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Numerical observation of emergent spacetime
supersymmetry at quantum criticality
Zi-Xiang Li1,2, Abolhassan Vaezi3*, Christian B. Mendl4,5, Hong Yao1,6*

No definitive evidence of spacetime supersymmetry (SUSY) that transmutes fermions into bosons and vice versa
has been revealed in nature so far. Moreover, the question of whether spacetime SUSY in 2 + 1 and higher
dimensions can emerge in generic lattice microscopic models remains open. Here, we introduce a lattice realiza-
tion of a single Dirac fermion in 2 + 1 dimensions with attractive interactions that preserves both time-reversal
and chiral symmetries. By performing sign problem–free determinant quantum Monte Carlo simulations, we
show that an interacting single Dirac fermion in 2 + 1 dimensions features a superconducting quantum critical
point (QCP). We demonstrate that theN = 2 spacetime SUSY in 2 + 1 dimensions emerges at the superconducting
QCP by showing that the fermions and bosons have identical anomalous dimensions 1/3, a hallmark of the emer-
gent SUSY. We further show some experimental signatures that may bemeasured to test such emergent SUSY in
candidate systems.
INTRODUCTION
Spacetime supersymmetry (SUSY) was originally proposed as a fun-
damental symmetry of nature more than four decades ago, but no ex-
perimental evidence of SUSY in particle physics has been confirmed.
Recently, it has been theoretically argued that SUSY can also sponta-
neously emerge in certain condensedmatter systems (1–14), e.g., near
the superconducting (SC) quantum critical point (QCP) of an inter-
acting single-flavor Dirac fermions in 2 + 1–dimensional (2 + 1D)
systems (5, 6). However, verification of this fascinating N = 2 SUSY
of a single Dirac fermion in microscopic lattice models in 2 + 1D by
nonperturbative and unbiased approaches is still lacking and is thus
highly desired.

Dirac fermions are essential ingredients of modern physics that
can appear as either elementary particles such as electrons and posi-
trons or emergent quasiparticles, e.g., massless Dirac fermions in
graphene and on the surface of 3D topological insulators (15, 16).
For a single flavor of massless interacting Dirac fermion in 2 + 1
dimensions, there are numerous interesting phenomena and theo-
retical predictions, from emergent spacetime SUSY at the SC QCP
(5, 6) to the surface topological order (17–20), as well as fermion
dualities (21). Although a single Dirac cone can occur on the surface
of 3D topological insulators, studying such interacting problems in
2 + 1D microscopic models has been highly challenging due to the
notorious no-go theorem of fermion doubling. According to this
theorem, it is impossible to realize a single Dirac fermion in local lat-
ticemodels in two spatial dimensions while maintaining time-reversal
and chiral symmetries. Usual lattice regularization of a single-flavor
Dirac fermion violates some of those symmetry requirements such
that existing approaches cannot revealmany fascinating features asso-
ciated with a single Dirac fermion.
In this study, we investigate a novel 2D lattice model of spin-1/2 fer-
mions that features a single Dirac point at G, with perfectly linear dis-
persion and quantized p Berry phase around G, and preserves both
time-reversal and chiral symmetries. Fermions in this model can hop
along either the x or y direction, with hopping amplitudes that decay
in power law at long distances. At half-filling, namely, when the Fermi
level is exactly at the neutral point of single Dirac cone, sufficiently
strong attractions between fermions should induce superconductivity
in the system. If the lattice regularization can capture low-energyphysics
of a single Dirac cone, spacetime SUSY could emerge at the SC QCP.
Consequently, it is highly desired to investigate universal properties of
this putative SC quantum phase transition by a reliable and nonperturba-
tivemethod like quantumMonteCarlo (QMC) (22) without encountering
the fermion sign problem (23, 24). However, QMC methods are sign
problem free only for limited classes of interacting models (25–32).

