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Testing multiple dose combinations
in clinical trials

Saswati Saha,1 Werner Brannath1 and Björn Bornkamp2

Abstract

Drug combination trials are often motivated by the fact that individual drugs target the same disease but via different

routes. A combination of such drugs may then have an overall better effect than the individual treatments which has to be

verified by clinical trials. Several statistical methods have been explored that discuss the problem of comparing a fixed-

dose combination therapy to each of its components. But an extension of these approaches to multiple dose

combinations can be difficult and is not yet fully investigated. In this paper, we propose two approaches by which one

can provide confirmatory assurance with familywise error rate control, that the combination of two drugs at differing

doses is more effective than either component doses alone. These approaches involve multiple comparisons in multilevel

factorial designs where the type 1 error can be controlled first, by bootstrapping tests, and second, by considering the

least favorable null configurations for a family of union intersection tests. The main advantage of the new approaches is

that their implementation is simple. The implementation of these new approaches is illustrated with a real data example

from a blood pressure reduction trial. Extensive simulations are also conducted to evaluate the new approaches and

benchmark them with existing ones. We also present an illustration of the relationship between the different approaches.

We observed that the bootstrap provided some power advantages over the other approaches with the disadvantage that

there may be some error rate inflation for small sample sizes.
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1 Introduction

Combining different drugs is an important treatment option in many therapeutic areas such as respiratory,
cardiovascular disease, cancer or infectious diseases. The hope is that by combining two drugs (with typically
different modes of action), one can achieve a greater beneficial effect than either therapy alone. According to the
regulatory requirement by the U.S. Food and Drug Administration’s policy (21 CFR 300.50,1 CDER, 20132), the
fixed-dose combination drug must have confirmatory evidence for being more effective than each component drug
alone. The primary questions that often arise in a drug combination therapy trial are: (1) Does there exist a dose
combination that shows a better effect than the placebo control (effectiveness)? (2) Does there exist a dose
combination that is superior to the individual treatments (superiority), where the individual treatments are
often termed as monotherapies? (3) What are the specific combinations that fulfill both effectiveness and
superiority?

Laska and Meisner3 and Snapinn4 are the first to consider the problem of testing the superiority of a certain
combination treatment over the component treatments in a single dose combination setting. They conducted a
‘‘min-test’’, where the minimum of the test statistics comparing the combination treatment with the monotherapies
are used to show that the combination treatment is better. Extending the above approach in a multiple dose
combination setting is not simple. In a multiple dose combination trial, multi-level factorial designs involving
simultaneous multiple dose combination comparison comes into play and one has to propose multiple testing
procedure (MTP) to address the multiplicity issues here.
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Several authors have addressed the primary questions stated in the earlier paragraph in several ways. Hung5–7

proposed two single-step testing procedures that showed that there exists at least one combination in a multiple
dose factorial drug combination study that is better than administering the component drugs alone. Hellmich and
Lehmacher8 proposed a testing method for identifying the set of all minimum effective combinations in the case of
monotone mean responses. Buchheister and Lehmacher9 proposed a closed testing procedure using special linear
contrast tests and extended the global maximum test by Hung6 to a local maximum test for the identification of the
superior dose combinations while preserving the family-wise error rate. Soulakova and Sampson10 and
Soulakova11 proposed a procedure where their objective was to identify the set of minimum effective
combination doses using the global average tests proposed by Hung5 under a closed testing principle. In all of
these papers, the problems of efficacy and superiority of a combination drug were addressed separately which
allowed explicit discussion of statistical issues. However, in practice, if a certain effective combination is shown to
be superior, it is necessary to explain how results of the two individual procedures may be combined and what
adjustments are needed to claim both efficacy and superiority. To address this, Soulakova12,13 expressed the
problem of identifying the effective and superior drug combinations as a two stage problem, where the min-test
is conducted at the first stage for comparing the drug combinations with the monotherapies at each dose level and
then Holm’s rejective multiple testing approach14 is employed in the second stage to obtain doses that show
superiority over placebo.

