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Fibroblast growth factors (FGFs) regulate embryonic development and

homeostasis, including tissue and organ repair and specific aspects of meta-

bolism. The basic FGF and acidic FGF, now known as FGF2 and FGF1,

are widely used protein drugs for tissue repair. However, they are suscepti-

ble to denaturation at ambient temperatures and during long-time storage,

which will reduce their biological activity. The interaction of FGFs with

the sulfated domains of heparan sulfate and heparin is essential for their

cellular signaling and stability. Therefore, we analyzed the interactions of

FGF1 and FGF2 with four sulfated polysaccharides: heparin, dextran sul-

fate (DXS), k-carrageenan, and chondroitin sulfate. The results of thermal

stability and cell proliferation assays demonstrate that heparin, DXS, and

k-carrageenan bound to both FGFs and protected them from denatura-

tion. Our results suggest heparin, DXS, and k-carrageenan are potential

formulation materials that bind and stabilize FGFs, and which may also

potentiate their activity and control their delivery.

Fibroblast growth factors (FGF) regulate embryonic

development and homeostasis, including the repair of

tissues and organs and specific aspects of metabolism

[1,2]. The basic FGF and acidic FGF, now known as

FGF2 and FGF1, respectively, are the most studied

FGFs and have been developed as therapeutics [1].

Along with the other paracrine FGFs, they bind to

heparan sulfate (HS) chains and interact with FGF

receptors (FGFR) (Fig. 1A). Activation of the FGFR

by the binding of FGF ligand and HS co-receptor

induces the activation of the FGFR kinase [3–5]. This

phosphorylates its targets, leading to the activation of

many intracellular signaling pathways, for example,

RAS-RAF-MAPK and PI3K-AKT, which regulate cell

fate and specific cell activities [2,6–8].

Since FGF1 is the universal FGF ligand and so acti-

vates all FGFRs, and FGF2 activates ‘c’ isoform recep-

tors, they possess multiple activities in development

and in homeostasis, for example, mitogenic, neu-

rotrophic and angiogenic activities [9,10]. Conse-

quently, FGF1 and FGF2 have been developed as

therapeutics for tissue repair. For example, FGF1 and

FGF2 are used to accelerate wound healing in skin

[1,11]. FGF1 and FGF2 (natural or Escherichia coli-

derived) have potent activities on many cell types, but

their activity, especially that of FGF1, reduces over
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time, even at body temperature [12–16]. Temperature-

depended denaturation and degradation by enzymes

are likely to contribute to limiting the efficacy of these

FGFs [17–21].

As well as enabling the formation of an active sig-

naling complex with the FGFR (Fig. 1A), the interac-

tion of the paracrine FGFs with heparin (Fig. 1B) or

the related physiologically relevant polysaccharide,

HS, increases their stability, including resistance to

heat-induced denaturation and proteolysis [22]. Bind-

ing to HS also regulates their diffusion from source to

target cell in tissues, and so their gradients and

bioavailability [23–25]. A large body of work demon-

strates that the interaction of FGFs with HS/heparin

is mainly mediated by the sulfate groups on the

polysaccharides [26]. However, heparin is expensive

and it also has strong anti-coagulation activity, and so

is not suitable as an activity enhancing component of

a FGF therapeutic formulation [27,28]. Another com-

mon commercial animal-derived sulfated polysaccha-

ride is chondroitin sulfate (CS), which has a N-acetyl-

D-galactosamine (GalNAc) amino sugar, beta 1–3
linkages and is less sulfated (Fig. 1B), and is consid-

ered to only bind weakly to just a subset of FGFs

[19,29]. Two highly sulfated polysaccharides are dex-

tran sulfate (DXS) (six sulfate groups per disaccharide

unit) and k-carrageenan (three sulfate groups per dis-

accharide unit) (Fig. 1B), which like CS are cheap

and, due to their higher sulfation, may bind FGFs and

so be potential additives for FGF protein formulations

[30,31]. In the present work, we aim to determine the

stabilization effects of DXS and k-carrageenan on

FGF1 and FGF2 and the ability of these polysaccha-

ride chains to protect the biological activity of these

FGFs.

