiotherapy, surgery, chemotherapy, and adjuvant therapy, the majority
of patients become disease-free long term [6]. However, even considering this group of
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patients with a long-term favorable outcome, the majority of breast cancer-related deaths
are due to metastasis and not the primary tumor. Although HR+ breast cancers predict a
more favorable outcome at diagnosis compared to HR- tumors, the long term (>5 years)
recurrence rate is significantly higher for HR+ breast cancers compared to HR-tumors,
which show a peak in recurrence earlier (2 years after surgery) [7]. Recurrent disease is
often incurable with 5-year survival rates less than 50%. To date, there are no diagnostic
tools that reliably predict the long-term recurrence of these tumors. Moreover, very few
targeted therapies exist for the treatment of metastasis, and often first line treatments are
used, which are less effective. In addition, metastatic tumors commonly become resistant
to adjuvant therapies [8,9].

The lack of treatment options for metastatic breast cancer [10], and the fact that the
majority of patients will eventually relapse even if advanced disease initially responded to
treatment, highlights the importance of a greater understanding of breast cancer progres-
sion. A more in-depth analysis may open new avenues for future drug discovery projects
for breast cancer, which may also have translational applications for other cancer types
depending upon the pathway affected.

1.2. Use of 3D Cell Culture as a Model for Metastatic Breast Cancer

Pluripotent breast cancer stem cells (BCSC) have been shown to be resistant both
to chemo- and radiotherapy and are the known initiators of metastasis [11,12]. The per-
centages of BCSCs are relatively low in the primary tumor in vivo and in 2D cell culture
in vitro. In recent years, the growth of breast cancer cells in non-adherent conditions
has been increasingly used as a more suitable model for studying aggressive cancer cell
growth [13-15]. In contrast to 2D cultures, the growth of breast cancer cells in non-adherent
conditions as three-dimensional (3D) oncospheres leads to enrichment of BCSCs [16,17]. In
fact, only these BCSCs are able to grow in non-adherent conditions and express genetic
markers of epithelial to mesenchymal transition (EMT) and “stemness”, more similar to
their in vivo counterparts [18,19]. Indeed, there are many different methods in order to
grow cells in 3D culture. For example, in suspension in non-adherent plates, in concen-
trated medium in gel-like substances such as Matrigel, or on a scaffold such as silk, collagen
or alginate. The advantages and disadvantages of each method have been extensively
described elsewhere [15,20].

Studies that focus on understanding hormone receptor-dependent breast cancer sig-
naling using a 3D cell culture model have shed light on several potential drug target
options [21-23]. One such target is the enzyme NUDTS5 (also known as NUDIX5, Nudix-
linked to moiety X-5), which we have shown to be essential for HR+ breast cancer growth
and breast cancer stem cell (BCSC) initiation and maintenance [24,25]. NUDT5 is a member
of a much larger family of enzymes. In this review, we aim to summarize what is known
about the role of NUDT5 and some other members of the NUDT family, in cancer growth
and we will discuss how the use of global omic datasets could be integrated to provide
additional insight into drug discovery opportunities for aggressive HR+ breast cancers and
other cancer types.