In this paper, we focus on showing superiority with regard to the monotherapies and ignore the formal
requirement of showing effectiveness, i.e. superiority over placebo. However, we will indicate in the discussion
how to include the tests for effectiveness in some of the approaches considered here. We have already seen that
many approaches are suggested in the literature to address the goals of testing superiority of drug combinations in
a multi-level factorial design and identifying the set of superior dose combinations. The method suggested by
Hung7 is one of the pioneer approaches that proposed a global test to deal with the above problems. Other authors
have mainly proposed alternatives to test the same global null hypothesis that there exists at least one combination
that provides superiority. Some authors proposed alternative approaches9,15 to control the family-wise error rate
(FWER) strongly and identify all beneficial combinations in a multiple dose combination setting. However, most
of the approaches proposed are either based on step-wise MTPs for a nonhierarchical hypothesis family, such as
methods by Holm,14 Hochberg,16 and resampling methods by Westfall and Young17; see Soulakova12,13 or rely on
closed testing principles proposed by Marcus, Peritz, and Gabriel18; also see Hellmich and Lehmacher,8

Buchheister and Lehmacher,9 Soulakova and Sampson,10 and Soulakova.11 In this article, instead of relying on
conventional MTPs mentioned earlier (like Holm14 or Hochberg16), we will propose two new multiple testing
procedures, by which one can test for superiority of the drug combination using: (i) a parametric bootstrap
approach and (ii) FWER control under the least favorable null configuration. The parametric bootstrap
approach suggested here estimates the parameters from the given dataset under the constraints imposed by the
null hypothesis and obtains the null distribution of the test statistics by sampling data with the estimated
parameters. Hence, it provides a tool to carry out the multiple comparisons in a parametric setup, without
worrying about all the sampling distributions of the inherent test statistics in the composite null hypotheses.
The least favorable null configuration approach aims to control the maximum type 1 error rate in the above
multiple testing problem. It identifies the worst possible configurations (a subset of the null parameter space) that
allow one to obtain a bound on the size of the test and control it within the desired significance limit. Thus the
bootstrap approach and the least favorable null configuration approach both suggest ways of controlling the
FWER which is a mandatory requirement for therapeutic dose response studies in Phase III clinical trials. While
the least favorable null configuration approach leads to a FWER that is always below the nominal level � (and
often much smaller), the bootstrap approach controls the FWER only asymptotically. However, the latter has the
advantage of being less conservative.

2 Problem

Consider a random vector Y, containing the clinical measurement of interest and a (rþ 1)� (sþ 1) factorial design
trial where the dose levels are coded as 0, 1, 2,. . .r for drug A and 0, 1, 2,. . .s for drug B. The response Y is observed
for (rþ 1)� (sþ 1) parallel dose combination groups and it is assumed to have the following model

Yijk ¼ �ij þ "ijk ð1Þ

where k¼ 1, 2,. . .nij, i¼ 0, 1,. . .r and j¼ 0, 1,. . .s.
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Here {�i0, i¼ 1, 2,. . .r} are the mean responses of the monotherapies of Drug A and {�0j, j¼ 1, 2,. . .s} are the
mean responses of the monotherapies of Drug B and {�ij, i¼ 1, 2,. . .r, j¼ 1, 2,. . .s} denote the mean response at
dose combination, dose i of drug A and dose j of drug B. We assume here that "ijk �

i:i:d:
Nð0, �2Þ.

