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Fibrates, which are agonists of peroxisome proliferator-activated receptor alpha, have
received increasing attention in the treatment of primary biliary cholangitis. Reduced
alkaline phosphatase levels and improved clinical outcomes were observed in patients
with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid
(UDCA) monotherapy4 when treated with bezafibrate or fenofibrate combined with UDCA.
In contrast to obeticholic acid, which exacerbates pruritus in patients, fibrates have been
shown to relieve pruritus. Clinical trial outcomes show potential for the treatment of
primary biliary cholangitis by targeting peroxisome proliferator-activated receptors. It is
currently agreed that primary biliary cholangitis is an autoimmune-mediated cholestatic
liver disease, and peroxisome proliferator-activated receptor is a nuclear receptor that
regulates the functions of multiple immune cells, thus playing an important role in
regulating innate and adaptive immunity. Therefore, this review focuses on the immune
disorder of primary biliary cholangitis and summarizes the regulation of hepatic immunity
when peroxisome proliferator-activated receptors are targeted for treating primary
biliary cholangitis.

Keywords: primary biliary cholangitis, fibrate, cholestatic liver disease, hepatic immunity, peroxisome proliferator-
activated receptor
INTRODUCTION

Primary biliary cholangitis (PBC) is an autoimmune-mediated cholestatic liver disease
characterized by progressive destruction of hepatic interlobular bile ducts, which eventually leads
to liver cirrhosis (1). The diagnosis of PBC depends on elevated alkaline phosphatase (ALP)/g-
glutamyl transpeptidase (g-GT) levels; exclusion of other diseases that may cause cholestasis,
including drug-induced liver injury, biliary stones, and malignant tumors through patient medical
history and imaging examinations; and positive antimitochondrial antibody (AMA) and/or
org July 2022 | Volume 13 | Article 9406881
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antinuclear antibodies (ANA) tests, including anti-gp210 and
anti-sp100. Liver biopsy may be performed when the diagnostic
results for these tests are insufficient to determine PBC (2). PBC
is the only cholestatic disease which has an established treatment
available. Ursodeoxycholic acid (UDCA) has been the only
approved treatment for PBC for over 20 years, until 2016,
when obeticholic acid (OCA) was licensed for the treatment of
primary biliary cholangitis (previously primary biliary cirrhosis)
in combination with UDCA in adults showing an inadequate
response to UDCA or as monotherapy in adults unable to
tolerate UDCA (3). However, there remains a need to develop
improved PBC treatments. Up to 40% of patients with PBC
respond inadequately to UDCA therapy (4), and OCA aggravates
pruritus dose-dependently (5, 6). Recent clinical trials of selective
peroxisome proliferator-activated receptor a (SPPARa) agonists
for the treatment of PBC have received increasing attention.

PPARs are ligand dependent transcription factors and three
isoforms including PPARa (NR1C1), PPARb/d (NR1C2) and
PPARg (NR1C3) are found (7). PPAR isoforms heterodimerize
with retinoid X receptor. This complex regulates gene expression
by binding to specific peroxisome proliferator response elements
located in regulatory site of each gene. Due to differences in tissue
distribution, ligands sensitivity and target genes, these three
PPAR isoforms have distinct but complementary physiological
functions (8). PPARa is highly expressed in the liver, skeletal
muscle, and mainly regulate lipid and glucose metabolism (9).
Fibrates, which are PPARa agonists, are used to treat
hyperlipidemia. PPARg is predominantly expressed in adipose
tissue, which plays an important role in insulin sensitivity (10).
Thiazolidinediones, the PPARg agonists, are used to manage type
2 diabetes. PPARb/d is ubiquitously expressed and is involved in
many physiological processes, including lipid metabolism,
wound healing and inflammation (11). PPARb/d agonists
currently are not approved for clinical use.

The first evidence that fibrates could be used to treat
hepatobiliary disease was presented in 1993, when bezafibrate
treatment caused a reduction in serum and biliary ALP activities
(12). In 1999– 2003, several studies from Japan attempted to treat
primary biliary cirrhosis with bezafibrate (13–18), and the results
of these preliminary studies indicated that bezafibrate was
effective in reducing ALP, g-GT, and immunoglobulin M
(IgM), with or without UDCA. In 2002 and 2004, preliminary
clinical trials of fenofibrate in the treatment of primary biliary
cirrhosis were conducted in Japan, and the results suggested that
combination therapy with UDCA and fenofibrate was useful in
reducing ALP, g-GT, and IgM levels (19, 20). Subsequent clinical
trials and retrospective studies have provided new evidence for
the use of PPAR agonists in the treatment of PBC. Table 1
summarizes the studies that have been published and registered
on the National Institutes of Health clinical trials website (http://
clinicaltrials.gov). Systematic reviews and meta-analyses of these
clinical trials have confirmed the efficacy of bezafibrate and
fenofibrate in improving serological responses and relieving
pruritus in patients (58–63). Clinical trials have attempted to
treat refractory PBC with triple therapy (UDCA, OCA, and
fibrate) (64, 65) with higher risks of adverse events despite a
Frontiers in Immunology | www.frontiersin.org 2
significant reduction in serological markers. Almost all clinical
trials take the serological response of patients as the endpoint
and lack the detection of immune-related indicators. This is due
to a lack of reliable immune-related markers associated with PBC
progression and prognosis. One study showed that IgM shows
potential as a marker to predict the long-term clinical outcomes
of patients with PBC treated with UDCA and bezafibrate (34),
but further evidence is needed to confirm this assumption. In a
particular clinical trial (NCT02931513), researchers evaluated
whether soluble mannose receptor and soluble CD163 (sCD163),
a macrophage activation marker, can be used as potential
predictors of non-response to UDCA treatment and thus, as
predictors of patients needing add-on therapy. Another clinical
trial (NCT04514965, in progress) attempts to investigate how
treatment with bezafibrate as an add-to therapy to UDCA
influences the levels of sCD163, fibrosis markers, and bile acid
composition in patients with PBC.