The NUDT/NUDIX (Nucleoside Diphosphate Linked to Moiety X) type hydrolase
superfamily includes an evolutionary conserved large group of proteins, which hydrolyze
a wide range of substrates playing an essential role in important biological processes
including cell proliferation, signal transduction and homeostasis (Table 1). An in-depth
discussion of the whole enzyme family, including reactions and structures, is not the focus
of this review, as it has already been covered extensively in recent years [26-28].
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Table 1. NUDT family members substrates and reactions.
NUDT Substrate Hydrolase .. Enzyme Entry
(Alternative Name) Activity Product Hydrolase Activity Role (Expasy)
8-0x0-dGTP+ H,0 8-oxo-dGMP Sanitizing oxidized EC 3.6.1.55
NUDT1 (MTH1) §-oxo-dATP +diphosphate+H-+ nucleotid EC3.6.1.56
8-OH-dATP iphosphate cleotides 6.1,
NUDT2 .
(APAH1) Ap4A AMP + ATP Homeostasis EC3.6.17
NUDT3 Diphospho-myo-inositol =~ myo-inositol polyphosphate EC3.6.152
(DIPP-1) polyphosphate + H,O + phosphate. o
NUDT4 Diphospho-myo-inositol =~ myo-inositol polyphosphate . . .
(DIPP-2) polyphosphate + H,O + phosphate. Signal transduction EC:3.6.1.52
ATP + D-ribose ADP-D-ribose + diphosphate
5-phosphate + H+ AMP + D-ribose 5-phosphate EC2.7.7.96
NUDT5 ADP-D-ribose + H,O +2H+ Sanitizing oxidized EC 3' 6.1.1 3
(NUDIX5) 8-oxo-dGDP + H,O 8-oxo-dGMP + H+ + nucleotides EC 3' 6' l' 58
ADP-D-ribose + PPi + phosphate o
H,O ATP+ D-ribose-5-phosphate
NUDT6 ADP-ribose + H,O AMP + D-ribose 5-phosphate. Cell proliferation EC2.7.7.96
(FGF2AS) NADH + H,0O AMP + NMNH + 2 H+ P
Eliminate oxidized
NUDT?7 acetyl-CoA + H,;O acetate + CoA + H(+). coenzyme A (CoA) EC3.1.2.20
NUDTS unknown unknown unknown
NUDT9 ADP-D-ribose + Hyo  AMP + Drribose 5-phosphate EC3.6.1.13
+2 H+
HzO +
P1,P6-bis(5'-adenosyl)  adenosine 5'-pentaphosphate
hexaphosphate + AMP + 2 H+ EC 3.6.1.60
NUDT10 H,O + adenosine 5'-tetraphosphate Sienal transduction EC 3.6.1.60
(DIPP3A, APS2) P1,P5-bis(5'-adenosyl) +AMP + 2 H+ & EC 3' 6.1. 5
pentaphosphate myo-inositol polyphosphate o
Diphospho-myo-inositol + phosphate
polyphosphate + H,O
NUDT Substrate Hydrolase .. Enzyme Entry
(Alternative Name) Activity Product Hydrolase Activity Role (Expasy)
HzO +
P1,P6-bis(5'-adenosyl)  adenosine 5'-pentaphosphate
hexaphosphate +AMP + 2 H+ EC 3.6.1.60
NUDT11 HyO + adenosine 5'-tetraphosphate Sional transduction EC 3' 6. 1' 60
(DIPP3B, APS1) P1,P5-bis(5'-adenosyl) + AMP + 2 H+ & EC 3' 6' 1' 5
pentaphosphate myo-inositol polyphosphate o
Diphospho-myo-inositol + phosphate
polyphosphate + H,O
AMP + (3-nicotinamide
D-ribonucleotide + 2 H+
H,0 + NAD+ I . EC3.6.1.22
NUDT12 H,0 + NADH AMP + 2 H+ + re;duced Regulate nicotinamide EC 3.6.1.22
-nicotinamide
D-ribonucleotide
NUDT13 unknown unknown unknown
NUDT14 UMP + alpha-D-aldose .
(UGPP) UDP-sugar + H,O 1-phosphate unknown EC:3.6.1.45
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Table 1. Cont.

NUDT Substrate Hydrolase .. Enzyme Entry
(Alternative Name) Activity Product Hydrolase Activity Role (Expasy)
a ribonucleoside
a ribonucleoside 5'-phosphate + diphosphate
NUDT15 5'-triphosphate + H,O +H+ Sanitizing oxidized EC:3.6.19
(MTH?2) a 2’-deoxyribonucleoside a 2'-deoxyribonucleoside nucleotides e
5'-triphosphate + HoO  5'-phosphate + diphosphate
+ H+
a 5'-end (N7-methyl a 5'-end phospho-adenosine
I Ly . .
NUDT16 5 tr1pho§ph9guan051ne) in mRNA + 2 H+. + RNA decapping EC3.6.1.62
adenosine in mRNA + N7-methylguanosine enzyme
H,0 5'-diphosphate
NUDT17 unknown unknown unknown unknown
Removes oxidized
NUDT18 8-ox0-dGDP + H,O 8-0x0-dGMP + Hx+ + guanine from DNA and EC3.6.1.58
(MTH3) phosphate
RNA
NUDT19 acyl-CoA + H,O CoA + a carboxylate. Hydrolysis CoA esters EC3.1.2.20
a 5'-end (N7-methyl a 5'-end phospho-adenosine
NUDT20 5'-triphosphoguanosine)- in mRNA +2 H+ + RNA decapping EC3.6.1.62
(DCP2) adenosine in mRNA+ N7-methylguanosine enzyme o
H,O 5'-diphosphate
NUDT21 - - .
(CFIm25) No hydrolase activity No hydrolase activity Pre-mRNA processing