For the (i, j)th dose combination, the alternative hypothesis of interest is that the dose combination is more
effective than both monotherapies, i.e. H1ij: �ij>�i0 and �ij>�0j. The corresponding null hypothesis is H0ij:
�ij��i0 or �ij��0j. The global hypothesis associated with testing all active dose combinations versus their
respective components is

H0 : 8i, j; �ij � �i0 or �ij � �0j

H1 : 9i, j; �ij 4�i0 and �ij 4�0j

ð2Þ

3 Methods

3.1 Max-min test

We can rewrite the global null and corresponding alternative of the hypotheses discussed in equation (2) as

H0 : \
i,j
H0ij whereH0ij : �ij � �i0 � 0 _ �ij � �0j � 0

H1 : [
i,j
H1ij whereH1ij : �ij � �i0 4 0 ^ �ij � �0j 4 0

ð3Þ

If Tij denotes the test statistic for testingH0ij againstH1ij, then the test statistic for testing the global null is given
by

T ¼ max
i,j

Tij ¼ max
i,j
fminfTA

ij ,T
B
ij gg ð4Þ

where TA
ij and TB

ij are the contrast test statistics used for testing whether drug combination is superior to the
monotherapies with respect to Drug A and Drug B, respectively. As suggested by Hung7 and Soulakova,12 a
simple approach here is to compute the p-value for each Tij using the minimum of the test statistics TA

ij and TB
ij . The

distribution of Tk
ij, k ¼ A,B is given below

TA
ij ¼

c0ijA
�Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0ijA�̂c0ijA

q , TB
ij ¼

c0ijB
�Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0ijB�̂c0ijB

q

where �Y � Nðl,�Þ and � ¼ �2D

D ¼

1=n11

. .
.

1=nrs

2
664

3
775

TA
ij � tn�1ð�Aij

Þ with �Aij
¼

�ij � �i0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nij
þ 1

ni0

� �r ,

TB
ij � tn�1ð�Bij

Þ with �Bij
¼

�ij � �0j

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nij
þ 1

n0j

� �r ,

CovðTA
ij ,T

B
ij Þð�ijÞ ¼

1=nijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nij þ 1=ni0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nij þ 1=n0j

p

where tn�1ð�Aij
Þ and tn�1ð�Bij

Þ are the non-central t distributions with non-centrality parameter �Aij
and �Bij

,
respectively, and with degrees of freedom n� 1 ¼

P
ij nij � 1.

The raw p-values (pij) for testing H0ij can be easily obtained but for testing multiple combinations; these raw
p-values need to be adjusted. Multiplicity adjustment is challenging because the null distribution of the ‘‘Max’’ test
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statistic in equation (4) is unknown and it is difficult to compute. Essentially one needs to adjust the pij such that
the FWER is controlled at significance level � for any of the possible null configurations. We can compute the
p-values for all H0ij and perform a Bonferroni correction for the (r� s) union tests shown in equation (3).
However, the Bonferroni method is over conservative in almost all situations, so we consider alternative
approaches to control the type 1 error rate. A more efficient approach is to control the maximum type 1 error
based on the joint distribution of the test statistics. The maximum type 1 error can be calculated by searching for
the ‘‘worst possible parameter configurations’’ within the null space for which the size of the test is maximized.19

We will see below that in our case the maximum type I error is not achieved by any finite parameter configurations

but for hypothetical limiting cases where each Tij becomes equal to either TA
ij or T

B
ij because the other test statistics

becomes infinitely large. This is further elaborated in the next paragraph. These limiting configurations are
denoted by least favorable configurations (LFC) in the rest of the article. Since the LFC are impossible in
reality, we suggest an alternative approach, where the mean parameters (l) are estimated under the null
constraint (3) and these null space restricted estimates are utilized via bootstrapping to obtain the critical value
for the above multiple testing problem. This method gives more realistic estimates of the type 1 error rate. Note
that the above multiple testing procedure is based on test statistics that satisfy the subset pivotality condition.17

The subset pivotality conditions asserts; if K � G, where G denotes the set of all active dose combinations and K is
a subset of G whereH0ij is true for all (i, j) 2 K, then the test statistics Tij, for some (i, j) 2 K depend on the nuisance
parameter ð�Aij

, �Bij
Þ and sample sizes nij, ni0 and n0j but not on the remaining parameters fð�Aij

, �Bij
Þgði,j Þ =2K. The

distribution of maxði,j Þ2KTij is therefore the same under the complete hypothesis HG
0 ¼ \ði,j Þ2GH0ij and the reduced

hypothesis HK
0 ¼ \ði,j Þ2KH0ij. Furthermore, each hypothesis is tested with a ‘‘Max’’ statistics and according to

Westfall and Troendle20 both approaches, LFC and bootstrap approach, attain strong control of FWER. The
following section elaborates how the multiplicity issue is dealt in the above testing problem.

