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Abstract

We investigate the detectability of breast cone beam computed tomography images using

human and model observers and the variations of exponent, β, of the inverse power-law

spectrum for various reconstruction filters and interpolation methods in the Feldkamp-

Davis-Kress (FDK) reconstruction. Using computer simulation, a breast volume with a 50%

volume glandular fraction and a 2mm diameter lesion are generated and projection data are

acquired. In the FDK reconstruction, projection data are apodized using one of three recon-

struction filters; Hanning, Shepp-Logan, or Ram-Lak, and back-projection is performed with

and without Fourier interpolation. We conduct signal-known-exactly and background-

known-statistically detection tasks. Detectability is evaluated by human observers and their

performance is compared with anthropomorphic model observers (a non-prewhitening

observer with eye filter (NPWE) and a channelized Hotelling observer with either Gabor

channels or dense difference-of-Gaussian channels). Our results show that the NPWE

observer with a peak frequency of 7cyc/degree attains the best correlation with human

observers for the various reconstruction filters and interpolation methods. We also discover

that breast images with smaller β do not yield higher detectability in the presence of quantum

noise.

Introduction

Since breast cancer is the second leading cause of cancer-related deaths among women [1],

early detection of breast cancer is very important. Mammography is most commonly used for

breast cancer screening, but superimposing the breast anatomy structure onto its two-dimen-

sional (2D) mammographic image reduces the accuracy of lesion detection [2, 3]. Breast cone

beam computed tomography (CBCT) has been developed with the expectation that it will

improve detection performance by reducing tissue superimposition in volumetric images [4–

6].

Because of the potential of CBCT for breast imaging, evaluation of the detectability of breast

CBCT images has become an important issue to optimize the imaging system. Past studies
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have investigated the effects of several imaging parameters on detectability, such as the X-ray

tube voltage [7], scintillator thickness [8], detector pixel size [9], slice thickness [5, 10], and

image plane [11]. Reconstruction algorithms producing optimal image quality in breast imag-

ing have been explored [12–14], but the Feldkamp-Davis-Kress (FDK) algorithm [15] is the

most widely used technique because of its simplicity, linearity, and computational efficiency.

In the FDK reconstruction, optimal image quality can be acquired using various reconstruc-

tion filters and interpolation methods during back-projection depending on the task, and

therefore, an investigation on the detectability for these parameters could help to optimize the

FDK reconstruction in breast imaging.

In a previous study, it was reported that lesion detectability in breast CBCT images can be

quantified by β (i.e. the slope of the breast anatomy power spectrum), because smaller β is con-

sidered as a predictor of better detectability [16–18]. A more desirable way to evaluate detect-

ability in breast CBCT images is to conduct a human observer study because a human is the

subject who makes diagnostic decisions. However, using human observers is time-consuming

and expensive, thus it is desirable to use anthropomorphic model observers as surrogates [19–

22]. In previous work [11], we evaluated detectability in breast CBCT images using β and

model observers, especially for various reconstruction parameters considered in the FDK

reconstruction, but without a human observer study.

In this study, we investigated the correlation between human observer and anthropomor-

phic model observer performance for lesion detection in breast CBCT images with various

reconstruction filters and interpolation methods. The relationship between detectability by

human observers and β was also investigated. For the investigations, we generated breast vol-

umes with 50% volume glandular fraction (VGF) and a 2mm diameter lesion using computer

simulation. Three reconstruction filters: Hanning, Shepp-Logan, and Ram-Lak [23] were con-

sidered in the FDK reconstruction, and projection data were filtered with and without Fourier

interpolation before back-projection. We conducted signal-known-exactly and background-

known-statistically (SKE/BKS) detection tasks. To evaluate detectability, we performed human

observer experiments with four-alternative forced choice (4AFC) detection tasks [24]. For the

model observer study, we used a non-prewhitening observer with eye filter (NPWE) [25] and a

channelized Hotelling observer (CHO) with either Gabor channels (Gabor CHO) [26] or

dense difference-of-Gaussian channels (D-DOG CHO) [27]. To present the Hotelling observer

performance, we used Laguerre-Gauss channels (LG CHO) [28].