Innate and adaptive immune-response abnormalities play an
essential role in the occurrence and progression of PBC. Whereas
PPAR, an important component of nuclear receptors, regulates
the function of multiple innate and adaptive immunity-response
cells. However, research on immune regulation related to PPAR
in PBC is limited. Previous studies were evaluated for the
regulation of PPAR on hepatic immunity in the progression of
PBC to identify potentially novel biomarkers and therapeutic
drugs that can be further investigated in future studies.
REGULATION OF IMMUNE RESPONSE
ABNORMALITY BY PPARS IN PBC

Genetic susceptibility and exposure to environmental factors are
the two main contributors to PBC development. Genome-wide
association studies and observations of identical twins have
confirmed genetic associations and risk factors for PBC (66–68).
Molecular mimicry induced by bacterial infection, especially the
pyruvate dehydrogenase complex-E2 (PDC- E2), and xenobiotic
exposure are important environmental factors that disrupt hepatic
immune tolerance and induce PBC (69, 70). T help 1(Th1)-
mediated immunopathological damage to the intrahepatic small
bile duct is a characteristic of PBC (71). In fact, innate and
adaptive immune-response cells collectively participate in the
development of PBC at different stages of the disease, including
monocytes and macrophages with hyperreaction, dendritic cells
with enhanced antigen presentation, and natural killer (NK)/
natural killer T (NKT) cells with enhanced killing properties in
the early stage of PBC. Th17 were shown to inhibit Th2/Treg, and
B cells were also involved in PBC progression. We describe the
specific role of individual immune response cells in PBC
progression and the regulatory role of PPARs in these cells.

Th1/Th2
Interleukin-12 (IL-12)-induced Th1 cells produce IFN-g and
IL-2, whereas IL-4 and IL-2-induced Th2 cells secrete a variety
of cytokines, including IL-4, IL-10, and IL-13 (66). Excessive Th1
immune response leads to uncontrolled tissue damage. High
July 2022 | Volume 13 | Article 940688
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TABLE 1 | clinical studies of PPAR agonists on the treatment of PBC.

Drug UDCA
combination

Number of
patients

Administration
time

Results Re

Bezafibrate
(BZ)

No 22 6m 21 showed a significant reduction in ALP and g-GTP levels and IgM levels of
17 patients decreased after 6m. (21)

Yes/no 12/20 52w 1. BZ monotherapy was as effective as UDCA;2. BZ combined with UDCA
reduced ALP in PBC patients refractory to UDCA

(22)

Yes 15 24m 80% patients refractory to UDCA achieved normal ALP and IgM within 12m
(23)

Yes 19 3m ALT, AST, ALP, GGT, IgM, cholesterol, triglyceride significantly reduced
(24)

Yes 28 1y ALP, GGT, cholesterol and triglyceride reduced, pruritus improved and lower
liver stiffness. (25)

Yes 13 8y ALP and Mayo risk score were lower, creatinine was higher than UDCA
monotherapy, side effects included muscle pain and renal dysfunction (26)

Yes 1121 6.1 ± 3.4y Bezafibrate improve biochemical response and long-term outcome in
asymptomatic patient refractory to UDCA (27)

No 84(include PSC) 21d Bezafibrate was effective to treat cholestatic pruritus
(28)

Yes 50 24m Normal ALP in 67% patients; pruritus, fatigue, and liver stiffness were
improved (29)

Yes 48 38m 54% patients had normalized ALP and lower jaundice, pruritus and liver
stiffness (30)

Yes 50 24m Pruritis was relieved
(31)

Yes 29 48m ALP normalization was higher and cirrhosis risk was lower.
(32)

Yes 118 >1y BF plus UDCA improved GLOBE and UK-PBC scores and long-term
prognosis (33)

Yes 150 >15y ALP, g-GT, IgM normalization rates were higher; normalization of IgM was a
good predictor of long-term prognosis (34)

Yes 960 40y Bezafibrate combination therapy reduces mortality and the need for liver
transplantation (35)

No 24 21d Bezafibrate reduced ALP and relieved pruritus
(36)

Yes 59 5y Regression of fibrosis was attained in 48% of patients, and combination
therapy decreased inflammatory histological scores (37)