3.1.1 Least favorable null

The least favorable null configurations (LFC) identify the ‘‘worst case scenarios’’ that lead to the maximum type 1
error rate over the full parameter space. Note that the test statistics for evaluating H0ij, Tij, is stochastically
bounded by both TA

ij and TB
ij . Thus PðTij � tÞ � minfPðTA

ij � tÞ,PðTB
ij � tÞg is maximum when equality holds,

i.e. when Tij attains one of the bounds. For evaluating the single hypothesis H0ij, the above situation arises
when the combined mean �ij is equal to one of the monotherapies and infinitely larger than the other
monotherapy. Hence, we conclude that the LFC for H0ij occurs under such situations. This LFC can be best
formulated as

LFCij ¼ LFCA
ij [ LFC

B
ij

where LFCA
ij ¼ f�ij ¼ �i0 and �ij � �0jg and LFCB

ij ¼ f�ij � �i0 and �ij ¼ �0jg. Here a� b indicates that a is
infinitely larger than b. Following from here, the LFC for H0 in equation (3) occurs when the mean response
�ij under each combination (i, j) is equal to one of the monotherapies and infinitely larger than the other. This can
be written as

LFC ¼ \
ði,j Þ2K
ðLFCA

ij [ LFC
B
ij Þ ¼ [

�2fA,BgK
LFC� ¼ [

�2fA,BgK
\
ði,j Þ2K

LFC
�ij
ij

where K ¼ f1, . . . , rg � f1, . . . , sg and s 2 {A, B}K means that, s is a map from K to {A, B}, i.e.

� : ði, j Þ 2 K� �ij 2 fA,Bg

We will call s a configuration of A’s and B’s. Now, some s 2 {A, B}K are infeasible in the sense that

LFC� :¼ \
ði,j Þ2K

LFC
�ij
ij ¼ ;

The set of all infeasible s is given by

�; ¼ f�j9i 6¼ l, j 6¼ k, suchthat�ij ¼ A,

�ik ¼ B, �lj ¼ B, �lk ¼ A, �rem 2 fA,Bg
K0 g
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where K0 ¼ fK n fði, j Þ, ði, kÞ, ðl, j Þ, ðl, kÞgg and srem is a map from K0 to fA,BgK
0

. As one of the reviewers have pointed
out, it might be interesting to explore the size of the infeasible LFC as compared to the set of feasible ones. We
have written a R code to visualize the cardinality of �; for different choices of dose levels of Drug A (r) and dose
levels of Drug B (s). It is added to the supplementary material. Table 1 shows the cardinality of �; for the different
choices of dose levels of Drug A and Drug B. It is evident from the table that the rate of increase of infeasible LFC
is very high as the number of dose levels increases. With the help of an illustrative example, we have shown later
the set of infeasible LFC (2 out of 16) in a 3� 3 drug combination trial, i.e. where r¼ 2 and s¼ 2. Furthermore,
since we are interested in drug combination studies for Phase II clinical trials, the dose levels of the two drugs are
unlikely to go beyond 4 or 5.