Our lattice model of a single Dirac cone with onsite Hubbard at-
tractive interactionU is sign problem free, which allows us to study the
emergent behaviors of the SC quantum phase transition in a numerically
reliable way. From the state-of-the-art QMC simulations, we provide
convincing evidence that the N = 2 spacetime SUSY emerges at the
SCQCP, as shown schematically in Fig. 1. First, the fermions and order
parameter bosons have identical anomalous dimensions that are
consistent with the exact value of 1/3 (33) associated with the N ¼ 2
SUSY. Moreover, we obtain the correlation-length exponent n = 0.87 ±
0.05, which is consistent with the nearly exact result of 0.917 obtained
from conformal bootstrap calculations (34) of theN ¼ 2SUSY in 2 +
1 dimensions. Moreover, our QMC calculations show that the local
electronic density of states r(w) at w≪ 1 behaves like r(w)º wa with
the exponent a = 1.37 ± 0.07, close to the exact value of 4/3 associated
with theN ¼ 2 SUSY, which can be measured in experiments such as
scanning tunneling microscopy (STM) to test the predicted SUSY.
RESULTS
The single Dirac fermion model
To regularize a single Dirac fermion on the square lattice while preserv-
ing both time-reversal and chiral symmetries, we consider the following
single-particle Hamiltonian

H0 ¼ ∑
ij
ðtijc†i↑cj↓ þH:c:Þ ð1Þ
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wherec†is creates an electron at site iwith spin polarization s = ↑/↓, and
tij = tR (R = ri − rj) is the hopping amplitude given by

tR ¼ f ðRx; LxÞdRy ;0 þ if ðRy; LyÞdRx ;0 ð2Þ

with f ðRa; LaÞ ¼ i ð�1ÞRa
La
p sin

pRa
Lað Þ, Ra = 1,⋯, La − 1, and La denoting the

number of sites along the a = x, y direction of the square lattice. This
type of regularized single Dirac fermion on the lattice was dubbed
“SLAC” fermions (35). Note that the feature of hopping only
along either the x or y direction is not essential, and appropriate
hopping along other directions can be added without qualitatively
changing themain physics discussed below.We now show that the
above lattice model (or SLAC fermion) satisfies all of the require-
ments expected for a single Dirac fermion for all practical reasons.

It is straightforward to perform a Fourier transform from real to
to momentum space and obtain

H0 ¼ ∑
p
y†
pvFðpxsx þ pysyÞyp ð3Þ

where yp = (cp↑, cp↓)
T, with cps annihilating a fermion with momen-

tum p = (px, py) and spin s, vF is the Fermi velocity (we set vF =
1 hereafter), and sa denotes Pauli matrices. Note that the momen-
tum eigenvalues p run over the first Brillouin zone and are quantized
as pa ¼ 2np

La
for periodic boundary conditions. It is clear that the lattice

model has a single Dirac point at p = 0 (namely, G point) with a linear
dispersion all theway to the edges of the first Brillouin zone, as shown in
Fig. 2A. Moreover, it can be easily verified that the model does not vary
under both time-reversal and chiral symmetries. Note that our model
does not directly contradict the fermion-doubling theorem because
the hopping here is not local. The hopping amplitudes decay as 1/r
at long distance.

Besides linear dispersion around the single Dirac point, the lattice
model above also exhibits most of the other physical properties
expected for Dirac fermions such as p Berry phase around the Dirac
point and chiral edge states along mass domain walls. By considering
the mass term in the lattice model, namely,H0→H0 þm∑ic

†
i s

zci, it is
straightforward to verify that the lattice model gives a Berry phase,
which is sgn(m)p for the whole Brillouin zone excluding its boundaries,
Li et al., Sci. Adv. 2018;4 : eaau1463 2 November 2018
as shown in Fig. 2B. However, the total Berry phase vanishes due to the
− sgn(m)p contribution of the Brillouin zone boundaries. Although this
observation seemingly implies the absence of protected zeromodes and
gapless edge states |m| > 0 according to the Atiyah-Singer’s index
theorem, we shall show below that the edge states along domain walls
are nearly gapless with a tiny gap that vanishes as 1/L, where L is the
distance between two domain walls.

