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Abstract: Multifunctional magnetic nanowires (MNWs) have been studied intensively over the last
decades, in diverse applications. Numerous MNW-based systems have been introduced, initially
for fundamental studies and later for sensing applications such as biolabeling and nanobarcoding.
Remote sensing of MNWs for authentication and/or anti-counterfeiting is not only limited to engi-
neering their properties, but also requires reliable sensing and decoding platforms. We review the
latest progress in designing MNWs that have been, and are being, introduced as nanobarcodes, along
with the pros and cons of the proposed sensing and decoding methods. Based on our review, we
determine fundamental challenges and suggest future directions for research that will unleash the
full potential of MNWs for nanobarcoding applications.
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1. Introduction

Initially, barcodes were invented for the authentication of products in anti-counterfeiting,
which is of the foremost importance due to the continuous growth of non-transparent trad-
ing [1–4]. Nanostructured materials are the backbone in barcoding applications, because
their similar appearance hides them from the naked eye, while their physical and chemical
properties are significantly different and are suitable for authentication [5,6]. As a result, the
unmet demands for miniaturized barcodes led to the emergence of nanobarcodes, such as
magnetic nanoparticles [7–9], magneto-optic nanoparticles [10,11], and photonic nanoparti-
cles [12–14], in diverse applications, including nanomedicine and cell biology [15–18], as
well as computing and cryptography [19–21]. Changing the composition and size of nano-
materials is probably the most convenient approach to generate numerous nanobarcodes
with distinct codes [22]. However, generating nanobarcodes with unique codes does not
necessarily guarantee that reliable sensing and decoding is also possible, especially when
there is more than one nanobarcode at the scanner. This restriction obligates defining the
essential merits for nanobarcodes and designing nanobarcodes that meet these merits [5,6].

In the big picture, there are the following three essential merits for the ideal nanobar-
code: (1) expandable encoding, (2) secure sensing, and (3) reliable decoding, as shown in
Figure 1. Simply, the codes are physical properties with high flexibility that can be easily tai-
lored and measured. For many applications, the sensing must be done by non-destructive
measurement techniques with high repeatability [23] that can be readily translated to the
portable devices, suitable for daily applications. Therefore, the first two essential merits
are strongly correlated, and they can be tackled by choosing nanomaterials/nanostructures
with special properties, which can be readily engineered and measured. The first two merits
may discard several proposed nanomaterials/nanostructures for nanobarcoding, but there
is still a vast number of nanomaterials/nanostructures that meet these two merits and
are deemed promising. To specialize this review, here, we only focus on one-dimensional
magnetic nanoparticles, also known as magnetic nanowires (MNWs), with ferromagnetic
properties, to deeply discuss their recent progress, particularly in nanobarcoding applica-
tions and how they potentially can transform the future of this field.
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Figure 1. A flowchart rendering the essential merits for nanobarcodes.

2. Why Magnetic Nanowires for Nanobarcodes?

Recently, MNWs became the center of the research in nanobarcoding because of the re-
vealed potential for making the next generation of nanobarcodes and/or biolabels [23–26],
driven by the fact that the MNWs can be remotely and selectively detected [27–29]. More-
over, the MNWs are dominantly fabricated using electrodeposition techniques that are
cheap, fast, and scalable for mass production [30–33]. More importantly, their magnetic
response can be readily extracted from the background signals, leading to a high signal-to-
noise ratio–suitable for miniaturizing the barcodes size [7]; this is because the majority of
materials are diamagnetic or paramagnetic, which do not produce magnetic signals, such
as irreversible switching, which is exclusively a property of ferromagnetic materials [34,35].
Thus, as opposed to optical- or radio-frequency barcodes, magnetic signals are not contam-
inated by the background noise [36–39]. Aside from these advanced benefits of MNWs for
nanobarcoding, they also meet the aforementioned merits of expandable encoding, fast
sensing, and reliable decoding, which we discuss in detail in the following sections. First,
due to the strong correlation between the encoding merit and the sensing merit, we discuss
these merits together. We next discuss the current state-of-the-art for the reliable decoding
of multiple MNW-based nanobarcodes at the readout, because its progression currently
substantially lags behind the other merits’ progression.