Consider the critical value C� for the above approach such that it satisfies

max
�2fA,BgKn�;

ð1� Pr�ðT11 � C�, . . . ,Trþ1sþ1 � C�ÞÞ ¼ � ð5Þ

We reject the global null in equation (3) when the observed T>C�. Furthermore, all the component test
statistics Tij are tested against the critical value C� and decisions are taken following a single-step testing
procedure.21 The adjusted p-value for each component hypothesis H0ij for the LFC approach can be obtained
by computing the following probability; max�2fA,BgKn�; fP�ðmaxi,j Tij � tijÞg, where tij is the observed value of the test

statistics Tij in equation (4). It is interesting to note in Table 1 that for a 5� 5 combination trial, where r¼ 4 and
s¼ 4 approximately 90% of the observed LFC are infeasible. One needs to compute the type 1 error only under
10% LFC and type 1 error computation is less time consuming under such a scenario as compared to computing
the type 1 error under all possible LFC. The ‘‘Max’’ test together with the earlier mentioned subset pivotality
property22 ensures that the FWER is controlled in the strong sense in the above testing approach. The following
example shows an illustration of how one can obtain the maximum type 1 error using the LFC approach with four
active drug combinations.

3.1.2 Example

We consider a 3� 3 drug combination study, i.e. a study with two drugs and two active doses per drug. Then
T ¼ maxfT11,T12,T21,T22g, where Tij ¼ minfTA

ij ,T
B
ij g is the test statistics for comparing the ijth drug combination

with its monotherapies. The formal set of LFC is given in Table 2. In Table 2, LF1 denotes the set of dose
combinations where the dose response means are equal to their first monotherapies and infinitely larger than
their second monotherapies. LF7 and LF10 are marked grey because they are infeasible. The reason why LF7 is
infeasible is that, LFCA

11 ) �11 ¼ �10, �11 � �01

LFCB
12 ) �12 � �10, �12 ¼ �02,

LFCB
21 ) �21 � �20, �21 ¼ �01,

LFCA
22 ) �22 ¼ �20, �22 � �02

) �10 ¼ �11 � �01 ¼ �21 � �20 ¼ �22 � �02 ¼ �12 � �10, which gives a contradiction. Similarly LF10 leads
to another contradiction and thus it is infeasible as well.

The maximum type 1 error can be computed as

maxf1� PrðTA
11 � c,TA

12 � c,TA
21 � c,TA

22 � cÞ,

1� PrðTA
11 � c,TA

12 � c,TA
21 � c,TB

22 � cÞ,

1� PrðTA
11 � c,TA

12 � c,TB
21 � c,TA

22 � cÞ,

..

.
,

1� PrðTB
11 � c,TB

12 � c,TB
21 � c,TB

22 � cÞg

where each probability within the max is attained under each LFC in Table 2.
Obviously the FWER is bounded by the maximum over all the LFi in Table 2, but note that we have omitted the

infeasible LF7 and LF10. We will now show that the FWER under all mean constellations are controlled by the
feasible LFC (LFC obtained after omiting LF7 and LF10). Clearly, the FWER under any mean constellation
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increases when replacing inequalities �ij��i0 and �ij��0j by equalities. The resulting FWER is then dominated
by the LFi in Table 2 with similar equalities, i.e. the FWER under any mean constellation with �ij��i0 is bounded
by the corresponding FWER under the LFC where �ij¼�i0 (LFC where sij¼A), and the FWER under any mean
constellation with �ij��0j is bounded by the corresponding FWER under the LFC where �ij¼�0j (LFC where
sij¼B). Assume now that � corresponds to the set similar to LF7 where the dose combination means are equal to
one monotherapy and finitely larger than the other monotherapy. We call this case

F ¼ f�11 ¼ �10, �11 � �01, �12 � �10, �12 ¼ �02,�21 � �20, �21 ¼ �01, �22 ¼ �20, �22 � �02g

Since we are omitting LF7 which is a bound for the FWER under the mean constellation F, we explore other
bounds for this within the FWER under the feasible LFi’s. Note that this particular configuration, F, can hold true
only when all the inequalities are substituted by equality, i.e. �ij¼�i0¼�0j for all (i, j). Under this configuration,
the FWER is bounded by the FWER of any feasible LFi because the probability of rejection goes up when one of
the means is really high. Hence controlling the maximum type 1 error within the significance level � ensures that
the FWER is controlled in the strong sense.