We now explicitly consider a domain wall for themass term along
the x direction and periodic boundary condition along the y direc-
tion. The local mass term has the following profile:m(x < Lx/2) =m0

andm(x≥ Lx/2) = −m0, wherem0 is a finite constant. In Fig. 2C, the
energy eigenvalues are plotted against ky. Two nearly gapless modes
with opposite chiralities appear because of the presence of two domain
walls. A direct examination of the single-particle wave functions reveals
that the chiral (anti-chiral) branch of edge states is localized aroundx ¼
Lx
2 (x = Lx). For finite Lx, because of the nonzero value of the direct
hopping between the two domain walls, the edge states exhibit a tiny
gap that decays to zero algebraically (º 1/Lx), as shown in Fig. 2D.
The emergence of the chiral modes along boundaries implies that
Ceff
m>0 � Ceff

m<0 ¼ 1. Recall thatm>0 andm<0 regions are time-reversal
partners and thusmust have opposite Chern numbers, namely,Ceff

m>0 ¼
�Ceff

m<0. We thus obtainCeff
m ¼ sgnðmÞ=2. Therefore, for all practical

reasons, the effective Chern number of the above hoppingmodel can
be considered as sgn(m)/2, similar to the surface of 3D topological
insulators.

SC quantum criticality
Having shown that the regularized lattice model exhibits almost all
physical properties of a single Dirac fermion, we are ready to con-
sider interactions in such a system with the following Hamiltonian

H ¼ H0 þ∑
i
Uðni↑ � 1=2Þðni↓ � 1=2Þ ð4Þ

where U denotes the strength of onsite Hubbard interactions and
nis ¼ c†iscis . With the onsite Hubbard interactions, the model still
respects the particle-hole symmetry such that the system stays at
half-filling. When the Hubbard interaction is attractive, namely, U <
0, this model is sign problem free in QMC (the details of QMC are
discussed in the supplementary materials). Consequently, the interact-
ing effects can be investigated by large-scale numerically reliable QMC
simulation. Here, we use projector QMC in the Majorana representa-
tion to study the ground-state properties as well as the nature of quan-
tum phase transitions of the model in Eq. 4 with attractive Hubbard
interaction. (Previously, quantum criticality was only studied by QMC
in 2D Dirac semimetals with even number of Dirac cones.)

It is expected that singlet SC pairing can be generated when the
attractive Hubbard interaction is sufficiently strong. To study the
quantum phase transition into the putative SC phase, we calculate
the structure factor of onsite singlet pairing on a system with size L�
L: SSCðLÞ ¼ 1

L4 ∑ij〈D
†
i Dj〉, where Dj = cj↓cj↑. The SC long-range order

can be extracted through finite-size scaling (FSS)D2
SC ¼ limL→∞SSCðLÞ.

Besides, we also measure the quasiparticle excitation gap from time-
dependent Green’s function. From the state-of-the-art QMC simula-
tions (shown in the supplementary materials), we show that the SC
order parameter is finite and the single-particle gap is opened when
the Hubbard interaction exceeds a critical value.

To accurately identify theQCP,we evaluate the renormalization group
(RG)-invariant quantity Binder ratio that is independent of the system
Single Dirac fermion SuperconductorSUSYSUSSY U

T

Fig. 1. The phase diagram of a single-flavor Dirac fermion with interactions.
From sign problem–free start-of-the-art QMC simulations, we show that the N ¼
2 spacetime SUSY emerges at the SC QCP. The QMC calculation is performed at
zero temperature, and the phase diagram at finite temperature is schematic.
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sizes at the critical point. The Binder ratio is defined asB ¼ M4

M2
2
, where

M2 ≡ 1
N2 ∑ij〈D†

i Dj〉 andM4 ≡ 1
N4 ∑ijkl〈D†

i D
†
j DkDl〉 for a system withN =

L2 sites. The quantumphase transition point is identified as the crossing
point of the Binder ratio for different system sizes L. The results for the
Binder ratio, as shown in Fig. 3A, convincingly demonstrate that there is
a quantum phase transition from the Dirac semimetal phase to the SC
phase occurring atU=Uc≈− 0.83 (in unit of the bandwidth). In the SC
phase, our QMC calculations show evidences of expected Goldstone
modes and Higgs bosons.