2. Role of NUDT Enzymes in Cancer
2.1. Role of NUDT Enzymes in Breast Cancer

Analysis of breast cancer patient data reveals some interesting results stratifying pa-
tients based on the expression level of individual NUDT family members. In particular
for NUDT]1, 2, 5, and 16. The expression level of these four NUDT enzymes if signifi-
cantly higher in tumor versus normal tissue based on data from TGCA breast cancer data
(Figure 1a—d left). In addition, patients with elevated levels of NUDT1, 2, 5 or 16 exhibit
significantly poorer overall survival in HR-positive breast cancer (Figure 1a—d center) [25]
but not HR-negative breast cancer (Figure 1a—d right). This is further highlighted based
on other studies where inhibition of NUDT1 (MTH1) reduced breast cancer cell growth
in vitro and in vivo [29]. Similarly, NUDT?2 is overexpressed in invasive ductal carci-
noma, associated with poor clinical outcome [30]. Inhibition of NUDT2 shows promise
as a novel chemotherapeutic target, demonstrated by a strong reduction on metastatic
pathways [30,31].

The suggestion for an important role of this family of enzymes if further compounded
by an analysis of the number of breast cancer patient datasets in which the expression
level of a NUDT family member is associated with a significant effect on patient outcome
(p < 0.05) (Figure 2a). Interestingly, NUDT4, 13 and 21 are associated with a strong effect on
patient outcome in breast cancer patients (79, 29, and 46 datasets respectively). However,
relatively little is known to date in the literature with regards to the role of these NUDT
family members in breast cancer. Only NUDT13 was identified as up-regulated HR-positive
breast cancer [32]. Low expression of NUDT21 is associated with tumor size, stage, and
metastasis correlating with poor overall and recurrence-free survival in breast cancer
patients, and overexpression of NUDT?21 inhibits invasion, EMT, and proliferation in cell
culture [33]. Further investigation into the role of NUDT4, 13, and 21 in breast cancer
progression may represent an interesting line of investigation in the future.



Int. ]. Mol. Sci. 2021, 22, 2267

50f 14

a)
NUDT

S
‘_:,\A

S,

=

<.

[@))

O, |

~l

(=2
~—

Log2 (TPM +1)

BRCA
(num(T)=1085; num(N)=291)

c)
o NUDT5
: ® :"
+
g
= e -
N— E:
N . 8 *
> #
Qo N
~ <« )
) BH‘CA
(num(T)=1085; num(N)=291)
d
) NUDT16
;\m ] N
+ —_—
5‘0 | 7‘,
~
—v
N
>
Qo
~ 3
Lo
Kl
o o T
T
BRCA

(num(T)=1085; num(N)=291)

NUDT1 (204766_s_at)

NUDT1 (204766_s_at)