2.1. Encoding and Sensing of Magnetic Nanowire (MNW)-Based Nanobarcodes

Each magnetic nanowire (MNW)-based nanobarcode is made of a collection of MNWs,
where the magnetic properties of each MNW and the intra-magnetic interactions can be
used for encoding [40,41]. The most favorable magnetic signatures for nanobarcoding are
those that can be rapidly measured, with high repeatability, to fit the daily applications as
expected for nanobarcodes. This requirement limits the number of magnetic measurements
to a few applicable measurements, which can be categorized into the following two groups:
(1) DC measurements, and (2) AC measurements. The DC measurements usually need
simpler equipment, and they have been widely used for the magnetic characterization
of MNWs. As a result, there has been much progress in the development of instruments
for fast and repeatable DC measurements. The DC measurements include hysteresis loop
measurements, the first-order reversal curve (FORC) method [42–44], remanence curve
method [45,46], and, most recently, the projection method and the backward remanence
method [34,47]. The AC measurements are magnetic particle spectroscopy and ferromag-
netic resonance spectroscopy, as the most well-established and common methods that
might be transferrable to daily applications [23,48,49].
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2.1.1. DC Measurements

The hysteresis loop measurement is the most popular and fastest method for magnetic
property extraction, and it provides the saturation magnetization and the coercivity of any
sample. Figure 2a schematically illustrates the hysteresis loop method. The saturation mag-
netization is a function of the MNW composition, as shown in Figure 3a–e. Making MNWs
as alloys of one magnetic (such as cobalt or iron) and one non-magnetic component allows
the tailoring of the saturation magnetization from zero to the saturation magnetization of
the magnetic component [50]. The common magnetic and non-magnetic components that
can be easily co-electrodeposited are (1) iron with gold [31,51] or copper [52], (2) nickel
with gold [53] or copper [54,55], or (3) cobalt with gold or copper [56].

Figure 2. Schematically depicting the hysteresis loop method (a) and the FORC method (b,c), where (b) is the FORC data
collection and (c) is a FORC heat-map. In subfigures (a,b), the green arrows show the data acquisition direction. In subfigure
(c), the red distribution is the projection of the FORC heat-map on the applied field (H), the blue distribution is the projection
of the FORC heat-map on the interaction field axis (interaction field distribution), the black distribution is the projection of
the FORC heat-map on the reversal field (Hr), and the green distribution is the projection of the FORC heat-map on the
coercivity axis (coercivity distribution). Figure adapted from [34,35].

Tailoring the saturation magnetization is best to be conducted using magnetic com-
ponents with high saturation magnetization, such as iron, if the other components are
non-magnetic [57–59]. In this case, the saturation magnetization can be tailored over a
wider range, from nearly zero up to the saturation magnetization of the magnetic com-
ponent. Therefore, among all of the compositions, alloys containing iron might be more
favorable as they have high saturation magnetization, leading to a wider achievable range
of saturation magnetizations. Note that the alloyed MNWs were also made of both mag-
netic components, such as iron–nickel [60,61], iron–cobalt [62,63], nickel–cobalt [64,65], or
iron–cobalt–nickel [66]. When both components are magnetic, the saturation magnetization
range will be limited to the minimum and maximum saturation magnetization of the com-
ponents, except iron–cobalt MNWs with a 2:1 atomic ratio that leads to higher saturation
magnetization [63,67,68], as shown in Figure 3f. Generally speaking, having both magnetic
components does not provide much flexibility to tailor the saturation magnetization as the
encoding parameters. This is also valid when the MNWs are made of three components,
such as iron, nickel, and cobalt, as trinary [69–71]. However, these cases are very useful
to tailor other magnetic properties, such as coercivity, where, as an example, Permalloy
(iron–nickel with a 1:4 atomic ratio) is one of the most popular compositions [61,67,72,73].
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Figure 3. Demonstrating different approaches for tailoring the magnetization saturation and the coercivity of MNWs for
encoding. (a,b) Single component MNWs; (c) multi-component or alloyed MNWs; (d) MNWs with modulated composition;
(e) SEM image of modulated composition MNWs, adapted from [74]; and (f) represents a Slater–Pauling curve illustrating
the dependency of the magnetic moment on the composition, adapted from [58].