Emergent 2 + 1D spacetime SUSY
At the SCQCPU=Uc, the system features a singleDirac fermionmode
as well as a single complex boson (here, the complex boson is the SC
order parameter fluctuation). It was argued from the perturbative re-
normalization group analysis in 4 − e spacetime dimensions that a 2 +
1D N ¼ 2 SUSY might emerge by setting e = 1 (5–7). However, it is
not known a priori whether such spacetime SUSY can emerge in a mi-
croscopic model at the QCP and nonperturbative methods such as
QMC are needed to address this unambiguously.
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If the 2 + 1DN ¼ 2 SUSY emerges at the SC QCP, the anomalous
dimensions of fermions and bosons at the QCP should be identical
and are equal to 1/3, namely,hf ¼ hb ¼ 1

3. The equivalence of fermion
and boson anomalous dimensions is a hallmark of SUSY. To verify
whether the SC QCP in our model features an emergent spacetime
SUSY, we study the critical properties of this quantum phase transition
systematically through FSS analysis (the details of FSS are shown in the
supplementary materials). The anomalous dimensions of the boson
and fermion can be extracted via the correlation functionsM2º 1

L1þhb

and Gf ðLÞ ¼ 1
L2 ∑i〈c

†
i ciþR

→

m
þ h:c〉º 1

L2þhf
according to the definition

of anomalous dimensions. Here, R
→

m ¼ L�1
2 ; L�1

2

� �
is the largest sep-

aration between two sites in the system.
The bosonic and fermionic correlation functions at the QCP are

shown in Fig. 3 (B and C). The anomalous dimensions of the boson
and fermion are equal to each other within error bar: hb = 0.32 ±
0.02 and hf = 0.34 ± 0.05. Moreover, the values of the bosonic and fer-
mionic anomalous dimensions obtained from QMC are consistent
with the exact result of 1/3 associated with the 2 + 1D N ¼ 2 SUSY.
These results provide convincing evidence that the SC QCP in our
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Fig. 2. The band structure of lattice fermions with a single Dirac cone. (A) Energy dispersion for a massless lattice Dirac Hamiltonian. The energy dispersion is
perfectly linear and given by E±kx ;ky ¼ ±jkj. (B) Berry flux of the same model with a finite mass m = 1. Although the total Berry phase vanishes, we obtain qB ≃ p upon
excluding the boundaries of the Brillouin zone. (C) We obtain a nearly gapless left-moving (right-moving) boundary state near x = 0 (x = L/2) by creating a domain wall
in the mass term. The results are obtained for |m| = 1, and Lx = Ly = L = 41. The gap at ky = 0 is nonzero and equal to 0.0483. (D) Scaling of the edge-state gap with
system size for |m| = 0.1. This plot implies that DE º 1/L when m → 0.
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regularized lattice model features emergent SUSY. In the supplemen-
tary materials, we present the QMC results of bosonic and fermionic
correlation functions away from the QCP. It is clear that the boson
and fermion anomalous dimensions in the disordered phase away from
the QCP are not equal to each other and deviate from 1/3, which indi-
cates that the consistency of the anomalous dimensions between our
QMC result and the exact result associated with the N ¼ 2 SUSY the-
ory only occurs at the SCQCP. The consistency between the anomalous
dimension of the bosons in themodel and the one in the SUSY theory is
further supported by the results of the data collapse analysis, as shown
in Fig. 3D. In addition, from the data collapse analysis, we extract the
correlation-length critical exponent n = 0.87 ± 0.05, which is consistent
with the nearly exact result of 0.917 obtained from the conformal
bootstrap calculation of the N ¼ 2 SUSY theory in 2 + 1D (34) and
with the results from RG calculations (36, 37). This again indicates that
the SC QCP in the interacting quantum model features the emergent
spacetime SUSY.