Yes 746 >1y Addition of BZ to UDCA was associated with improved transplant-free
survival (38)

No NCT05239468, recruiting
Yes NCT04751188, recruiting
No NCT04594694, recruiting
Yes NCT02937012, recruiting
No NCT02701166, recruiting

Fenofibrate Yes 6 8w ALP, g-GT, ALT, cholesterol, triglyceride significantly reduced
(39)

Yes 20 48w ALP, ALT, IgM, IL-1, IL-6 significantly reduced
(40)

Yes 22 Mean 7.23m 68% of patients reached normal ALP level; g-GT, ALT, AST significantly
reduced (41)

Yes 14 48w ALP, g-GT, and IgM significantly reduced
(42)

Yes 46 11m Fenofibrate was associated with ALP reduction, decompensation-free and
transplant-free survival in PBC patient refractory to UDCA. (43)

Yes 17 12m Long-term fenofibrate treatment improves ALP level but not UK-PBC risk
score (44)

Yes 26 >1y Fenofibrate add-on therapy could improve ALP and g-GT, but not UK-PBC
risk and GLOBE score (45)

Yes 12 5-64m Addition of fenofibrate significantly reduced ALP, ALT and AST levels
(46)

Yes 44 3y Fenofibrate add-on therapy improves GLOBE, UK-PBC scores, liver fibrosis
and ductular injury of liver (47)

Yes NCT02823353, recruiting
Yes NCT02823366, recruiting

(Continued)
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levels of IFNg are associated with portal inflammation activity
indicating Th1-dominant liver injury in PBC (72). Decreased IL-
4 producing CD4+ T cells in patients with advanced PBC also
supports this result (73). In addition, a trans-ethnic genome-
wide meta-analysis revealed that IL12RB1 is included in the
susceptibility loci of PBC, and Th1 differentiation is significant in
pathway analysis (66). A decrease in liver-infiltrating CD4+ Th1
cells in patients with PBC indicated an adequate response to
UDCA treatment (74). Therefore, reversal of the excessive Th1
immune response is of significance for the treatment of PBC.

Fibrate treatment has also been found to reduce CD4+ T cell
migration to the liver. Bezafibrate and fenofibrate have been
shown to decrease elevated normal T-cell expressed and secreted
(RANTES) levels induced by chenodeoxycholic acid (75).
RANTES, a member of the CC chemokine family, mediates the
migration of CD4+ T cells to inflamed tissues, and in PBC
RANTES expression has been observed to be elevated (75, 76).
Research in PBC animal models also indicated that 15d-PGJ2, a
PPARg ligand, effectively attenuated portal inflammation with
reduced T cell numbers, which prevented the progression of PBC
(77). However, this study did not confirm the reduction in CD4+

T cells because of the limitation of mouse anti-CD4 antibodies.
PPARs activation also promotes Th1/Th2 phenotypic

conversion, except for the inhibition of CD4+ T cell migration.
Sex differences were found in the expression of PPARa in CD4+ T
cells. CD4+ T cells isolated from female peripheral blood produced
higher levels of IFNg than those isolated from male peripheral
blood. Knockdown of PPARa by small interfering RNA in male
CD4+ T cells contributes to increased IFNg production (78).
Another study indicated that higher PPARa expression was
Frontiers in Immunology | www.frontiersin.org 4
detected in male CD4+ T cells than in females, and deletion of
PPARa in male T cells induced increased IFNg and TNF
production (79). One study suggested a possible regulatory
mechanism of PPARa in IFNg production. Interaction of
PPARa and nuclear receptor corepressor 1 reduced histone
acetylation of sites on cis-regulatory elements in the ifng locus,
thereby inhibiting IFNg production and Th1 dominant immunity
(80). Female predisposition characterizes multiple autoimmune
diseases, including PBC. Several hypotheses, such as sex
hormones, genes, and epigenetic regulation, have attempted to
explain the predominance of PBC in females (81), but the reasons
remain unclear. The potential relationship between differences in
PPARa expression in CD4+ T cells and characteristics of
autoimmune diseases remains to be investigated. PPARg
activation also contributes to Th1/Th2 phenotypic conversion
(82, 83). Another study indicated that PPARg binds directly to
prospero-related homeobox and inhibits the production of IFNg
(84). PPARd was also demonstrated to inhibit IFNg production in
other Th1-mediated autoimmune disease (85, 86), but these
results need to be confirmed in studies on PBC.