o
o i -
- HR = 1.79 (1.6 - 2) - AR=113(0.92- 1.4
logrank P < 1E-16 ® 9 -
© )
S o
>
2o 23
= o 3
2 2
53 s 3
a © o
~ N .
o | Expression o | Expression
— low — low
i S | — high
st—™ R o
0 50 100 150 200 250 0 50 100 150 200
. Time(months) wumberatrg e (months)
panper al ie low 434 214 90 20 3
low 1986 1463 654 128 1 0
mogvg 1965 1056 421 113 16 3 high 435 189 66 20 2
NUDT2 (218609 _s_at) NUDT2 (218609 _s_at)
o | o
— HR = 1.04 (0.93 - 1.16) - HR = 1.14 (0.92 - 1.4)
logrank P = 0.47 logrank P = 0.24
] ®
o o
> 0 >
= £ &
Q a
8 I}
o ] |«
o © & o
L
N . ~
o | Expression o | Expression
— low
g — low
2 high o | — high
© Y T T T T T ol
0 50 100 150 200 250 6 5'0 160 1é0 260
Time (months) .
Number at risk _ Time (months)
low 1977 1276 569 125 15 1 Number at risk
high 1974 1243 506 116 12 2 low 435 209 84 22 4
high 434 194 72 18 1
NUDTS5 (223100_s_at) NUDTS5 (223100_s_at)
° _S_
= HR = 1.65 (1.41 - 1.93) S A -
logrank P = 2.4e-10 - HR = ll;'JOg3ra(2i<7: '_163;2)
Z e |
£ > ©
i s
g 3
& o 'g <
o o
7| Expression
— low | Expression
o | — high — low
Chs ‘ ‘ ‘ ‘ . o | — high
0 50 100 150 200 250 [SIp . . . .
Time (months) 0 50 100 150 200
o Ban e 208 31 4 0 ) Time (months)
high 882 417 141 37 6 2 ow "zll;g\bﬂat flSkmg 3 R o
high 258 87 23 3 0
NUDT16 (228341 at) NUDT16 (228341_at)
o
A HR = 0.62 (0.53 - 0.72) S HR = 1(0.77 - 1.3)
logrank P = 1.5e-09 logrank P = 1
o | ©
o o b
28 z 9]
3 F°
F ©
S < e =
a © g
N . ~
o 7| Expression o 7| Expression
— low — low
o | — high o | — high
© T T T T T T o T T T T T
0 50 100 150 200 250 0] 50 100 150 200
Time (months) Time (months)
Number at risk Number at risk
low 887 4. 137 27 4 1 low 262 95 27 3 o
high 877 536 208 41 6 1 high 254 101 30 5 o

Figure 1. NUDT]1, 2, 5, and 16 in Breast Cancer: (Left) mRNA expression levels of NUDT family member in normal

(black) versus tumor (red) patient breast cancer TCGA samples. (Center) Overall survival based on patient stratification

using NUDT enzyme in hormone receptor-positive breast cancer. (Right) Overall survival based on patient stratification
using NUDT enzyme in hormone receptor-negative breast cancer patient datasets, (a) NUDT1 (b) NUDT?2 (c) NUDTS5, and

(d) NUDT16.
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Figure 2. Expression Levels of NUDT enzymes in Breast and Other Cancer Types. (a) Number of datasets where there is

a significant (p < 0.05) difference between overall or recurrence-free survival of patients based on the expression level of

the NUDT family member indicated, full information regarding dataset ID, cohort number are given in Supplementary

Table S2. (b) Number of datasets (indicated by size of circle) and mean p values (color circle) where a significant difference

in cancer patient outcome is observed based on the expression level of the NUDT enzyme indicated in different types of

cancer. Full details of the information are given in Supplementary Table S2. Correlation in expression of NUDT2 and MTOR
(c), NUDT5 and PARP1 (d) and NUDT16 and BRCA1 (e).

In recent years, the role of NUDTS5 in the biology of breast cancer cells has attracted
our attention in the context of our studies on the function of the poly-ADP-Ribose (PAR)
synthesis by PARP1 for the hormonal gene regulation. We showed that within minutes
of progesterone exposure, PARP1 is activated by CDK2-dependent phosphorylation of
two serines in the active center, leading to a dramatic increase of nuclear PARylation
that is essential for gene regulation [34,35]. We assumed that the increase in PAR levels
will neutralize the positive charge of the histone tails weakening their interaction with
DNA and resulting in a more open chromatin state [36—40], which should facilitate the
changes in gene expression required for reprogramming gene expression [41-43]. Similar
explanations were proposed for the role of PARylation in Drosophila development [44].
However, the observation that not only PAR generation but also PAR degradation to
ADPR-ribose (ADPR) units by the PARG was required for the hormonal gene regulation
forced us to consider other possible functions of ADPR [24]. Moreover, we observed
that NUDT5 was identified in the PAR interactome of breast cancer cells exposed to
hormone [24], leading us to investigate the role of NUDT5 in hormone action. We found
that PARP1, PARG, and NUDT5 were all required for the displacement of linker histone H1,
the first step of chromatin remodeling essential for enabling gene regulation by estrogens
or progestins [24,45]. Since the remodeling of chromatin also requires ATP-dependent
chromatin remodeling complexes, we considered the possibility that NUDT5 could convert
ADPR to ATP by pyrophosphorylation, a reaction postulated by Sei-ichi Tanuma 24 years
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ago [46]. Measuring the levels of nuclear ATP with sensors of the TAP/ADP ratio, we
confirmed the increase levels in cells exposed to hormones for 20-30 min hormone exposure,
and found that the increase was dependent on PARP1, PARG, and NUDTS5 [24].