Methods

Image generation

Simulated breast volume. Breast volumes were generated in computer simulations using

two main characteristics of breast anatomy: 1) a power law spectrum and 2) binary attenuation

coefficients. The structure of the breast anatomy in mammograms has been characterized

using the power law spectrum [16, 18]

Pðf Þ ¼ K=f b ð1Þ

where f is the radial frequency (mm−1), K is a constant and β is a power law exponent. Based

on real clinical mammograms, the estimated value of β is *3 [16]. The attenuation coefficient

of breast anatomy is considered as binary to represent the dominant glandular and adipose tis-

sues [29].

For the breast volume, we generated a volume with 512×512×512 voxels of white Gaussian

noise and transformed it into the frequency domain using the discrete Fourier transform

(DFT). We computed a pointwise multiplication of the transformed white noise and a three-
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dimensional (3D) filtering kernel (i.e. the square root of 1/f3), and then calculated the inverse

DFT. Note that Eq (1) is a 2D power spectrum, and we simply extended it to the 3D power

spectrum [6, 11] by the central slice theorem [30, 31]. As f approaches 0, the value of the filter-

ing kernel becomes infinite; thus, the value at f = 0 was set to twice that of the first nonzero

radial frequency component [17]. We extracted the central spherical volume with a diameter

of 128 voxels from the filtered noise to avoid the wrap-around effect owing to the DFT filtering

operation [27]. Afterwards, we sorted the voxel values of the spherical volume in descending

order, and assigned the attenuation coefficient of glandular tissue to the top 50% of voxel val-

ues and that of adipose tissue to the remaining 50% [32–34], representing a 50% VGF breast

volume.

For modelling a mass lesion, a 2mm diameter spherical signal was inserted near the center

of the breast volume by replacing the attenuation coefficient of the breast tissue in the signal

region with that of the signal. The attenuation coefficients of simulated glandular and adipose

tissues, and signal region were 0.233, 0.194, and 0.238cm−1, respectively, which were attenua-

tion coefficients at 50keV energy [35]. The image voxel size was 0.16×0.16×0.16mm3 and the

full volume size was 20.5×20.5×20.5mm3.

CBCT data acquisition. We computed the radiological path along the ray that connected

the X-ray source and each of the detector pixels to acquire projection data of the simulated

breast volume [36] (the CBCT simulation parameters are summarized in Table 1), and a detec-

tor quarter offset was used to avoid aliasing. For quantum noise, we generated uniform Pois-

son noise with 6914 photons per detector pixel, equivalent to the dose used in two-view

mammography (i.e. 6.4mGy for a 14cm diameter breast with 50% VGF) [37]. Next, we applied

log-normalization to the generated Poisson noise and added it to the noiseless projection data.

In a discrete-to-discrete projection procedure, discretization artifacts in the projection of

the breast volume can be introduced when the image voxel size is larger than the detector

pixel size [32]. To avoid these, the voxel size of the simulated breast volume was set to

0.16×0.16×0.16mm3, which was smaller than the detector pixel size magnified at the iso-center

(0.2028×0.2028mm2) [11, 32].

Projection data were reconstructed using the FDK reconstruction [15] in which the voxel

size was selected as half of the intrinsic voxel size at the iso-center. In the FDK reconstruction,

the ramp filter was apodized using three filters: Hanning, Shepp-Logan, or Ram-Lak [23]; their

frequency profiles are shown in Fig 1. To examine the effect of linear interpolation on detect-

ability [38], projection data were filtered with and without 8-fold Fourier interpolation, and

then voxel-driven back-projection with linear interpolation was performed. Note that the

8-fold Fourier interpolation was implemented by taking the inverse Fourier transform of the

zero padded (seven times the length of the filtered projection data length) Fourier transform of

the filtered projection data.