Materials and methods

Materials

The polysaccharides were purchased from Sigma (St. Louis,

MO, USA, heparin, 18 kDa average molecular mass; k-car-
rageenan) and Solarbio (Beijing, China, DXS, 500 kDa

average molecular mass and CS, 5–20 kDa). Since CS is

often a mixture of species, this was analyzed by NMR [35]

(Fig. 2). The data indicate that it is 60% chondroitin 4-sul-

fate, 40% chondroitin 6-sulfate, with other polysaccharides

at too low a level to be reliably detected. E. coli strain

(BL21) for protein expression was bought from Transgen

Biotech (Beijing, China). Heparin affinity gel (Bio-Rad,

Hercules, CA, USA), nickel affinity gel, and SP Sepharose

Fast Flow (GE Healthcare Life Sciences, Uppsala, Sweden)

were used for FGF protein purification. SYPRO Orange

dye and optical 96-well plates were from Thermo Scientific

(Eugene, OR, USA). The 293T cell line was from the stem

cell bank of the Chinese Academy of Sciences (Shanghai,

China). For 293T cell culture, the following materials were

A

B

Fig. 1. Structural interaction of HS, FGF,

and FGFR and the distribution of sulfate

groups in heparin, k-carrageenan, DXS,

and CS. (A) FGF1 and FGF2 contain three

HS binding sites in green which can

interact with HS [19,32]. This interaction

can stabilize the FGF protein and form a

stable complex with FGFR competent to

generate signals in the cytoplasm. (B)

Structures of the disaccharide units of

heparin, k-carrageenan, DXS, and CS with

sulfate groups in red. For heparin, this is

the structure of the most common

disaccharide unit, and 25% of

disaccharides have fewer sulfate groups.

HS has the same disaccharide structure as

heparin, but is less sulfated [33,34].
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used: Dulbecco’s modified Eagle’s medium (DMEM, con-

taining 4500 mg�L�1 glucose and 4 mM L-Glutamine;

HyClone Laboratories, Logan, UT, USA; GE Healthcare

Life Sciences), FBS (PAN Seratech, Aidenbach, Germany),

PBS, trypsin, and penicillin–streptomycin (all Solarbio); cell

culture dishes and 96-well plates were from Corning

(Oneonta, NY, USA) and the Cell Counting Kit-8

(CCK-8) for detecting cell proliferation was bought from

Dojindo (Shanghai, China).

FGF protein preparation

FGF1 and FGF2 proteins with a hexahistidine tag were

expressed and purified as described [14,36]. Briefly, FGF1

and FGF2 were expressed in BL21 cells at 18 °C for 18 h.

The bacteria containing FGF protein were harvested and

stored at �80 °C. The bacterial pellets were resuspended in

lysis buffer (50 mM Tris/Cl and 0.6 M NaCl, pH 7.4), and

the cells were disrupted by sonication on ice. Cell debris

and insoluble proteins were pelleted by centrifugation at

4 °C, 30 000 g for 30 min. The supernatant containing

FGF protein was purified by heparin affinity-gel chro-

matography. The eluate was further purified with nickel

affinity chromatography and SP Sepharose Fast Flow chro-

matography to remove any remaining impurities, and the

purified FGF protein was stored at �80 °C. Purification

was confirmed by SDS/PAGE.

Protein thermal stability assay

Heparin powder (500 mg) was dissolved in 50 mL PBS to

prepare a 10 mg�mL�1 heparin solution for differential

scanning fluorimetry (DSF) assays. DXS (10 mg�mL�1),

k-carrageenan (10 mg�mL�1), and CS (10 mg�mL�1) were

prepared in the same way. Each polysaccharide was diluted

with PBS to prepare a range of concentrations.