Th17
Th17 cells differentiate from naïve T cells stimulated by IL-1b,
IL-6, and TGF-b1 and are characterized by IL-17 production. IL-
23 is required to maintain Th17 cellular function (87). Recent
studies have confirmed that Th17 cells play an important role in
the progression of PBC, although the mechanism has not been
fully elucidated. The frequency of Th17 cells in the liver tissues of
patients is higher than that in healthy controls (88). Th1 and
Th17 differentiation was included in the pathway analysis of the
TABLE 1 | Continued

Drug UDCA
combination

Number of
patients

Administration
time

Results Re

Pemafibrate Yes 7 3m ALP, g-GT reduced; serum plasma lipid, ALT, AST and liver fibrosis marker
had no difference (48)

Yes 16 48w ALP, GGT and IgM decreased significantly; pemafibrate had beneficial
effects on renal function (49)

Yes 75 3m Pemafibrate was efficient in reducing ALP and GGT and in improving eGFR
and Cr (50)

Elafibranor No 30 12w Elafibranor was safe and tolerated and significantly reduced ALP, bilirubin.
(51)

No NCT04526665, recruiting
Saroglitazar Yes 17 16w Saroglitazar significantly reduced ALP with 50% decrease

(52)
Yes 7 16w Rapid and sustained improvement in ALP was observed

(53)
No NCT05133336, recruiting

Seladelpar Yes 23 12w ALP levels were normalized in patients who completed 12 weeks of
treatment (54)

Yes 101 1y Seladelpar treatment improved pruritus, fatigue, and sleep disturbance in
PBC patients (55)

Yes 112 6m Seladelpar was effective in reducing ALP and pruritus
(56)

Yes 60 52w Seladelpar was effective in reducing ALP and pruritus
(57)

No NCT04620733, recruiting
No NCT03301506, recruiting
No NCT04950764, recruiting
July 2022 | Volume 13 | Article 94
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trans-ethnic genome-wide meta-analysis of PBC cohorts.
Elevated IL-17 produced by Th17 cells in the liver promotes
the proliferation and fibrosis of hepatic stellate cells in PBC (89).

PPARa and PPARg are involved in the suppression of Th17
differentiation from naïve T cells by inhibiting the expression of
the retinoic acid receptor-related orphan receptor (RORgt), an
important factor controlling Th17 polarization (90). Fenofibrate
inhibits Th17 differentiation through the IL-6/STAT3/RORgt
pathway, and this effect could be reversed by MK886, a
PPARa antagonist (91). Upregulation of PPARg also selectively
inhibits Th17 differentiation, but not Th1, Th2, or Treg
differentiation in CD4+ T cells via inhibition of RORgt (92).
PPARg agonist has also been reported to inhibit Th17
polarization by regulating the expression of cyclin B1 and
glutaminase (93; 94). Increased IFNg and IL-17 levels have
been observed in PPARd-deficient mice, indicating an
enhanced Th1/Th17 mediated immune response (95).
However, a PPARd agonist blocks IL-17 production by
inhibiting Th17 function (85). These results were obtained
from studies on isolated Th17 cells or other autoimmune
diseases. More evidence is needed on the effects of PPAR
agonists on Th17 cells after PBC treatment.

Dendritic Cell
Dendritic cells (DC) play an essential role in the induction of an
adaptive immune response. DCs from patients with PBC have a
higher capacity for antigen presentation, and the presence of
DCs, especia l ly myeloid DCs, has been confirmed
immunohistochemically around the damaged bile ducts (96–
98). Bile epithelial cells produce macrophage protein-3a in
response to IL-1b, TNFa, and IL-17, which promotes DC
infiltration (99). The production of nitric oxide by DCs, which
may participate in bile duct injury, was significantly higher in
patients with PBC than in healthy controls (100, 101). Cytokines
produced by DCs partly determine helper T cell differentiation
from naïve T-cells. A study on DC subtypes found that type 2
DCs in patients with PBC were significantly decreased, which is
characterized by the expression of CD123 and the promotion of
Th2 cell differentiation (102). Therefore, antigen presentation
and cytokines of DCs are involved in directing the Th cell
response in PBC patients.

PPARa, PPARb, and PPARg mRNAs were detected in DCs,
but only PPARg was detected at the protein level (103).
Therefore, PPARg has been extensively studied for its role in
the regulation of DC function. Isolation and culture of DCs from
peripheral blood of patients with PBC indicated that bezafibrate
treatment significantly decreased nitrite production in DCs
(104), which was elevated in patients with PBC (100). In
monocyte-induced DCs, PPARg activation reduces DC
immunogenicity and increases self-tolerance maintenance by
downregulating RelB protein expression (105). Troglitazone
and 15d-PGJ2, which are PPARg ligands, inhibit toll-like
receptor-mediated activation of DCs via inhibition of the NF-
kB mitogen-activated protein kinase pathway (106). Another
study indicated that troglitazone inhibited dectin-1-mediated
activation by interfering with curdlan-mediated accumulation
of caspase recruitment domain 9, mitogen-activated protein
Frontiers in Immunology | www.frontiersin.org 5
kinase, and the NF-kB pathway (107). Therefore, the
upregulation of PPARg may suppress the immune response in
PBC by inhibiting antigen presentation by DCs.

Additionally, PPARg activation in DCs also inhibits the Th1-
dominant immune response via the alteration of cytokines.
Activation of PPARg in DCs maintains the immature status of
DCs, which fails to promote the activation and differentiation of
CD4+ T cells (108). Rosiglitazone, a PPARg agonist, can
downregulate CD40-induced secretion of IL-12 in DCs, a
potent Th1 driving factor (109). Another study also found that
PPARg activation reduces the production of IL-12 in CD1a-
monocyte-derived DCs (110). These results were confirmed in
another study with unaffected production of IL-1b, IL-6, IL-10,
and TNF-a. Reduced Th1 recruiting chemokines, including
CXCL10 and CCL5, but not Th2-attracting chemokines
including CCL22 and CCL17, were observed in this study
(111). It was found through subsequent research that PPARg
directly binds to the PPAR response element in the human IL-10
promoter region, upregulating IL-10 expression of DCs (112).