Coercivity is another important magnetic property that determines how resilient the
spins are against changing their direction. Simply, coercivity is the required magnetic
field to rotate the magnetization 90 degrees, or for very anisotropic samples, it is the field
required to produce equal “up” and “down” spins. The simplest way to tailor the coercivity
is probably to vary the MNW sizes [75–77], as shown in Figure 4a,b. For MNWs with a
very large diameter, the spins switch via the nucleation and propagation of a magnetic
domain wall, which usually requires lower energies, or equivalently, smaller coercivities.
As the MNWs diameter increases, the nucleation and propagation of the magnetic domain
walls become easier, which causes the coercivity to decrease [78]. This is because MNWs
with large diameters hold multiple magnetic domains, leading to the presence of exchange
coupling between the magnetic domains [50]. The exchange coupling contributes to the
coercivity that is proportional to the inverse square of the MNWs diameter. Thus, for
diameters larger than the critical diameter (the diameter in which the MNWs are a single
domain), the coercivity decreases as the diameter increases [79]. Note, once the MNWs
diameter becomes smaller than the critical diameter, all spins rotate simultaneously. In
this case, which is also known as coherent rotation, the coercivity significantly increases to
large values. It should be mentioned that the MNWs length can also impact the reversal
mechanism of the spins (i.e. transverse well mode instead of the coherent mode if the
length is very long) [80,81]. However, the effects of the length on coercivity are usually
taken out, because the definition of MNW obligates a much longer length compared to the
diameter. Note, when the length is much longer than the diameter, the shape anisotropy is
constant. Thus, the coercivity becomes independent of the length.

Inducing any chemical or physical changes/mismatches that facilitate or hinder the
switching direction of the spins would result in tailoring the coercivity [72,82]. An ex-
ample for the chemical approach is to synthesize MNWs with different compositions or
crystal structures [83–86]. For instance, it was shown that by varying the pH of the elec-
trolyte during electrodeposition, one can manipulate the crystal structure of cobalt MNWs
from hexagonal close-packed (hcp), to a mixture of hcp and face-center-cubic (fcc), to a
purely fcc crystal structure [85,87]. Over the last few years, the physical approaches for
tailoring the coercivity have been intensively studied. The basic for physical approaches
is to pin magnetic domain walls by inducing a discontinuity; a few examples are de-
picted in Figure 4. The examples for physical approaches are diameter modulation (an
MNW with multiple diameters along its length) [88,89], multi-segmented [90,91], induc-
ing notches [92,93], and interconnecting MNWs [29,94]. Figure 4 shows some proposed
attempts for engineering the MNWs coercivity, by taking benefit of the following: (a–b
and e–f) varying diameters, (c and g–h) modulating the diameter, and (d and i) multi-
segmenting the MNWs. In all these approaches, the magnetic domain walls are being
pinned at the transition sites, which generally leads to an increase in coercivity. Thus, it
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would be interesting to combine the aforementioned approaches for tailoring the coercivity
over a much wider range than the current state-of-the-art.

Figure 4. Illustrating the different techniques for tailoring the coercivity of the MNWs, where (a,b) changing the diameter
(or aspect ratio) of single diameter MNWs; (c) modulated diameter MNWs; (d) multi-segmented MNWs; (e–h) SEM images
of varying and modulating the MNWs diameter, adapted from [95]; and (i) a SEM image of multi-segmented MNWs,
adapted from [96].

The first-order reversal curve (FORC) method is another DC measurement that has
been broadly used for the qualitative, and partially quantitative, description of magnetic
signatures [97–99], as shown in Figure 2b,c. In the context of the FORC method, the
hysteresis loop of a magnetic nanobarcode can be considered as a picture, where each
pixel is the contribution of a hysteron, such as an individual MNW, which builds the
whole hysteresis loop area. Experimentally, the FORC method scans the whole area of
the hysteresis loop in a two-dimensional fashion, using the following two magnetic fields:
(1) reversal field, and (2) applied field [100]. Once the magnetic responses are measured, in
terms of the reversal and applied fields, the second derivative of the magnetic responses
are taken [101], and the results are plotted as heat-maps versus the reversal field and the
applied field.