Differential scanning fluorimetry was used to detect the

thermal stability of FGFs, as described [26]. The purified

Fig. 2. Analysis of sulfation degree of CS. The C13 spectrum of the CS was analyzed with nuclear magnetic resonance (Acend 400 NMR,

Bruker BioSpin, Bruker Scientific Technology Co., Ltd., Shanghai, China) by scanning for 20 h. The GalNAc signal comprises 40% 6-O-

sulfate and 60% 6-OH groups, which indicates that the polysaccharide is a mixture of chondroitin 4-sulfate (60%) and chondroitin 6-sulfate

(40%).
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FGFs (5 lM), polysaccharide ligands (8 lL of a particular

concentrations), SYPRO Orange dye (1009, 4 lL), and

PBS (added to make up total volume to 40 lL; 137 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM

KH2PO4, pH 7.4) were mixed, and 10 lL added to each of

three wells in an optical 96-well plate [26,37]. The plate was

then covered with Optical Adhesive Film to prevent evapo-

ration. The melting curve data were acquired with a

QuantStudioTM 7 Flex Real-Time PCR machine (Applied

Biosystems Life Technologies, Woodlands, Singapore). The

running method was designed to raise the temperature from

32 °C to 81 °C (for FGF1) and to 92 °C (for FGF2) at a

heating rate of 0.05 °C�s�1. The raw data were exported

for further analysis of melting temperature (Tm) after

measurement.

DSF data analysis

The DSF data were analyzed with SimpleDSFviewer to

obtain melting curves, first derivative curves and so the Tm

[38]. The Tm was calculated by the half denaturation

method [38]. The melting curve and first derivative curve

were plotted in Excel, and the averaged Tm with standard

deviation was plotted in MATLAB 2015a (The MathWorks,

Natick, MA, USA).

Cell culture and cell growth assay

293T cells were cultured in DMEM containing 10% (v/v)

FBS and 1% (v/v) penicillin–streptomycin. For cell growth

assays, 293T cells were dispensed into 96-well plates at

2000 cells/well. After 24-h incubation, the cells were washed

twice with PBS and cultured in DMEM containing 0.5%

(v/v) FBS for another 24 h. FGF1, FGF2, and polysaccha-

rides were added to the wells for 36 h, as described in the

figure legends, after which CCK-8 (10 lL) was added to

each for 2 h. The absorbance at 450 nm was then measured

using a microplate reader (SpextraMax i3; Molecular

Devices, San Jose, CA, USA).

To detect the thermal protection effect of polysaccha-

rides, FGF1 and FGF2 were diluted to 400 ng�mL�1 with

DMEM with or without polysaccharide (1 lg�mL�1). The

samples were incubated at 37 °C for 1 or 2 days and then

added to cells in 96-well plates. The cell growth assay pro-

tocol was then followed; 293T cells were seeded into 96-

well plates and starved with DMEM containing 0.5% (v/v)

FBS (90 lL) for 24 h. Then, 30 lL of the pre-incubated

samples of the FGFs was added to obtain a final concen-

tration of 100 ng�mL�1 FGF with or without polysaccha-

ride in each well.

All of the acquired absorbance values (450 nm) for

CCK-8 assay were normalized to the absorbance of the

DMEM control group, and the results were analyzed and

presented in MATLAB 2015a. Statistical analysis was per-

formed with ORIGINPRO 2019 software (OriginLab

Corporation, Northampton, MA, USA). Multiple com-

parisons were analyzed by one-way analysis of variance

with the Tukey test. P < 0.05 was considered significantly

different.

Results and Discussion

Determination of interactions of FGFs with

sulfated polysaccharide chains

FGF1 and FGF2 were purified by heparin affinity and

nickel affinity chromatography. The melting curves of

FGF1 and FGF2 (Figs 3 and 4) indicated a Tm of

FGF1 of 49.5 °C and of 56.5 °C for FGF2. These

data are entirely consistent with those previously pub-

lished [15,26], which demonstrates that the purified

FGF1 and FGF2 were correctly folded.