NUDTS5 was known to hydrolyze ADPR to AMP and Ribose-5-phosphate (R5P) [47],
and we confirmed this activity using recombinant NUDT5. The crystal structure of NUDT5
shows it as a homodimer with two deep substrate cavities, each of them formed by residues
from the two monomers [48]. However, in the known structure there is no possibility
for pyrophosphate entering the substrate pocket. Therefore, a structural conformation
change was needed. Indeed, we found that immediately after hormone exposure NUDT5
is dephosphorylated at threonine 45, leading to a change in the orientation of the two
monomers in the homodimer, which enables binding of pyrophosphate and generation of
ATP [24,45]. We confirmed the importance of this modification using a phosphomimetic
NUDT5 mutant (T45D) that is unable to generate ATP in vitro and in cells, and behaves as
a dominant negative in hormone regulation of gene expression [24]. We also found that
the dephosphorylated NUDTS5 forms a hexameric structure similar in size to that of the
NMNAT1 enzyme that generated NAD+ for PAR synthesis and pyrophosphate, possibly
for ATP synthesis [45].

2.2. Role of NUDTS5 in Breast Cancer Stem Cells (BCSC)

As discussed earlier NUDTS overexpression is associated with a more aggressive
breast cancers, and we have provided further insight into the possible explanation for this
correlation using 3D cell culture of breast cancer cells [25]. NUDTS5 is essential not only the
response to progesterone but of breast cancer cells to hormones, but also generation and
maintenance in BCSC from multiple breast cancer cell lines grown in 3D culture [25]. In
particular, and using NUDT5 mutants unable to synthesize ATP but capable of hydrolyzing
ADRP, we showed that it the ATP generating activity of NUDTS5 that is required for BCSC
generation [16]. Analysis of the global gene expression changes occurring in 2D versus 3D
cell culture reveals the use of 3D culture as a more realistic in vivo model and identifies
gene signatures associated with EMT and stemness that depends on nuclear ATP synthesis
by NUDTS5. In addition to a gene signature associated with stemness and EMT we were
able to identify tumor markers that are used in clinical trials, such as mucin 1 (MUC1;
used to monitor metastasis in patients) and members of the carcinoembryonic antigen
(CEA) related cell adhesion molecules (CEACAM) family. CEACAM have been used for
the diagnosis and monitoring of cancer recurrence following surgery, and elevated levels
of CEACAM were identified as metastatic drivers in breast cancer [49-51], these changes
in the gene expression signature initiated by the culture of cells in 3D, demonstrate that
3D culture is a more comparable model to that of the in vivo signature. These signatures,
along with angiogenesis, is characteristic of aggressive breast cancer types and depends on
nuclear ATP synthesis by NUDT5. Taken together, this data shows a multifaceted role of
NUDTS5 in aggressive breast cancer progression (Figure 3).