When plotting each pixel (i.e., a single MNW switching), in terms of the reversal and
applied field, the reversal field is the field in which magnetization switches from +1 to
−1, while the applied field is the field in which the magnetization switches reversely. In
other words, half of their difference (equivalently, the width) is the coercivity, and half
of their summation (equivalently, the horizontal shift) is the interaction field [42,100,102].
According to these definitions of the coercivity and interaction fields, the FORC heat-maps
can be plotted in the coercivity interaction field plane, which is a 45-degree rotation of
the reversal-applied fields plane. Conceptually, the FORC heat-maps indeed determine
the probability of finding an MNW with a specific coercivity and interaction field pair.
Consequently, since there are many MNWs with different coercivities and under different
interaction fields, the coercivity and interaction fields are represented as distributions that
have been used as magnetic signatures [103–105].

As mentioned earlier, the FORC heat-maps have been broadly used as qualitative
descriptions of MNWs magnetic signatures. For quantitative description, the heat-maps
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are projected onto the coercivity and interaction fields in order to calculate the coercivity
and interaction field distributions, and to be used as quantitative signatures [106,107].
This detailed analysis of the FORC method has been known as a very powerful probe
for analyzing the magnetic signatures of many complex MNW-based nanobarcodes. As
a result, the FORC method became a very promising method for the reliable sensing of
nanobarcodes. The major advantage of the FORC method is that it provides the magnetic
signatures (coercivity and interaction field) as distributions rather than single values.
It is very useful because the measured signatures can be decoded [9]. This detailed
sensing of magnetic nanobarcodes, provided by the FORC method, is accompanied with
unpleasant downsides that dramatically hinder the usability of the FORC method for
practical applications [41,108]. A few examples of these drawbacks are (1) its slow signature
extraction, which makes it extremely inefficient for daily usages, and (2) complex data
analysis, which causes artifacts. In this direction, several researches have been conducted,
to speed up both the data collection [34,35,109] and data processing [110,111] of the FORC
method, which is still a long way to go.

Among all of the approaches to speed up the FORC measurements, the projection
method was proposed, to significantly accelerate the sensing of magnetic nanobarcodes
signatures, particularly for biolabeling and nanobarcoding [8,27,34]. A schematic for the
projection method is given in Figure 5a. The projection method employs the fundamentals
of the FORC method, to extract the irreversible switching field distribution at the reversal
field in lieu of coercivity and interaction field distributions. The irreversible switching
field distribution as a magnetic signature was found to provide several advantages that
are compatible with the expectations for novel nanobarcodes. First, using the projection
method, the irreversible switching field distribution can be measured by scanning only
the vicinity of the upper branch hysteresis loop—leading to a significant time reduction in
comparison to scanning the whole area of the hysteresis loop, as is needed for the FORC
method. It was shown that up to five data points along each reversal curve are sufficient
to reliably measure the irreversible switching field distribution, which leads to a factor of
50–100X faster measurements compared to the FORC method [34]. Second, the projection
method requires only one derivative to calculate the irreversible switching field distribution,
while the FORC method requires two sequential derivatives followed by an integral. Due to
the measurement noise, the FORC signatures are accompanied by artifacts, which are still
elusive [35]. Last, but not least, the projection method indeed measures both the reversible
and irreversible switching field distributions, and decomposes them. Since the irreversible
switching field is residual magnetization, it is exclusively generated by the MNWs in the
barcode, while the reversible switching field could be the superposition of the MNWs
reversible response and the surrounding materials. Thus, the projection method provides a
better signal-to-noise ratio that is suitable for further miniaturizing the nanobarcode sizes
by excluding the background signals. Note, the irreversible switching field distribution
is a function of the MNWs coercivity and the interaction fields between them. Therefore,
in addition to the aforementioned parameters for tailoring the coercivity, the irreversible
switching field distribution can be further tailored by tuning the interaction fields (e.g., by
varying the interwire distance) within the MNWs, leading to a more expandable encoding
capability [35,112,113].
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Figure 5. Schematically demonstrating the data collection protocols for (a) the projection method, (b) backward remanence
method, (c) isothermal remanence method, and (d) DC demagnetization method. The projection method (a) provides the
irreversible switching (equivalent to the residual magnetization) at the reversal field, Hr. While, the remanence methods
(b–d) provide the residual magnetization at the zero applied field, H, such as points 3 and 3’. The key feature that separates
the backward remanence (b) from the isothermal remanence (c) and the DC demagnetization remanence (d) is the saturating
the whole system before applying the Hr and removing it.