In the presence of heparin, the melting curve of

FGF1 shifted to the right, indicating a stabilization of

the protein through its interactions with the polysac-

charide (Fig. 3A). This stabilization effect was first

apparent at 20 lg�mL�1 heparin (Tm 51.8 °C, Fig. 3A)

and reached a maximum at 2000 lg�mL�1 heparin (Tm

62.0 °C, Fig. 3A). Since k-carrageenan and DXS are

both highly sulfated polysaccharides, their ability to

interact with FGF1 was tested. The DSF results indi-

cate that FGF1 binds strongly to both k-carrageenan
and DXS, since it is stabilized by both polysaccharides

(Fig. 3B,C,E). Moreover, the stabilization effect is

concentration-dependent. The stabilization effect of

k-carrageenan was first observed at 100 lg�mL�1 (Tm

51.5 °C, Fig. 3B), and the Tm reached the maximum

(Tm 60.5 °C, Fig. 3B) at 2000 lg�mL�1. Thus, the sta-

bilization effect of k-carrageenan is significantly weaker

than that of heparin (P < 0.05). DXS possesses the

highest sulfation level, and its stabilization effect was

first apparent at 2.5 lg�mL�1 (Tm 50.8 °C, Fig. 3C).

The melting curve then shifted to the right as the con-

centration of DXS was increased, and the Tm reached

64.3 °C at 2000 lg�mL�1 DXS (Fig. 3C). DXS was,

therefore, more effective at stabilizing FGF1 than hep-

arin. In contrast, CS did not have a detectable stabiliza-

tion effect on FGF1, which may reflect its lower

sulfation or different backbone (Fig. 3D) or both.

The DSF results indicate that FGF2 is a more stable

protein than FGF1 (Figs 3 and 4), which is consistent

with the previous studies [15,20]. The Tm of FGF2

increased at 5 lg�mL�1 heparin (Tm 58.1 °C, Fig. 4A)

and was highest at 2000 lg�mL�1 heparin (Tm 80.3 °C,
Fig. 4A,E). Similarly to heparin, k-carrageenan also

increased the Tm of FGF2 from 58.6 °C at 40 lg�mL�1

to 69.9 °C at 2000 lg�mL�1 (Fig. 4B,E). When FGF2

was stabilized by DXS, the melting curves showed two
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FGF2 melting states (not stabilized FGF2 and polysac-

charide-stabilized FGF2) (Fig. 4C,E). These indicate

that over the timescale of the temperature change DXS

does not dissociate from FGF2, so there is no averag-

ing of the Tm. This effect is apparent, but much weaker

in the melting curves of FGF2 in the presence of hep-

arin and k-carrageenan. The stabilization of FGF2 by

DXS was 77.2 °C (Fig. 4C). As with FGF1, CS did not

have a detectable stabilization effect on FGF2

(Fig. 4D).
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Fig. 3. Stabilization effect of polysaccharide ligands (heparin, k-carrageenan, DXS, and CS) on FGF1. DSF of FGF1 (5 lM) in the presence of

varying concentrations of polysaccharide ligands (0–2000 lg�mL�1) in PBS (pH 7.4). Melting curve profiles of FGF1 with a range of heparin

(A), k-carrageenan (B), DXS (C), and CS (D). (E) Melting temperatures of FGF1 stabilized with polysaccharide ligands, mean of

triplicates � SD.
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Stimulation of 293T cell growth by FGFs or

polysaccharides

293T cells were used to measure the biological activi-

ties of FGF1 and FGF2 and of the polysaccharides.

When 0.03 ng�mL�1 FGF1 and FGF2 were added to

culture medium, there was no change in cell growth

(Fig. 5A,B). However, cell growth was observed to

increase at 0.1 ng�mL�1 FGF1 or FGF2 (Fig. 5A,B).
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varying concentrations of polysaccharide ligands (0–2000 lg�mL�1) in PBS (pH 7.4). Melting curve profiles of FGF2 with a range of heparin
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Fig. 5. Biological activity of FGFs and polysaccharides on 293T cells. 293T cells were treated with different concentration of FGFs

(0–300 ng�mL�1) and polysaccharides (0–30 000 ng�mL�1) for 36 h, and the cell proliferation was measured with CCK-8. (A) FGF1; (B) FGF2;

(C) heparin; (D) k-carrageenan; (E) DXS; (F) CS. Results are the mean of quadruplicates after normalization, with the �SD region shaded

(A, B) or �SD bars (C–F).
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As the concentration of the growth factors was fur-

ther increased, so did cell growth, until a maximum

was reached at 30 ng�mL�1 FGF1 and 10 ng�mL�1

FGF2 (Fig. 5A,B). These results are consistent with

the NIH 3T3 cell growth assays of the same growth

factors [39].