Treg
Regulatory T (Treg) cells are important in the maintenance of
immune tolerance, and the forkhead transcription factor Foxp3
has been shown to be an essential regulator of Treg lineage
commitment and function (113). Two subtypes of Tregs,
thymus-derived natural Tregs and inducible Tregs from
CD4+CD25- T effector cells, have been described (114, 115).
The suppressive effects of Treg cells from patients with PBC
decreased and differentiated into Th1 cells upon stimulation with
low concentrations of IL-12 (116). The relative number of
CD4+CD25+ regulatory T cells and Foxp3-expressing Tregs in
patients with PBC was significantly reduced compared to that in
healthy controls, and the CD8+/Foxp3+ Treg ratio was markedly
higher in late-stage patients with PBC than in those with chronic
hepatitis C and autoimmune hepatitis (117).

In vitro and in vivo studies confirmed the regulatory effects of
PPARs on Tregs. Fenofibrate promotes Foxp3+ regulatory T cell
differentiation in vitro by inhibiting Akt and enhancing Smad3
phosphorylation (118). Another study found that the suppressive
effect of PPARa-deficient Treg cells on CD4+CD25- and CD8+ T
cell proliferation was impaired (119). Bezafibrate and ciglitazone
induces stable Foxp3 expression by collaborating with
transforming growth factor-b through the downregulation of
DNA methyltransferase, which mediates demethylation of
Foxp3-conserved noncoding DNA elements (120). Pioglitazone
also promotes Foxp3 expression, increasing the percentage of
hepatic CD4+CD25+Foxp3+ Treg cells significantly (121). It
seems that the upregulation of PPARs contributes to the
maintenance of the inhibitory effects and high frequency of
Treg cells.

Follicular Helper T Cell
Follicular helper T (Tfh) cells are a subset of CD4+ T cells with
the characteristic CXCR5+, whose main function is to regulate
humoral immunity. The activation, proliferation, and
differentiation to antibody-producing plasma cells depend on
Tfh cells (122, 123). It has been demonstrated that the frequency
July 2022 | Volume 13 | Article 940688
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of circulating CD4+CXCR5+ Tfh cells in patients with PBC is
significantly higher than that in healthy controls and patients
with autoimmune hepatitis (124). In this study, the frequency of
Tfh cells was reduced in patients with PBC with an adequate
response to UDCA treatment compared to those who showed an
inadequate response to UDCA. Another study indicated that
elevated Tfh cells were positively correlated with increased
plasma B cells, serum AMA, and IgM in patients with PBC
(125). Mice with a specific knockout of PPARg in CD4+ T cells
developed an autoimmune phenotype with increased activation
of Tfh cells and enhanced autoantibody production of B cells.
However, pioglitazone treatment significantly ameliorated the
Tfh cell response (126, 127). These results confirm the regulatory
effects of PPAR on Tfh cells.

B Cell
The presence of autoantibodies and hyperglobulinemia,
particularly IgM, is characteristic of PBC. IgM-producing
plasma cells are significantly increased in the serum of
patients with PBC (128). Presentation of PDC by cross-
reactive B cells may be responsible for the disruption of T cell
tolerance to highly conserved self-antigen PDC (129). Whether
the levels of autoantibodies and IgM are correlated with the
clinical manifestations and outcomes of patients with PBC is
still controversial (130, 131). However, decreased IgM levels
were observed in patients who responded adequately to UDCA
monotherapy or UDCA combined with OCA or fibrates in
some clinical trials. One study reported that serum IgM has the
potential to be a marker for predicting long-term clinical
outcomes of patients with PBC treated with UDCA and
bezafibrate (34). The mechanism underlying the high levels of
IgM and its role in PBC remains unclear. Genomic and miRNA
analyses have indicated that IFNg and CD40L are central
upstream regulators of PBC (132). One study also found that
reduced methylation of the CD40L promoter in CD4+ T cells
was inversely associated with IgM levels in PBC (133). This
provides an epigenetic regulatory explanation for the elevated
IgM levels. The depletion of B cells is an immune-related
treatment strategy for PBC. Decreased ALP and IgM levels
were observed in patients with PBC treated with rituximab,
with increased frequency of CD25highCD4+ T cells and
increased expression of FoxP3 (134). Although B cell
depletion is effective in reducing AMA and IgM levels,
serological responses of patients with PBC are not always
reproducible in all clinical trials (135).