Bootstrap test: Under this approach, we aim to approximate the true null distribution of the test statistics using
bootstrap methods. An illustration of the null parameter space is given in Figure 1. Here we estimate the
parameters f�ijji ¼ 0, . . . r, j ¼ 0, . . . sg either under the null boundary constraint or under the space of all null
configurations including the null interior constraint shown in Figure 1. With the bootstrap method, we generate
samples under model (1) using estimates of the parameter �ij and r2. These bootstrap samples are then utilized to

Table 1. Cardinality of infeasible LFC and the cardinality of all the LFC (in bracket) for different choices of

dose levels of Drug A and Drug B, r and s, respectively.

s

r 1 2 3 4

1 0 (2) 0 (4) 0 (8) 0 (16)

2 0 (4) 2 (16) 18 (64) 110 (256)

3 0 (8) 18 (64) 282 (512) 3030 (4096)

4 0 (16) 110 (256) 3030 (4096) 58634 (65536)

Table 2. All least favorable null configurations for a 3� 3 drug combination trial with four

dose combinations.

Least Favorable Null (1.1) (1.2) (2.1) (2.2)

LF1 LFCA
11 LFCA

12 LFCA
21 LFCA

22

LF2 LFCA
11 LFCA

12 LFCA
21 LFCB

22

LF3 LFCA
11 LFCA

12 LFCB
21 LFCA

22

LF4 LFCA
11 LFCA

12 LFCB
21 LFCB

22

LF5 LFCA
11 LFCB

12 LFCA
21 LFCB

22

LF6 LFCA
11 LFCB

12 LFCA
21 LFCB

22

LF7 LFCA
11 LFCB

12 LFCB
21 LFCA

22

LF8 LFCA
11 LFCB

12 LFCB
21 LFCB

22

LF9 LFCB
11 LFCA

12 LFCA
21 LFCA

22

LF10 LFCB
11 LFCA

12 LFCA
21 LFCB

22

LF11 LFCB
11 LFCA

12 LFCB
21 LFCA

22

LF12 LFCB
11 LFCA

12 LFCB
21 LFCB

22

LF13 LFCB
11 LFCB

12 LFCA
21 LFCA

22

LF14 LFCB
11 LFCB

12 LFCA
21 LFCB

22

LF15 LFCB
11 LFCB

12 LFCB
21 LFCA

22

LF16 LFCB
11 LFCB

12 LFCB
21 LFCB

22
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obtain a sample of bootstrap test statistics with an empirical distribution, that is ideally a good approximation of
the unknown underlying true null distribution of the test statistics T in equation (4). The parametric bootstrap
approach can be outlined in more details by the following steps. Note that 2a and 2b below show the two options
of projecting on the null space corresponding to the two different constraints illustrated in Figure 1.

(1) For a given multiple dose combination study, compute the test statistics T ¼ maxi,j minfTA
ij ,T

B
ij g where T

A
ij and

TB
ij are defined earlier in section 3.

(2) For the given dataset estimate the mean under the constraints, i.e.
a) �ij ¼ maxð�i0,�0jÞ8i, j such that, �̂a ¼ argmin

f� j 8 ði, jÞ�ij¼maxð�i0,�0jÞg

P
ði, j, kÞ

ðYijk � �ijÞ
2

b) �ij � maxð�i0,�0jÞ8i, j such that, �̂b ¼ argmin
f� j 8 ði, jÞ�ij�maxð�i0,�0jÞg

P
ði, j, kÞ

ðYijk � �ijÞ
2

The standard deviation is estimated as ðY��̂Þ0ðY��̂ÞP
i,j
nij�ðrþ1Þðsþ1Þ

, where �̂ is the unrestricted maximum likelihood

estimate (mle) of �.

(3) (a) Simulate 5000 normal distributed random variables with mean estimate �̂a and
(b) Simulate 5000 normal distributed random variables with mean estimates �̂b from the earlier step.
The standard deviation estimates remain the same in both the cases. For each simulated data compute the test
statistics T in equation (4).