In the presence of heparin, k-carrageenan, DXS,

and CS alone, no effect on the growth of 293T cells

was observed (Fig. 5C–F). Thus, these four polysac-

charides by themselves have no growth-stimulatory or

toxic effect on the cells.

Protection of FGFs’ biological activities by

polysaccharides

To detect whether the selected polysaccharides can

protect the FGFs’ stability and biological activity,

FGF1 and FGF2 (400 ng�mL�1 in DMEM) were

pre-incubated at 37 °C for 1 day and 2 days to

mimic the effect of long-term exposure to body tem-

perature. A final concentration of FGF1 and FGF2

of 100 ng�mL�1 was chosen, since this elicited a max-

imal response after 2 days (Fig. 5A,B). The results

demonstrate that FGF1 directly taken from the free-

zer (0 day pre-incubation) possessed significant bio-

logical activity on 293T cells comparing to the PBS

control (Fig. 6A). After 1 day pre-incubation at

37 °C, the biological activity of FGF1 was no longer

apparent, indicating the protein had likely denatured

over this time.

However, when heparin, k-carrageenan, and DXS

were added, FGF1 was stabilized and even after the

2 days pre-incubation the FGF1 had the same biologi-

cal activity as FGF1 taken directly taken from the

FGF1 pre-incubation time (day)

FGF2 pre-incubation time (day)

* *

* * * * * *
*

*

**

*

*
A

B

Fig. 6. Protection of biological activities of FGF1 and FGF2 by polysaccharides. FGF1 (A) and FGF2 (B) were pre-incubated with and without

polysaccharide ligands (heparin, k-carrageenan, DXS, and CS) for 0 day, 1 day, and 2 days at 37 °C. Their biological activities were

measured in 293T cells by the CCK-8 assay, and data were normalized to the PBS control. FGF+Pls: FGF with the respective

polysaccharide. Results are the mean of quadruplicates after normalization �SD and statistical analysis performed with the Tukey test.

*P < 0.05.
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freezer (Fig. 6A). These results suggest that heparin, k-
carrageenan, and DXS, which bind FGF1 and increase

its Tm (Fig. 3E) protect its biological activity. Addi-

tion of CS did not show a detectable effect on the pro-

tection of FGF1’s biological activity, which is

consistent with this polysaccharide not increasing the

Tm of FGF1 (Fig. 3E). FGF2 is intrinsically a more

stable protein than FGF1, as shown in Figs 3 and 4.

Similarly to FGF1, FGF2 shows a strong stimulation

of cell growth on 293T cells (Fig. 6B). Moreover, after

2 days pre-incubation at 37 °C the activity of FGF2

on 293T cells remained the same, which suggests addi-

tion of the four polysaccharides is not required for the

protection of FGF2’s biological activity.

Conclusion

FGF1 and FGF2 have very different thermal stabili-

ties, as illustrated by their Tm measured by DSF,

49.5 °C for FGF1 and 56.5 °C for FGF2. Indeed,

FGF1 has been considered to be in a molten globule

state at 37 °C [40]. The thermal stability of FGF1

and FGF2 is substantially enhanced by binding to

heparin (Figs 3E and 4E [26]). It is interesting that

the stabilization of FGF1 by heparin has been

observed in cultured cells, which have pericellular

HS capable of binding and stabilizing the growth

factor [41,42]. This is likely due to the lower affinity

of FGF1 for HS, compared with FGF2 [41], such

that a substantial amount of the protein will parti-

tion into the bulk culture medium rather than onto

pericellular matrix HS. Heparin has a strong antico-

agulant activity and is relatively expensive. However,

we show here that other highly sulfated polysaccha-

rides, DXS and k-carrageenan, can bind to FGF1

and FGF2 and increase their thermal stability.

Moreover, these are able to stabilize FGF1 and

ensure that it retains its activity for longer times.

Thus, biomaterials containing k-carrageenan or DXS

would be suitable for FGF drug delivery and would

enhance the activity of FGF1, allowing lower doses

to be used.
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