The regulatory role of PPARs in B cells is limited. B cell-
activating factor (BAFF) belongs to the tumor necrosis factor
family, which plays an important role in B cell maturation.
Overexpression of BAFF is harmful to the immune tolerance
of B cells, and increased BAFF is detected in patients with PBC
(136). BAFF-activated B cell-mediated Treg cell apoptosis also
contributes to impaired immune tolerance, and bezafibrate
treatment effectively inhibits BAFF-induced Treg apoptosis
(137). In addition, in PPARg haplo-deficient mice, the
proliferation and antigen-specific immune response of B cells
are upregulated (138). Research on B cell-specific PPARg
knockout mice demonstrated that reduction of IL-10
Frontiers in Immunology | www.frontiersin.org 6
producing CD5+CD1dhi regulatory B cells was responsible for
exaggerated hypersensitivity (139). PPAR agonist treatment has
reduced IgM levels in patients with PBC in numerous clinical
trials (Table 1), which may confirm the inhibitory effects of
PPARs on B cells.
Macrophage and Monocytes
Resident Kupffer cells and monocyte-derived macrophages from
the peripheral blood comprise the hepatic macrophage
population, which participates in hepatic inflammation and
immune response regulation. Macrophages are roughly divided
into classically or alternatively activated phenotypes, which are
also called M1 or M2 phenotypes with pro-inflammatory and
anti-inflammatory effects, respectively (140). Early research has
found that the number of hepatic Kupffer cells is increased in
patients with PBC (141). In addition, monocyte chemotactic
proteins (MCP), CXCL12, and CX3CL1 in the liver tissue of
patients with PBC are significantly increased, which promotes
the accumulation of monocytes in the liver (142–144).
Monocytes from patients with PBC exhibit higher TLR4
expression, are more sensitive to LPS stimulation, and increase
the production of TNFa, IL-1b, IL-6, and IL-8 (145–147).
Monocytes and macrophages also influence NK cell function
and T-cell differentiation. Increased circulating CD14lowCD16+

monocytes in PBC promote Th1 cell skewing and accelerate liver
injury (148). Kupffer cells promote NK cell activation via the
direct interaction between NK group 2, member D, and retinoic
acid early inducible-1, with increased production of IL-12,
TNFa, and IFNg, which synergistically induces hepatic
inflammation in PBC (149). A study of macrophage activation
markers demonstrated that an increase in soluble CD163 and
mannose receptors is consistent with an increase in ALP, and
these can be used as markers to predict disease severity and
prognosis of patients with PBC (150).

Previous studies have shown that PPARg, PPARb/d, and PPARa
exert regulatory effects on macrophages. Activation of PPARg in
Kupffer cells significantly inhibits the production of nitric oxide and
TNFa, resulting in the suppression of inflammation (151). Another
study showed that pioglitazone prevents LPS-induced liver injury by
inhibiting TNFa production in Kupffer cells (152). Recruitment of
monocytes/macrophages is reduced in cholestatic mice treated with
15d-PGJ2 (153). Several studies have confirmed that PPARd (154)
and PPARg (155–158) activation promotes M2 macrophage
polarization, which effectively inhibits hepatic inflammation.
However, the mechanisms by which PPARg and PPARd inhibits
inflammation in classically activated macrophages are distinct.
SUMOylated PPARg inhibits macrophage inflammatory gene
expression by blocking the release of the nuclear receptor
corepressor complex, and when PPARd is linked to its ligands, the
release of B-cell lymphoma 6 allows it to repress the transcription of
inflammatory genes (159). Overexpression or absence of PPARa
indicates that PPARamight also promote macrophage polarization
fromM1toM2(160, 161).Macrophagesalsoact as intermediaries for
IL-4 to suppress the secretion of IL-2 by T cells because of 12/15-
lipoxygenase production in macrophages, whose metabolic product,
13-hydroxyoctadecadienoic acid, is the ligand of PPARg (162).
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Natural Killer Cell
NK cells participate in the innate immune system, mainly
through cytotoxic mechanism activation and IFNg production.
Early studies have demonstrated that the number of circulating
and liver-infiltrating NK cells is significantly elevated in patients
with PBC (163, 164). These increased NK cells had different
properties compared with healthy controls, with increased
cytotoxic activity and perforin production, but significantly
decreased IFN-g, IL-6, and IL-8 synthesis (164). Recently NK
cells of patients with PBC were found to have increased
sensitivity to IL-12 stimulation. A minimal amount of IL-12
stimulation can enhance IFN-g production in NK cells (165).

PPARg regulates NK cell cytotoxicity and IFN-g production
by interacting with PPARg ligands. A study found that 15d-PGJ2,
a natural ligand of PPARg, simultaneously inhibited cytotoxicity
and IFNg production in NK cells, regardless of the presence of
PPARg. However, ciglitazone, a synthetic ligand of PPARg,
reduces IFNg production via PPARg activation (166).