Table 1. CBCT simulation parameters.

Parameter Value

Source to Iso-center Distance 460mm
Source to Detector Distance 880mm

Detector pixel size 0.388×0.388mm2

Detector array size 150×150 pixels (i.e., 58.2×58.2mm2)

Number of Views 200

Reconstructed voxel size 0.1014×0.1014×0.1014mm3

Reconstructed matrix size 200×200×200 voxels

Reconstructed volume size 20.3×20.3×20.3mm3

https://doi.org/10.1371/journal.pone.0194408.t001
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Image preparation. To evaluate detectability, we extracted a central volume of

128×128×128 voxels from the full volume of 200×200×200 voxels. Next, we used the central

transverse (x-y) plane and the longitudinal (x-z) plane of the volume. With three reconstruc-

tion filters and two interpolation methods, evaluation of a total of six detection tasks was

conducted for the transverse and longitudinal planes, as summarized in Table 2. The recon-

structed breast images for the six tasks are shown in Fig 2.

4AFC detection task

To evaluate detectability by the human and model observers, we conducted 4AFC SKE/BKS

detection tasks. The two hypotheses (i.e. H0 and H1 for signal-absent and signal-present,

respectively) are given by [39]:

H0 : g ¼ fb þ fn ð2Þ

H1 : g ¼ fs þ fn ð3Þ

where fb is the breast background, fs is the breast background containing the 2mm signal, fn is

the noise in the reconstructed CT image, and g is the transverse or longitudinal plane recon-

structed with various reconstruction filters and interpolation methods.

Fig 1. Profiles of the reconstruction filters.

https://doi.org/10.1371/journal.pone.0194408.g001

Table 2. Reconstructed image sets for detection task with different reconstruction filters and interpolation

methods.

Task Reconstruction filter Interpolation method

1 Hanning Linear

2 Shepp-Logan Linear

3 Ram-Lak Linear

4 Hanning Fourier

5 Shepp-Logan Fourier

6 Ram-Lak Fourier

https://doi.org/10.1371/journal.pone.0194408.t002
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The human observer study

For the human observer study, seven human observers participated and performed six detec-

tion tasks for the transverse and longitudinal planes. In each trial, the observers were shown a

signal image [20, 40], one signal-present image and three signal-absent images, as shown in

Fig 3, and then asked to select the signal-present image. Images were displayed on a 21.3 inch

Nio 3MP LED monitor (Barco, Kortrijk, Belgium) with a resolution of 2048×1536 pixels. To

reduce distraction, the area around the test images was filled with a dark background. The

locations of the signal-present image and signal-absent images were randomly switched in

each trial. For all images, the area where the signal may have been present (i.e. the center of the

image) was indicated with a red cross. For each task, the observers were trained with 30 trials

with instant feedback and tested with 100 trials. We used unique 100 signal-present and 300

signal-absent image datasets for each task and the images were randomly selected from 400

image volumes and displayed in a random order. Note that the training dataset was generated

independently from the test dataset for each task, and the training and test datasets were inde-

pendent for each observer. No time limit was set for choosing an image. Although there was

no restriction on viewing distance, it remained approximately 40*50cm.

For the j − th trial of each observer, score oj was recorded, where j = 1, 2, . . ., 100. If the

answer was correct, oj was 1, else it was 0. Subsequently, the percent correct, Pc, was computed

by

Pc ¼
1

Nt

XNt

j¼1

oj ð4Þ

where Nt is the number of test trials, and the variance of Pc was estimated by bootstrapping the

scores 1,000 times [24].

Model observer study

To compare the detectability by the human observer with that of the model observer, we con-

sidered three anthropomorphic model observers: NPWE [25], Gabor CHO [26] and D-DOG

CHO [27] because the eye filter in NPWE, and the Gabor and D-DOG channels in CHO

Fig 2. Reconstructed CBCT images. Reconstructed CBCT images for the transverse (upper) and the longitudinal plane (lower).