2.3. A Specific Antibody to the Hexameric form of NUDTS5 as a Tool for Breast
Cancer Stratification

The above-mentioned observations point to the importance of stratifying breast cancer
in terms of their capacity to synthesize ATP from ADPR. To this end, we developed a
polyclonal rabbit antibody against a synthetic peptide containing the amino acids exposed
in the surface of the active dephosphorylated a hexameric form of NUDT5 [45]. We
have previously shown that the shift in catalytic activity from AMP to ATP generation
is mediated via a structure change in NUDT5 from a dimeric to a hexameric form. This
antibody does not react with the dimeric form of phosphorylated NUDTS5 in histochemistry
or western blots. Using tissue microarrays from breast cancer samples, staining with this
antibody correlates with clinical bad prognosis and metastasis, indicating its possible value
as a selection assay for treatment of these patients with inhibitors of PARP or NUDTS5.
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Breast Cancer Metastasis CTC transversal within
circulatory system

NUDTS5 elevated CTC
versus primary tumour

Circulating
Tumour Cell
1 (CTC)
Cancer stem cell within
primary tumour
NUDTS elevated tumour Tight junction
versus normal tissue

Extravasating cancer cell

Breast duct

Basement membrane
@nesenchym to epithelial

Breast epithelial cell transition (MET)
Myoepithelial cell Elevated NUDT5 : .
predictive of incease e o
recurrance
Cancer stem cell niche
* _. ®
Intravasating cancer Secondary site
stem cell colonisation
Endothelial cell E/evateid {VUDT5
predictive of
increased metastasis

pithelial to mesenéh');m
transition (EMT) Cancer
cell migration and
invasion
NUDTS5 essential for CSC
generation

@ Angiogenesis
Signalling cascades
suggest a role of NUDTS in
sustained angiogenesis

Figure 3. Multifaceted role of NUDTS in breast cancer metastasis. Model showing the multiple roles and indications for
a key role of NUDTS5 in aggressive breast cancer. (1) NUDTS5 is elevated in tumor versus normal breast cancer tissue.
(2) NUDTS5 is essential for breast cancer stem cell (BCSC) generation and maintenance. (3) NUDTS5 is highly expressed in
circulating tumor cells (CTCs). (4 and 5) Elevated levels of NUDTS5 are associated with increased levels of recurrence and
metastasis in patients suggesting a role in mesenchyme to epithelial transition and secondary site colonization. And finally
(6) analysis of the gene expression changes occurring in BCSC in 3D cell culture suggests a role of NUDT5 in angiogenesis.

2.4. Role of NUDT Enzymes in Other Cancer Types

NUDT family members also show a significant enrichment in datasets from several
other cancer types (Supplementary Tables S1 and S2). Focusing on NUDT1, 2, 5, and 16 we
observed that although breast cancer is the patient dataset where the majority of datasets
and the most statistically significant effect on outcome is observed, the expression of these
NUDT enzymes is also predictive in other cancer types (Figure 2b, Supplementary Figure 51,
full details are given in Supplementary Table S1).

Indeed, it has been previously shown that the expression levels of NUDT1 (also
known as MTH1) are associated with a more aggressive glioblastoma and the expression
of MTH1 is essential for glioblastoma cancer stem cells [52]. MTH1 is also up-regulated in
melanoma and gastric cancer [53,54]. NUDT16 is an RNA de-capping enzyme and its gene
promoter is methylated in over 75% of T-cell-derived leukemia, driving downregulation
compared to normal tissues [55]. In addition, knockdown of NUDT16 in Hela cells reduces
cell proliferation [56]. NUDT5 was identified as an independent prognostic factor in
colorectal cancer, associated with poor overall survival in clear cell renal carcinoma [57]
and, in conjunction with high expression of MTH1, predicts poor survival in esophageal
carcinoma [58].

As summarized above, NUDT enzymes are key players in cancer progression and
may provide promising therapeutic targets for the future management of cancer patients.
However, it is also clear that NUDT enzymes and their effect on the pathways in cancer are
dependent on the upstream/downstream pathways, cofactors, interactors, and regulators.
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For example, NUDT?2 is a positive regulator of mTORC [59], NUDTS5 is directly dependent
on the upstream activation of PARP1 and the subsequent increase in PARylation [24], and
NUDT16 is required for p53 stabilization and cell survival in BRCA1 mutant cancers [60].
In addition, the positive correlation of these NUDT enzymes and their respective cofac-
tors in cancer patient gene expression datasets (Figure 2c—e) further supports the greater
understanding of the underlying pathways that may have a significant impact on the
development of breast cancer. The analysis of omics data may provide further insight into
these processes as discussed below.