It should be emphasized that the projection method measures the irreversible switch-
ing field distribution at the reversal field. The advantages of the irreversible switching field
distribution for nanobarcoding have attracted attention towards measuring the irreversible
switching field distribution at zero field, which is also known as the backward remanence
measurement [5,6], as shown in Figure 5b. Even though the backward remanence method
measures the remanence (magnetization at zero field), it is different from other remanence
methods, such as isothermal remanence [114,115] (Figure 5c) or DC demagnetization re-
manence [116,117] (Figure 5d). Indeed, the backward remanence measurement measures
the remanence in a more restricted method that was shown to be more reproducible [34],
which is necessary for reliable sensing of magnetic nanobarcodes. The only difference
between the backward remanence measurement and the other remanence method is that it
saturates the magnetic nanobarcode at each step before applying and removing the field [6];
Figure 5b–d schematically shows the data collections for each of these remanence methods
for comparison. This suppresses the stochastic effects of MNWs magnetization in an array,
leading to more reliable sensing [5,6].

2.1.2. AC Measurements

AC measurements apply an alternating magnetic field and measure the response of
magnetic nanobarcodes at different frequencies or a biased magnetic field. The two widely
used AC measurements are magnetic particles spectroscopy [118–120], in Figure 6a–d,
and magnetic resonance spectroscopy [121–123], in Figure 6e,f. Magnetic particles spec-
troscopy applies an alternating magnetic field, using a magnetic coil at a single frequency
(sometimes two frequencies [124,125]), shown in Figure 6c, and measures the magnetic
responses in real time, in Figure 6b, and the frequency domain, as shown in Figure 6d.
For superparamagnetic nanoparticles, where the coercivity is zero, as in Figure 6a, the
magnetization will be a function of odd multiplication of the applied frequency, which aims
to sense the magnetic response of the magnetic nanoparticles and distinguish it from the ap-
plied signal [126]. Sensing the MNWs using magnetic particles spectroscopy is practically
very challenging; this is because the non-zero coercivity of the MNWs causes a nonlinear
dynamic response that cannot reliably be sensed and distinguished from the applied field.
Furthermore, the MNWs have a non-zero coercivity, from a hundred Oe to several hundred
Oe, which mandates a very large AC field for AC oscillations. Applying a large AC field at
a high frequency causes heat generation, due to eddy currents. To avoid the eddy currents
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and to be able to use the magnetic particles spectroscopy for nanobarcoding, the MNWs
must have small coercivity. However, this limits the range of encoding, leading to a limited
magnetic nanobarcode that is not favorable for nanobarcoding applications.

Figure 6. Schematically demonstrating (a–d) magnetic particle spectroscopy data, adapted from [127], and (e,f) ferromag-
netic resonance spectroscopy data, adapted from [123]. In magnetic particle spectroscopy, superparamagnetic nanoparticles
are exposed to an alternating magnetic field (b), which forces them to oscillate (c). By linearizing their response in frequency
domain, multiple peaks appear at odd higher frequencies (d) that are being used for sensing them. In magnetic resonance
spectroscopy, the MNWs are exposed to an RF signal while a biased magnetic field is applied. By sweeping the RF signal
frequency or the biased magnetic field magnitude, the RF absorption of the MNWs varies due to their spins’ precession,
where the absorption signal is being used for sensing the MNWs.

Another AC measurement for sensing magnetic nanobarcodes is magnetic resonance
spectroscopy [123,128], also known as ferromagnetic resonance measurement, shown
in Figure 6e,f. Magnetic resonance spectroscopy is developed based on the traditional
radiofrequency (RF) identification method, which uses the AC magnetic field of a radio-
frequency signal, in the either presence or absence of a DC magnetic field, to sense the
magnetic nanobarcodes. By varying the DC magnetic field, the resonance frequency of the
MNWs change, and that can be used as an extra degree of freedom for secure sensing [129].
Magnetic resonance spectroscopy could be faster compared to the DC measurements
for sensing. However, it tends to have a poor signal-to-noise ratio and short distance
sensing, due to absorption/attenuation of the RF signals. Indeed, since magnetic resonance
spectroscopy uses an RF signal for the stimulation, it inherently has the limitations of
traditional RF identification.