The display window was [0.10, 0.39] cm−1.

https://doi.org/10.1371/journal.pone.0194408.g002

Human and model observer performance in breast CBCT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0194408 March 15, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0194408.g002
https://doi.org/10.1371/journal.pone.0194408


mimic the human visual system [19, 40]. Since our signal was rotational symmetric and the

background was stationary within the field of view, we used LG CHO to represent the detect-

ability of the Hotelling observer [19, 20].

The template for NPWE. NPWE applies a band pass filter (i.e. eye filter) to images which

mimic the frequency selective characteristics of the human visual system [25]. The eye filter

function is defined as [25, 27]

Eðf Þ ¼ f 1:3expð� cf 2Þ ð5Þ

where c is an eye filter parameter.

Fig 3. The 4AFC detection task for the human observer study.

https://doi.org/10.1371/journal.pone.0194408.g003
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The template of NPWE is given by

wNPWE ¼ F � 1fE � FfΔggg ð6Þ

where F{�} is a DFT operator, F−1{�} is an inverse DFT operator, and Δg is the mean difference

between signal-present and signal-absent images. To estimate Δg, we used 400 signal-present

and signal-absent image pairs.

The template for CHO. CHO applies multiple channels to images and generates a chan-

nelized image given by

v ¼ Tg ð7Þ

where v is the channelized image, T is the channel matrix and g is the given image.

For Gabor CHO, the Gabor function is defined as

Chðx; yÞ ¼ exp½� 4ðln2Þððx � x0Þ
2
þ ðy � y0Þ

2
Þ=w2

s � � cos½2pfcððx � x0Þcosyþ ðy � y0ÞsinyÞ þ x� ð8Þ

where (x0, y0) is the center of the channel and is set to the center of the signal, ws is the spatial

width of the channel, fc is the center frequency of the channel, θ is the channel orientation, and

ξ is a phase factor [26]. Channel matrix T of the Gabor CHO is composed of discrete samples

obtained from Eq (8).

For D-DOG CHO, the DOG function is in the form

CjðrÞ ¼ exp½�
1

2
ð

r

Qsj
Þ

2
� � exp½�

1

2
ð
r

sj
Þ

2
� ð9Þ

where ρ is the radial frequency (pixel−1), Q is a multiplicative factor, and σj is the standard devi-

ation of the j − th channel defined as σj = σ0 α
j. Channel matrix T of the D-DOG CHO is com-

posed of discrete samples of the inverse DFT of Eq (9).

For LG CHO, the LG function is defined as

upðr j auÞ ¼
ffiffiffi
2
p

au
expð
� pr2

a2
u

ÞLpð
2pr2

a2
u

Þ ð10Þ

where r represents a 2D spatial coordinate and au is the width of the Gaussian function. The

Laguerre polynomials, Lp(x), can be defined as

LpðxÞ ¼
Xp

k¼0

ð� 1Þ
k p

k

 !
xk

k!
ð11Þ

where p is the order of the polynomial. Channel matrix T of the LG CHO is composed of dis-

crete samples obtained from Eq (10).

The template of the CHO is given by

wCHO ¼ ðKv þ KintÞ
� 1Δv ð12Þ

where Kv is the channelized covariance matrix, Δv is the channelized mean difference between

the signal-present and signal-absent images, and Kint is the covariance matrix of channel inter-

nal noise given as

Kint ¼ a � ðI ○KvÞ ð13Þ

where ○ is an elementwise multiplication operator, a is the internal noise level, and I is an

identity matrix. We used a nonuniform channel internal noise model since it showed good

agreement between the human and model observers [41]. To estimate Kv and Δv, we used 400

Human and model observer performance in breast CBCT images
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signal-present and signal-absent image pairs. Note that the image sets used to estimate Kv and

Δv were independent of each other.