3. Exploiting Global Signaling and Omic Data to Discover Novel
Therapeutic Strategies

Analysis of global gene expression and phosphoproteomic data has already revealed
some interesting findings and highlighted the role of NUDT family members in cancer
progression. For example, RNA-seq gene expression and subsequent network analysis
in chronic myelogenous leukemia cells in culture highlighted the potential of NUDT2
as a therapeutic target, as inhibition of NUDT2 significantly affected gene pathways
involved in metastasis, invasion, and apoptosis [31]. In 2015 the gene expression analysis
of 30 cancer cell lines identified NUDT4 as a potential target [61]. The combination and
analysis of muti-omic data revealed NUDT7 as having a role in colorectal and breast cancer
development [62,63].

Progesterone Signaling in Breast Cancer Cells

We have recently contributed to the understanding of breast cancer progression via
the analysis of phosphoproteomic datasets [64]. As discussed earlier, NUDT5 generates
ATP in the nucleus of breast cancer cells in response to progesterone, dependent on
degradation of PARP1 synthesize PAR to ADPR by PARG. The activation of both PARP1 and
NUDTS5 enzymes is regulated by phosphorylation. PARP1 is rapidly phosphorylated within
the NAD+ binding site following hormone, which results in a more open conformation
and an increased enzymatic activity [34,35]. NUDT5 is dephosphorylated in response to
progesterone which results in a change in the oligomeric structure of NUDTS5, favoring a
hexameric structure, which facilitates the entry of PPi and the generation of ATP [24,45].
In order to gain more insight into the mechanism of PARP1 and NUDT5 activation in
breast cancer cells, a more comprehensive analysis of the phosphorylation events and
signaling cascades is required. Several single events within the signaling network induced
by progesterone in breast cancer cells have been studied previously, for example, the rapid
activation of the MAPK cascade [65,66], but comprehensive global analysis was missing.

To address this, we carried out a global phosphoproteomic analysis over time from
antibody arrays and mass spec datasets in order to determine the signaling pathways
induced by progesterone in breast cancer cells. As expected, we identified the rapid ac-
tivation of the MAPK cascade, but we were also able to reconstruct activation of new
kinase signaling networks previously not associated with breast cancer cell response to
progesterone, including ERBB-EGE, Fc receptor, insulin, and TRK (Tropomyosin receptor
kinase) signaling cascades [64]. In addition, we identified signaling networks involved
in the processes of EMT, cell adhesion, and angiogenesis, which is consistent with our
hypothesis and previous work and with the role of NUDTS5 in aggressive cancer progres-
sion (Figure 2 [25]). Future work will focus on the interrogation of these signaling and
protein-protein interaction networks to try and decipher the upstream regulators of PARP1
and NUDT5, which may provide insight into future drug combination strategies for the
management of breast cancer patients, with a focus on metastatic disease for which very
few therapeutic options exist.

4. Conclusions

The NUDT family of enzymes is an intriguing family of enzymes that play a key role
in the progression of breast and other cancers. The therapeutic potential of NUDT-selective
inhibitors has already been shown—NUDT1-selective inhibitors have shown efficacy in
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multiple studies in vitro and in vivo [67-70], and the NUDT5-selective inhibitor TH1457
blocks cell proliferation in breast cancer cells [71]. Given the interest in NUDT inhibition
for the management of cancer patients, a greater understanding of the signaling pathways
impinging on the activity of NUDT enzymes is required and may be facilitated by the
interrogation of global phosphoproteomic and gene expression datasets (Figure 4).

Signalling Datasets

Gene Expression Dataseis

. . Drug Interaction Datasets
Protein Interaction Data

Novel Biomarker discovery
Signalling pathway identification
Crosstalk analysis
Surivival/Prognosis analysis
Co-expression analysis
Mutation analysis

Figure 4. Data Integration for the identification of novel biomarkers, drug discovery targets and pathways in breast cancer
progression. Venn diagram showing the possible different dataset integration strategies which may provide further insight
for future cancer drug discovery lines of research.
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for all NUDT enzymes in breast cancer datasets.
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