2.2. Decoding of Magnetic Nanobarcodes

As discussed in the previous section, there is a trade-off between fast sensing and
reliable sensing. A solution for avoiding this trade-off is to reliably sense multiple mag-
netic nanobarcodes, to speed up the decoding by reducing the number of required read-
outs/measurements. In contrast to the huge progress in the encoding and sensing of
magnetic nanobarcodes, the reliable decoding of them has not received much attention,
even though it is crucial for the commercial transition [5,6]. Furthermore, establishing
a roadmap for the reliable decoding of multiple nanobarcodes is not only beneficial for
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the magnetic nanobarcodes, but other nanobarcodes can also take benefits from this, to
ramp up the authentication speed. Here, we again discuss the recent works to focus on the
MNW-based nanobarcodes.

For reliable decoding of multiple unknown MNW-based nanobarcodes, it is necessary
for the magnetic nanobarcodes to have distinct features, with minimum overlapping. This
requirement discards the hysteresis loop measurement as it only provides single values,
for example, saturation magnetization or coercivity. Aside from the fact that the saturation
magnetization and coercivity are well known and have strong magnetic signatures for
encoding, they are insufficient for reliable decoding, especially when there is more than one
nanobarcode at the readout [5–7]. For example, assume the scanner reads the saturation
magnetization 100 emu/cc. Since it is a single value, it does not indicate if there was only
one nanobarcode with 100 emu/cc or two nanobarcodes with 50 emu/cc for each, and so
on. This drawback restricts the application of the hysteresis loop measurement, regardless
of it being a fast, easy, and cheap sensing method. As a result, the sensing methods, such as
the projection method, that provide distributions stand out. Practically, the most favorable
distributions are those that can be tailored using multiple parameters, such as saturation
magnetization, coercivity, and interaction fields, to provide higher flexibilities for encoding.

The key for the reliable decoding of multiple nanobarcodes is that the readout signal
of a combination must be a linear superposition of the individual components. This is
usually achievable because the interwire distance between the MNWs (usually in order of
500 nm) in a nanobarcode is several orders of magnitude smaller than the distance between
the nanobarcodes (it is at least the thickness of the nanobarcode, which could be in order of
1 mm). This allows the readout signal to be a linear superposition of the signatures of the
composed nanobarcodes/subdivisions. Indeed, the challenge is to determine the number
of nanobarcodes; Figure 7a shows a simple flowchart for this purpose. This is because
increasing the number of nanobarcodes improves the fitting quality, leading to unbounded
values for the number of nanobarcodes. To overcome this challenge, it was proposed to
use the degree of the fitting quality (i.e., the root mean square, RMS) improvement as an
indicator of the likelihood for having the expected number of nanobarcodes [130–132],
as shown in Figure 7b,c. In other words, it is true that the fitting quality improves as
the number of nanobarcodes increases (under-fitting); however, this improvement will
not be significant as the fit number surpasses the actual number of codes (over-fitting).
To overcome this, one of the proposed techniques is to consider a cutoff value for the
improvement in the RMS [5,6]. Therefore, by selecting a cutoff for the RMS, to differentiate
between the under-fitting and over-fitting, one can predict the number of the nanobarcodes
at the readout; Figure 7 schematically illustrates such algorithms for a readout signal of
two nanobarcodes.