Experimental signatures
The SC QCP of a single Dirac fermion is potentially observable in
realistic materials, such as the surface of 3D topological insulators.
There are various experimental ways to check the putative emergent
SUSY at the SCQCP. For instance, at the QCP, the zero-temperature
optical conductivitysðwÞ ¼ K e2

ℏ, where K is a constant known exactly
due to the emergent SUSY (38). Moreover, the SUSY dictates that the
Li et al., Sci. Adv. 2018;4 : eaau1463 2 November 2018
local density of states (LDOS) r(w) of electrons satisfies the scaling law
rðwÞºjwj43 forw≪ 1, which can bemeasured by STM in experiments.
In our model, the LDOS can be calculated by evaluating imaginary-
time single-particle Green’s function Gf (t) = 〈ci(0)ci(t)

†〉 in QMC
simulations and then performing analytical continuation (see the
supplementary materials for details). As shown in Fig. 4A, Gf (t) ob-
tained from QMC simulations at the SC QCP behaves as Gf ðtÞº 1

ta

with the exponent a = 2.34 ± 0.02, which is consistent with the one in
theN ¼ 2 SUSY. Moreover, by analytical continuation, we obtain the
LDOS at SCQCP: r(w)º |w|awith a≈ 1.37± 0.07, as shown in Fig. 4B.
This scaling of LDOS is consistent with the exact result of 4/3 given by
theN ¼ 2SUSYwithin error bar. The LDOS can bemeasured by STM
measurements to experimentally test the emergent SUSY.
DISCUSSION
The emergent SUSY observed at the SC QCP in the 2D microscopic
model above suggests that themicroscopicmodel can capture all essen-
tial physics of a singleDirac cone in 2 + 1D. In particular, itmay be used
to investigate novel properties of a single Dirac cone on the surface of
3D interacting topological insulators, such as non-Abelian Majorana
zero modes at magnetic vortex cones when the single Dirac fermion
is SC (39). Moreover, it has been recently argued that it is possible to
gap out the single Dirac cone surface states of 3D topological insulators
without breaking any symmetry through strong interactions, and the
Fig. 3. The QMC results of SC quantum criticality in a single Dirac fermion. (A) The Binder ratio results show that SC phase transition occurs at Uc ≈ 0.83. (B) From
the structure factor of the SC order parameter plotted versus L, we obtain the boson anomalous dimension hb = 0.32 ± 0.02. (C) From the fermion correlation function at
largest separation R

→

m ¼ L�1
2 ; L�1

2

� �
plotted versus linear system size L, we obtain fermion anomalous dimension hf = 0.34 ± 0.05. (D) By using data collapse analysis of SC

structure factors near U = Uc for L = 11, ⋯, 21, we obtain the transition point Uc = 0.827 and critical exponents hb = 0.32 ± 0.02 and n = 0.87 ± 0.05.
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resulting exotic gapped ground state exhibits nontrivial topological
order (17–20). One of the approaches to justifying the quantum phase
transition involves disordering the time-reversal symmetric Fu-Kane
state via the multiple-vortex proliferation mechanism. We think that
adding the interactionVð∑〈ij〉D

†
i Dj þH:c:Þwith V > 0 in Eq. 4 can de-

stroy the SC phase coherence. It would be interesting to study in the
future whether such regularized models of a single Dirac fermion can
realize the nontrivial surface topological order.