Natural Killer T Cell
NKT cells are lymphocytes characterized by the simultaneous
expression of T-cell receptors and NK cell-related markers
(CD56, CD57, and CD161) (167). In the liver, NKT cells reside
in hepatic sinuses and secrete a variety of cytokines, including
IFN, IL-2, IL-4, and IL-17, to induce Th1, Th2, and Th17
differentiation (168). Studies have demonstrated that NKT cells
are involved in immunopathological damage in PBC. The
hepatic infiltration of CD1d-aGalCer-restricted NKT cells was
significantly higher in patients with PBC than in healthy controls
(169). In the dnTGFbRII mouse model of PBC, the lack of
CD1d-restricted NKT cells significantly decreased hepatic injury
(170). Another study found that the activation of iNKT cells via
aGalCer exacerbated hepatic damage, increased AMA
production and CD8+ T cell infiltration in 2-OA-BSA, which
induced PBC in the animal model (171). One study found that
CD57+CD3+NKT accumulation around damaged interlobular
bile ducts might be related to an imbalance in Th1/Th2 cytokines
(167). CD56+and Fas ligand-positive NKT cells are involved in
the death of bile epithelial cells (BECs), which promotes PBC
progression. Therefore, the activation of NKT cells promotes the
progression of PBC, and inhibition of NKT cells may be a
potential therapeutic target for PBC.

There is no direct evidence on whether PPARs regulate NKT
cells, and thus affect PBC progression. Studies on other autoimmune
diseases and liver inflammation-related diseases have confirmed
that PPARa and PPARg have regulatory effects on NKT cells. One
study reported that PPARa activation negatively regulates Ifng gene
transcription in NKT cells, whereas PPARa antagonist enhances
IFNg production and induces Th1 dominant immunity (80).
Elafibranor, a dual PPARa/d agonist, ameliorates hepatic
inflammation by reducing a variety of immune response cells,
including NKT cells (172). PPARg activation also indirectly
enhances iNKT cell expansion via upregulation of CD1d and
cathepsin D expression in DCs (89, 173). These two studies only
focused on antigen presentation between DC and iNKT cells
without evaluating the effects on the Th1/Th2 balance. Another
Frontiers in Immunology | www.frontiersin.org 7
study showed that iNKT cell activation enabled a Th2-dominant
immune response upon PPARg activation (174). Further research is
needed to evaluate whether fibrates have the same effects on
PBC treatment.

Bile Epithelial Cell
Th-1mediated damage to hepatic small bile ducts is characteristic of
PBC, but bile epithelial cells (BECs) are not just innocent victims.
BECs are involved in the maintenance of immune tolerance and
immune cells including macrophages are associated with the repair
of damaged BECs (175). Bacterial components recognized as
pathogen-associated molecular patterns (PAMPs) are detected in
bile from patients with PBC and the healthy controls (176). TLR4 in
BECs is markedly expressed in patients with PBC and recognizes
lipopolysaccharide (177). TLR4 interacts with the adaptor protein
myeloid differentiation primary response 88 (MyD88), which
recruits IL-1 receptor-associated kinase (IRAK) 1 and
subsequently activates the NF-kB and MAPK signaling pathways.
Owing to the activation of these pathways, BECs produce more IL-
6, IL-8, and MCP-1 (178). PPARg and IRAK-M, inhibitory kinases
of IRAK molecules, strongly inhibit NF-kB pathway activation by
inhibiting MyD88 and IRAK1, thus maintaining the immune
tolerance of BECs (179). PPARg expression in cultured human
BECs were downregulated in a Th-1-dominant immune
environment, which promotes PBC progression. BECs from
patients with PBS are more sensitive to LPS stimulation than
those from healthy controls. PPARg activation by 15d-PGJ2
negatively inhibits LPS-induced NF-kB pathway activation (180).
Therefore, PPARg is involved in negative regulation of BECs to
maintain immune tolerance.
THERAPEUTIC STRATEGIES FOR
IMMUNE DISORDERS

Reduction of ALP is currently considered an adequate response to
treatment and an endpoint in clinical trials. The mechanism of
damage by the immune system in PBC, a disease with strong
autoimmune characteristics, has not yet been fully elucidated. Drugs
with broad immunosuppressive effects, including glucocorticoids
(181), cyclosporine (182), and azathioprine (183), have not
produced visible beneficial effects on the clinical outcomes in
patients with PBC. In addition, selective depletion of B cells with
anti-CD20 monoclonal antibody significantly reduced the titer of
autoantibodies in patients with PBC, but the therapeutic effect was
nonsignificant (135). Other immunomodulators under
development include the IL12/23 monoclonal antibody
(ustekinumab), CD40/CD40L antagonist, CX3CL1 antibody,
CD80/CD86 antagonist, and selective sphingosine-1-phosphate
receptor modulator (184). Current animal models cannot fully
reproduce the clinical features and immunological complexity of
human PBC (185), which makes it difficult to select suitable models.
In addition, the lack of immune-related biomarkers for predicting
PBC progression and prognosis also complicates PBC research.