(4) Find out the proportion of times the test statistics from the simulated data is greater than the observed test
statistics both in case (a) and (b). This gives our p-value for the above bootstrap test under option (a) and (b),
respectively.

Note that instead of calculating a p-value we could equivalently calculate the (1 – �) quantile of the bootstrap
distribution for T and use this as the critical value for T. We will refer to this bootstrap critical value in the next
section. We have used the unrestricted mle �̂ to estimate �̂ in the above bootstrap approach instead of the
restricted estimate in order to make sure that the bootstrapped test statistics satisfy the subset pivotality
criteria mentioned earlier. This ensures in the above ‘‘Max’’ test, that the FWER is strongly controlled under
the bootstrap approach as well.20 By this, we can not only claim that the drug-combination is beneficial overall but
also provide the set of dose combinations showing beneficial effect in our study. We have observed in simulation
studies that the option 2a provides better type 1 error control than option 2b. This is not surprising because the
null hypotheses on the boundary are less favorable than those in the interior. In the numerical example and the
simulation studies below, we present only the bootstrap approach under the option 2a.

Figure 1. The null parameter space for any dose combination.
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3.2 Relationship between the different approaches

With the bootstrap approach, the critical value depends on the data via the constraint parameter estimates. Hence,
the critical value is a random variable in the bootstrap approach whereas it is a fixed number for the LFC and
Hung’s approach.7

In this section, we investigate different approaches by comparing their critical values under a particular dose
combination setup. We illustrate the distribution of critical values for the different methods in Figure 2. For
simplicity we simulate data from a balanced factorial design with r¼ 1, s¼ 1, and nij¼ 25 for all (i, j) combinations.
Further we fix the first effect size at 0, i.e. set d1¼�11 – max(�10, �01)¼ 0 and the second effect size (d2¼�12 –
max(�10, �02)) begins with 0 and increases along the X-axis. For the above setup, we plot the critical value of the
test statistic (along the Y-axis) for the LFC approach, Hung’s7 approach, Bootstrap approach and the oracle
critical value, i.e. the critical value that can be derived if we know the unknown true null distribution of the test
statistics. Since there is only one combination involved, computing the distribution of the test statistic under the
global null H0 in equation (3) is not complicated. We observe that the critical value under the LFC is indeed a
limiting case of the oracle critical values.

Our LFC approach is similar to the one in Hung’s7 approach with the exception that it does not rely on an
asymptotic normal approximation. The LFC approach identifies the same configurations as the extreme parameter
configurations of the parameter dij (where j�ijj ¼ j�i0 � �0jj) introduced by Hung.7 Under these extreme
configurations using multiple testing theory, we show that the LFC leads to a multivariate t distribution for the
test statistics T in equation (4) under the null H0 in equation (3). It is likely that the asymptotic approximation was
introduced by Hung7 because numerical techniques for efficient evaluation of probabilities over rectangular
region23 were not available then. Nevertheless, our illustration for a 2� 2 factorial design in Figure 2 shows
that the difference in the critical value between the two methods is marginal, with the LFC being more
conservative than Hung’s approach.

We have conducted 1000 simulations at some particular fixed values of d1 and d2. d1 is fixed at 0 and 4 different
values of d2 are selected and the boxplots distribution of the critical values for the bootstrap method under the

Figure 2. Distribution of critical value for the different methods under the set up: Drug A and Drug B both have one active dose

group with sample size per dose group¼25. The first effect size (d1) is 0 and the second effect size (d2) varies. Note that T2
11 is

addressed as TB
11 in the article and the plots are shown in terms of the non-centrality parameter of test statistics T2

11, i.e.