Pc of the model observers. Model observer performance was evaluated with the 4AFC

task. Each trial was composed of one signal-present and three signal-absent images. A test con-

sisting of 100 trials was performed independently seven times. For each trial, the decision vari-

able for NPWE is computed by

t ¼ wNPWE
tgeye þ ε ð14Þ

where geye = F-1{E � F{g}} and ε is the internal noise.

The decision variable for the CHO is derived as

t ¼ wCHO
tðv þ vintÞ ð15Þ

where vint is the channel internal noise. Note that the j − th element of vint was sampled from

random noise whose variance is equivalent to the (j, j) element of
ffiffiffiffiffiffiffi
Kint
p

.

For each trial, the image which produced the highest decision variable among the four

images was determined as a signal-present image. If the answer from the model observer was

correct, then oj = 1, else oj = 0. Pc was computed using Eq (4), and its variance was estimated

by bootstrapping the scores 1,000 times. With internal noise (ε>0 and a>0), Pc was computed

by averaging 10 repetitions of the Pc calculation.

Parameter selection for the model observers. The model observer have several parame-

ters but adjusting all of them based on human observer data increases complexity and pro-

duces overfitting problems; thus, we adjusted only one parameter for each model observer.

For NPWE, we used two models. In the first model, denoted as NPWE4i, we adjusted the

internal noise level ε with c = 2 such that the peak value of the eye filter occurred at 4cyc/degree
because this is the value at which the human visual system is most sensitive [27]. In the second

model, denoted as NPWEf, we adjusted the peak frequency of the eye filter by changing the c
value and set ε = 0.

For Gabor CHO, we adjusted internal noise level a with fc = 3/128, 3/64, 3/32 and 3/16

(ws = 56.48, 28.24, 14.12 and 7.06), θ = 0, 2π/5, 4π/5, 6π/5 and 8π/5, and ξ = 0 and π/2, as used

in [26].

For D-DOG CHO, we adjusted a with σ0 = 0.005, α = 1.4, Q = 1.67, and j = 1*10, as used

in [27].

Optimal values of ε, c, and a were selected to minimize the mean squared error (MSE) of Pc
between the model and human observers. The searching interval for ε was 0.001 within a

range of [0, 0.003], and the searching interval for c and a was 0.1 within a range of [0, 3] and

[0, 5], respectively.

For the LG CHO, we used 10 channels with au = 6 and a = 0, because Pc became saturated

when the number of channels was greater than 10, and was maximized with au = 6. The

description of the model observers used in this study are summarized in Table 3.

Table 3. The model observers used in this study.

Model observer Description

NPWE4i NPWE with a peak frequency at 4cyc/degree and internal noise

NPWEf NPWE without internal noise and adjusted peak frequency

Gabor CHOi Gabor CHO with internal noise

D-DOG CHOi D-DOG CHO with internal noise

LG CHO LG CHO without internal noise

https://doi.org/10.1371/journal.pone.0194408.t003
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Estimation of β
To estimate β, we first computed a 2D noise power spectrum (NPS) using 500 reconstructed

signal-absent breast images. For each image, we subtracted the mean and multiplied the image

by a spatial window W to avoid spectral leakage [18] owing to the finite length of the DFT.

WðrÞ ¼

(
0:5þ 0:5cosðpr=DÞ r � D

0 r > D
ð16Þ

Next, we performed the DFT on the window-applied images, and computed the 2D NPS by

averaging the squared magnitudes of the DFT images. We computed a 1D NPS by radial aver-

aging of the 2D NPS, and then applied the natural logarithm to the 1D NPS. To obtain β, we

performed linear regression on the logarithm-applied 1D NPS by changing the fitting fre-

quency range. The value of β was chosen to maximize the coefficient of determination (R2)

[18]. Note that R2 measures the correspondence between a logarithm-applied 1D NPS and the

corresponding linear regression model.