Our work also motivates further studies of other types of 2 + 1D
spacetime SUSY in microscopic models by nonperturbative methods.
For instance, a sign problem–free microscopic lattice model similar to
the one in the present work may be constructed for a single 2 + 1D
massless Majorana fermion that can emerge on the surface of 3 + 1D
topological superconductors. Strong short-range interactions can gap
out Majorana fermions by breaking the time-reversal symmetry, and
its QCP may realize an N ¼ 1 SUSY (5).

We now discuss distinctions between our work and previous simu-
lations of the supersymmetric Wess-Zumino model [see, e.g., (40)].
Previous works mainly investigated lattice regularization of super-
symmetric field theories. In contrast, we consider the microscopic lat-
ticemodel that canmimic the surface of 3D topological insulators with
attractive interactions and then investigate whether spacetime SUSY
emerges at the SC quantum criticality. Moreover, lattice models studied
in previous works are all sign problematic. In contrast, the microscopic
lattice model proposed in the present work is sign problem free such
that we are able to perform large-scale QMC simulation to reliably ver-
ify whether spacetime SUSY emerges at long distance and low energy.

Our unbiased and numerically reliable simulations of the micro-
scopic quantummodel of a single Dirac cone have provided convincing
evidence of emergentN ¼ 2 spacetime SUSY in 2 + 1 dimensions at
the SC QCP. The results presented here can lend concrete support to
potentially realize emergent spacetime SUSY in quantum materials
such as the surface of 3D topological insulators, e.g., Bi2Se3. If realized
experimentally, it will not only shed light on the intriguing interplay
between topology and symmetry but also provide a promising arena
to explore SUSY as well as its spontaneous breaking.
METHODS
Quantum Monte Carlo
Weused projector QMC to investigate the ground-state properties of
the model of single Dirac fermion described by the Hamiltonian in
Li et al., Sci. Adv. 2018;4 : eaau1463 2 November 2018
Eq. 1 with attractive Hubbard interaction. In the projector QMC, the
expectation value of an observable O in the ground state can be eval-

uated as 〈y0jOjy0〉

〈y0jy0〉
¼ limQ→∞

〈yT je�QHOe�QH jyT 〉

〈yT je�2QH jyT 〉
, where y0 is the true

ground-state wave function and |yT〉 is a trial wave function that
should have a finite overlap with the true ground-state wave function.
Note that Q is a projection parameter in the simulation. Although
Q→ ∞ is needed to reach the exact ground state, in numerical calcu-
lations a sufficient large Q works for practical purposes of obtaining
physical quantities with required accuracy. Because of the absence of
sign problem, we can perform large-scale QMC simulations with large
system sizes and sufficiently large Q values. In our QMC simulation,
we used periodic boundary condition on the square lattice L × L with
largest L = 21. The imaginary-time projection parameter is 2Q = 60/t
formost systems in the calculation. In the calculation of single-particle
gap, the systemswith large sizeswere computedusing2Q =70/t.Wehave
checked that all the results stayed nearly the same when larger Q values
were used, which ensured desired convergence to the limit of Q → ∞.

Because the computational complexity of the determinant QMC
algorithm scales in cubic power with the system’s volume, it is highly
challenging to simulate a fermionic lattice model with a very large size
byQMC.Our sign problem–freeQMCsimulation studied the fermionic
model with the largest size accessible within a reasonable computation
time. Note that, although numerical results obtained from simulating
fermionic models with finite system sizes could have a certain degree
of uncertainty, the numerical evidences of emergent SUSY provided
by our state-of-the-art QMC simulations are already convincing. It is
partly because the rawdata obtained fromdeterminantQMC typically
have a small statistical error. Moreover, the results of critical expo-
nents extracted from different FSS methods are consistent with each
other within error bars, which also indicate that the critical exponents
obtained by our QMC simulations are reliable.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaau1463/DC1
Supplementary Text
Fig. S1. The QMC results of superconductivity structure factors and single-particle gaps.
Fig. S2. The scaling behaviors of superconductivity structure factors and fermion correlation
away from the QCP.
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