The efficacy of PPAR agonists in the treatment of PBC has been
confirmed. Previous studies have primarily focused on the
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regulation of PPARs in bile acidmetabolism. It has been proven that
regulation of cytochrome P450 enzymes and bile acid transporters
by PPARa contributes to hepatic lipid and bile acid homeostasis,
which is involved in alleviating cholestatic liver injury (186).
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Regulation of immune response and inhibition of disease
progression by PPARs have been confirmed in studies of other
autoimmune diseases, including colitis (187) and autoimmune
encephalomyelitis (188). Although studies on PPAR-regulating
immunity in PBC are relatively limited, current research results
have preliminarily confirmed that activation of PPARs is involved in
the reverse of Th1-dominant immune injury, which may delay the
progression of PBC. As shown in Figure 1, PPARs have regulatory
effects on multiple immune cells involved in immune disorders. In
Table 2, we describe the regulatory effects of different PPAR
subtypes on diverse immune cells. In general, PPAR activation
promotes the maintenance of immune tolerance by directly or
indirectly influencing the differentiation of Th cells. Whether the
alterations in immunity are directly related to the decrease in
serological indicators or are beneficial to the long-term clinical
outcomes of PBC patients requires further evaluation.
SUMMARY AND PROSPECTS

The new generation of farnesoid X receptor and PPAR agonists and
bile acid uptake inhibitors have effectively expanded the second-line
treatment of PBC. UDCA still occupies a dominant position in the
treatment of PBC, with its incomparable safety and effectiveness, as
confirmed by several clinical trials. Fibrates are currently included in
the clinical guidelines for add-on therapy (189). It is not known
whether PPAR agonists will be used asmonotherapy in the future or
in combination with UDCA in patients with PBC, regardless of
adequate response to UDCA. PPARa, PPARb/d, and PPARg have
distinct, but complementary functions. Dual- or pan-PPAR agonists
may have better therapeutic effects than selective agonists.
Activation of different subtypes of PPARs has beneficial effects on
upstream immune disorders, midstream cholestasis (186), and
FIGURE 1 | PPAR regulates immune cells involved in PBC pathology. PDC-
E2 the E2 component of the mitochondrial pyruvate dehydrogenase complex;
APC antigen-presenting cell; DC dendritic cell; IFNg interferon-g, TFh follicular
helper T cell; AMA anti-mitochondrial autoantibody; TGFb transforming
growth factor-b; Treg regulatory T cell; CTL cytotoxic T lymphocyte; NK
natural killer; MHC-II major histocompatibility complex-II; TCR T cell receptor;
Th T helper.
TABLE 2 | Regulatory effects of different PPAR subtypes on diverse immune cells.

Abnormality in PBC PPARa PPARb/d PPARg

Innate immune cells
Monocyte
/Macrophage

Hepatic monocytes and macrophages
accumulation increase with more
proinflammatory cytokines.

PPARa activation promotes
macrophage polarization from M1 to
M2.

PPARb/d
activation
promotes M2
macrophage
polarization.

PPARg activation inhibits monocyte/
macrophage accumulation and promotes M2
macrophage polarization.

Dendritic cell
(DC cell)

Myeloid dendritic cells infiltration increases
and inhibit Th2-dominant immune
response.

Evidence absence Evidence
absence

PPARg activation increases self-tolerance of
dendritic cells and indirectly inhibits Th1
differentiation from naïve T cells by reduction IL-
12 production of dendritic cells.

Natural killer
cell
(NK cell)

Frequency of natural killer cells increases
with increased IFNg production.

Evidences absence Evidences
absence

PPARg activation reduces IFNg production of
NK cells

Natural killer
T cell
(NKT cell)

Activated NKT cells aggravates bile
epithelial cells damage and promotes
primary biliary cholangitis progression.

PPARa activation negatively
regulates ifng gene transcription.

Evidences
absence

PPARg activation indirectly enhances invariant
NKT cell expansion via upregulation of CD1d
expression in DCs.

Adaptive immune cells
T helper
cells

Th1 and Th17 dominant immune
response, with increased production of
IFNg and IL-17.

Expression of PPARa of CD4+ T in
male is higher than that in female.

PPARd activation
inhibits IFNg and
IL-17 production.

PPARg activation promotes Th1 phenotypic
conversion to Th2 and inhibits Th17
polarization.

(Continued)
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downstream fibrosis (190) of PBC progression. The side effects may
be a barrier to the application of PPAR agonists. Increased
creatinine levels and myalgia are common side effects of PBC
treatment (29). Cardiotoxicity, hepatotoxicity, and tumorigenesis
of PPAR activation also indicate that PPAR agonists should be used
circumspectly (191). Agonists with stronger liver targeting and
more balanced activation effects may be more competitive in
the future.

In this review, we comprehensively summarize the regulation
of PPARs on known immune abnormalities of PBC. However,
the full picture of the pathogenesis of PBC is not yet understood.
In addition, not all the immune cells involved in PBC
pathogenesis are associated with PPARs, such as cytotoxic T
cells, although regulatory effects have been demonstrated in anti-
tumor researches. Therefore, with the deepening of
understanding about PBC immunopathogenesis, the regulatory
roles of PPARs will be further updated. Interestingly, the
expression of PPARa in T cells has gender differences, and
whether this difference is related to the female dominance of PBC
should be further explored. Comparison of PBC patients who
have adequate response to UDCA in combination with fibrates
Frontiers in Immunology | www.frontiersin.org 9
therapy but not to UDCA monotherapy may obtain novel
biomarkers which could predict disease progression and
treatment response, such as sCD163. Although animal models
of PBC are still defective, the effects of PPARs on immune cells in
current autoimmunity mice model, such as dnTGF-bRII and IL-
2Ra-/- mice models (185), are worthy of further exploration.
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