Results

Fig 4 shows the averaged Pc of the human observers and Fig 5 shows the measured β for each

task. For β estimation, the fitting frequencies ranged from 0.1 to 0.48cyc/mm with R2>0.95.

For the various reconstruction filters, the averaged Pc is highest (lowest) when the Hanning

(Ram-Lak) filter is used because the Hanning (Ram-Lak) filter yields the lowest (highest) noise

power, as shown in Fig 6. Note that the 1D NPS shown in Fig 6 is up to 1cyc/mm because more

than 99% signal power is concentrated below 1cyc/mm. While the image with the Hanning fil-

ter produces the highest Pc, β is also at its highest for this image. Since the Hanning filter

reduces high-frequency energy more than the other filters, the slope of the corresponding loga-

rithm-applied 1D NPS increases, which yields a higher β.

The interpolation method producing higher Pc depends on reconstruction filters and image

planes, while the Fourier interpolation reduces β for all reconstruction filters and image planes.

The frequency response of linear interpolation (sinc2(f)) reduces high-frequency energy, result-

ing in a higher β, but using Fourier interpolation minimizes the effect of linear interpolation.

Fig 4. Pc by human observer. Averaged Pc values of human observers with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0194408.g004
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For the image planes, the longitudinal plane produces higher Pc than the transverse plane

from tasks 1 to 4, and the transverse plane produces higher Pc for tasks 5 and 6, because the

noise power of the longitudinal plane is higher than that of the transverse plane for these two

tasks. The variation of Pc for the various tasks is larger in the longitudinal plane than in the

transverse plane because the noise power varies more significantly in the longitudinal plane, as

shown in Fig 6. As a result, the β value varies more in the longitudinal plane for the various

tasks, as shown in Fig 5.

For both image planes, Pc is highest in task4 and lowest in task6, and Table 4 contains a

summary of Pc and β for these tasks. This shows that a task with higher Pc has higher β, which

is different from the conclusion of the previous study (i.e., higher β implies lower detectability

[16, 17]). This contradiction mainly comes from using apodization filters in the FDK algo-

rithm and the presence of quantum noise, which have not been considered in traditional

mammography studies. Quantum noise is a limiting factor in CT image quality because the

quantum noise level of each CT projection is much higher than that of the mammography

Fig 5. Estimated β. β of the transverse and longitudinal planes.

https://doi.org/10.1371/journal.pone.0194408.g005

Fig 6. 1D NPS. Log-log plots of 1D NPS for the transverse and longitudinal planes.

https://doi.org/10.1371/journal.pone.0194408.g006
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with an equivalent dose assumption. For a qualitative comparison, Fig 7 shows example recon-

structed images with the signal for the various tasks.

Fig 8 shows the Pc values for the human and model observers. Note that Pc for the anthro-

pomorphic model observers (NPWE4i, NPWEf, Gabor CHOi and D-DOG CHOi) in Fig 8 is

calculated using the optimal ε, c, and a values summarized in Table 5. LG CHO shows the

highest Pc value for all tasks and image planes. Fig 9 shows scatter plots of Pc between the

human and anthropomorphic model observers, and corresponding linear regression lines.

Table 4. Pc and β of the task which produces the highest Pc (task4) and lowest Pc (task6).

Transverse Longitudinal

Pc β Pc β

Task4 0.85 2.13 0.93 2.23

Task6 0.74 2.07 0.72 1.89

https://doi.org/10.1371/journal.pone.0194408.t004

Fig 7. Example CBCT images. Example images with a 2mm diameter signal for the transverse (upper) and

longitudinal planes (lower).

https://doi.org/10.1371/journal.pone.0194408.g007

Fig 8. Pc by human and model observers. The Pc value of the human and model observers with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0194408.g008
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The greater the similarity between the linear regression line and y = x line, the higher the cor-

relation between the human and model observers. NPWEf shows the best correlation with a

human observer in both the transverse and longitudinal planes; the eye filter profiles for

NPWEf with optimal c are shown in Fig 10. The eye filter has its peak value at 1cyc/mm, which

translates to 7cyc/degree for a 400mm viewing distance belonging to the sensitive frequency

range of the human visual system [42].