Figure 7 schematically illustrates the procedure for decoding using a cutoff value.
One first assumes that there is only one nanobarcode (N = 1) at the readout, and the
measured remanence spectrum is fit to one Gaussian function to find the fitting parameters
by optimizing RMS1, where superscript one indicates N = 1. Next, N is increased to 2 and
the new optimum RMS error, RMS2, is calculated. Then, RMS2 is compared with RMS1 to
determine how much the RMS error decreased, by increasing N from 1 to 2. If the reduction
meets the cutoff, then there are at least two nanobarcodes at the readout (N ≥ 2), as shown
in Figure 7b. Then, it is necessary to increase N to 3 and repeat the same procedure, to
determine whether or not there are more nanobarcodes present. Note, at this step, RMS3

and RMS2 must be considered, and their ratio must be compared with the cutoff value, as
in Figure 6c. If the reduction in RMS3 compared to RMS2 was not sufficient, the decoding
process can be terminated, because it would appear that only two nanobarcodes were
present at the readout (N = 2). This process must be continued until the ratio of RMSN-to-
RMSN-1 is no longer smaller than the cutoff value. The main drawback of this technique
for reliable decoding is finding the correct value for the cutoff. For example, as the number
of nanobarcodes at the readout increases, the magnetic signatures start overlapping, which
makes the decoding difficult. It should be emphasized that this drawback is not limited
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only to magnetic nanobarcodes, as the reliable decoding of any nanobarcodes suffers
from this problem. To resolve this problem, we proposed two alternatives. The first
alternative is to use a floating cutoff value, which is a function of the predicted number
of nanobarcodes. The second alternative, which could be a more effective approach, is
to eliminate the need for a cutoff, which could be accomplished by using the artificial
intelligent (AI) or the machine learning (ML) approaches. To accelerate the transition
of MNW-based nanobarcodes to real-life applications, the reliable decoding of multiple
nanobarcodes demands a huge amount of attention, with many research opportunities in
computer science and signal processing domains, which are expected to flourish soon.

Figure 7. Depicting a decoding method based on using the fitting quality (RMS) as an indicator for determining the
number of nanobarcodes at the readout, (a) a flowchart for decoding and (b,c) data analysis for finding the number of the
nanobarcodes were produced. The algorithm assumes that one (N = 1) nanobarcode exists, thus, it fits the data with one
Gaussian function and calculates the RMS1. Then, it increases N to two, and it calculates RMS2. If the RMS2/RMS1 (b) is
larger than the cutoff value, there was only one nanobarcode at the readout. Otherwise, there are at least two nanobarcodes
and the procedure must be repeated for N=3, which means RMS3/RMS2 must be evaluated (c).

3. Summary and Outlook

Though considerable progress and advances have been recently made toward the
encoding/sensing/decoding of MNW-based nanobarcodes, there are still challenges for
their use in nanobarcoding applications that need to be addressed to achieve practical
translation. The extremely important merits of promising nanobarcodes are as follows:
(1) expandable encoding capability, (2) fast sensing with minimal background noises, and
(3) reliable decoding of multiple nanobarcodes simultaneously present at the scanner. The
encoding capability and sensing merits are inherently correlated, as the former is the
targeted magnetic property/signature and the latter is the magnetic measurement method
for sensing/measuring the targeted property. The main considerations that must be taken
into account when choosing the proper property/signature and sensing/measurement are
the stability over time, expandability, and the speed and reproducibility of the signature, in
addition to the cost, ease of use, and portability of the sensing instruments. These criteria
make many magnetic signatures unusable, and leave a few options available, which can
be categorized based on the type of sensing methods, which are DC and AC methods.
Basically, the DC sensing methods are more reliable and simpler, but slower than the AC
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sensing methods. More importantly, the DC methods intuitively provide sensing of the
hidden MNW-based nanobarcodes, with higher signal-to-noise ratios compared to the
AC methods.

The need for faster sensing, based on DC methods, that provides distributions, instead
of single values, to achieve reliable decoding, eliminates the hysteresis loop and first-order
reversal curve (FORC) methods, which are brief and slow, respectively. Among all, the
projection method and backward remanence deem more promising, as they are as fast as
the hysteresis loop method, companied by detailed analyses similar to the FORC method.
To further enhance the rapid authentication, it is essential to be able to reliably decode the
readout signals from multiple nanobarcodes simultaneously present at the scanner. This
requirement demands other fields, such as signal processing from electrical engineering
and machine learning or artificial intelligence from computer science, into magnetism, to
facilitate the realization of MNW-nanobarcodes translation to daily applications. Indeed,
despite the huge progress in the encoding and sensing of MNW-based nanobarcodes, the
reliable decoding of multiple MNW-based nanobarcodes is still in its rudimentary stage
and requires much exploration.
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