Table 5. Optimal parameters (i.e., ε, c and a) for the anthropomorphic model observers.

NPWE4i NPWEf Gabor CHOi D-DOG CHOi

Transverse ε = 0.001 c = 0.7 a = 2.9 a = 3.8

Longitudinal ε = 0.001 c = 0.6 a = 2.1 a = 2.6

https://doi.org/10.1371/journal.pone.0194408.t005

Fig 9. Correlation between human and model observers. Scatter plots of Pc between human and model observers, and corresponding linear

regression (LR) results.

https://doi.org/10.1371/journal.pone.0194408.g009

Fig 10. Eye filter. Eye filter profiles with the optimal value of c.

https://doi.org/10.1371/journal.pone.0194408.g010
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Conclusion and discussion

We evaluated detectability in breast CBCT images using human and model observers, and β
with various reconstruction filters, interpolation methods, and image planes. In this study,

NPWEf with a peak frequency of 7cyc/degree showed the highest correlation with human

observer performance for the various reconstruction filters, interpolation methods, and image

planes. For both image planes, detectability was highest for the Hanning filter and lowest for

the Ram-Lak filter both with Fourier interpolation. However, higher detectability was not

related to a smaller β value in the presence of quantum noise.

Although the main focus of this work is to evaluate the detectability in breast CBCT images,

we evaluated detectability for the same tasks with a uniform background. Note that the 2mm
diameter spherical signal was also used for the uniform background case, and the intensity of

the signal was adjusted to produce Pc values ranging from 0.5 to 1 for all tasks. As shown in Fig

11, the NPWEf still showed a high correlation with the human observers for both image

planes. Note that the optimal eye filter for a uniform background had a peak value at around

1.5cyc/mm, which is different from the breast anatomy background (1cyc/mm as shown in Fig

10). This result indicates that the peak frequency of an eye filter depends on image statistics.

In contrast to the results with breast CBCT images, both Gabor CHOi and D-DOG CHOi

showed good correlation with human observers for the longitudinal plane.

Of the model observers, NPWEf showed the highest correlation with human observers, but

its performance was sensitive to the peak frequency of the eye filter. Thus, optimization for

one signal size might not have been optimal for other signal sizes. In these cases, D-DOG

CHOi would be more useful to predict human observer performance, as shown in [20].

We used a central single slice of the CBCT images, but in order to take signal information

along the direction in which the image slices are stacked into account, evaluating multiple

slices of CBCT images is required, which is a subject for future research.

Since our study is a preliminary investigation of detectability in breast CBCT images, we

modelled the breast volume using simple characteristics of breast anatomy without consider-

ing detailed morphological features such as tissue orientation [43], other tissue types [44], vari-

ous VGF values [45], and other shapes of lesion [46]. In our CBCT simulation, we did not

Fig 11. Pc by human and model observers for uniform background. Pc of human and model observers with 95% confidence intervals for uniform

backgrounds.

https://doi.org/10.1371/journal.pone.0194408.g011
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consider the effect of beam hardening and scatter because their effects on image quality are

dependent on X-ray energy, object size, and data acquisition geometry. In the presence of

beam hardening and scatter, detectability will be reduced due to the decreased contrast, espe-

cially for low contrast small objects. However, the effects of the apodization filter and interpo-

lation method on detection task would remain the same. We also assumed an ideal detector

response. Correlation between detector pixels and nonuniform detector pixel response

degrade the overall image quality, and thus provide lower detectability in our tasks. In future

studies, we aim to extend this work to clinical breast CBCT images, for which we will consider

these physical factors.
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