�211 ¼ �2=
ffiffiffiffiffiffiffiffiffiffi
2=25
p

, which is the second effect size scaled by the harmonic sum of sample size of the dose combination and the second

monotherapy. (a) Boxplot distribution at d211¼ 0.707; (b) boxplot distribution at d211¼ 1.591; (c) boxplot distribution at d211¼ 3.359;

(d) boxplot distribution at d211¼ 5.127.
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different values of d2 is shown in Figure 2. As one can see from the plot, the critical value under the bootstrap
method is approximately centered around the oracle critical value at each pre-selected d2 (shown by the dotted
green line). However, there might be cases where the critical value under the bootstrap method is smaller or larger
compared to the oracle critical value. Asymptotically the type error should be controlled strongly with the subset
pivotality criteria20 under the bootstrap approach but the critical value is sometimes underestimated as shown in
Figure 2(c), thereafter explaining the inflation in type 1 errors observed in our simulation scenarios shown in
Table 15.

A similar illustration of the above scenario with d1 6¼0 is given in Figure 3 of Appendix 1. In summary, it is
observed that the critical value under the bootstrap method is always centered around the least favorable null
critical value and it is with a high probability below the least favorable critical value for smaller d2. This indicates
that the bootstrap method will give more power than the LFC approach.

From the above illustration, it is expected that the LFC approach gives more conservative results compared to
the bootstrap approach and it also shows that Hung’s7 approach behaves similar to the LFC approach.

4 Numerical example

We consider here an example from Hung7 to illustrate the methods discussed in the previous sections.
A combination of a diuretic (drug B) and an ACE inhibitor (drug A) is tested for the efficacy in reduction of
sitting diastolic pressure (SiDBP) with a pooled standard deviation of r¼ 7.07. The response means and sample
sizes are summarized in Table 3.

In total 750 patients are randomized to receive one of the 12 dose combinations. The primary objective of the
study is to test whether there exist at least a combination (i, j) which is superior to the component drugs. Table 4
shows the unadjusted p-values as well as the adjusted p-values from the different methods for each dose
combination.

We see from Table 4 that all the approaches proposed by us suggest that at 5% significance level the
combinations (2, 1), (2, 2), (3, 1), and (3, 2) are superior to the monotherapies. For the Bonferroni adjusted
method, the p-values are compared to the local significance level 0.8% to control the overall type 1 error at 5%.

Table 3. Mean responses and the sample sizes (in bracket) of the drug combination

study.

Drug B

Drug A 0 1 2

0 0 (75) 1.8 (74) 2.8 (48)

1 1.4 (75) 2.8 (75) 4.5 (50)

2 2.7 (74) 5.7 (74) 7.2 (48)

3 4.6 (48) 8.2 (49) 10.9 (48))

Table 4. Unadjusted and adjusted p-values for each drug combination, when different

methods are applied to the data example in Table 3.

Dose Comb TStat UnadjP BonfP BootP LFCP

(1, 1) 0.863 0.194 1.000 0.650 0.709

(1, 2) 1.190 0.117 0.703 0.452 0.512

(3, 1) 2.507 0.006 0.037 0.024 0.036

(2, 1) 2.581 0.005 0.030 0.020 0.029

(2, 2) 3.049 0.001 0.007 0.004 0.007

(3, 2) 4.365 0.000 0.000 0.000 0.000

Dose Comb: Different dose combinations

TStat : Test statistics Tij testing for H0ij.

UnadjP is the one-sided raw p-value testing H0ij against H1ij. BonfP, BootP and LFCP are the one

sided Bonferroni adjusted, Bootstrap adjusted and LFC adjusted p-values respectively.
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This numerical example was also investigated by other authors. Based on a global test, Hung7 concluded that there
exists at least one combination that is superior to the monotherapies. He also applied an approximation of James24

to adjust the p-values and thereby identified the dose combination (2, 1), (2, 2) and (3, 2) as superior. But now that
there is no need to approximate the distribution of the test statistics because Genz and Bretz23 proposed numerical
techniques for an efficient evaluation of multivariate t-distribution probabilities over rectangular regions. Hellmich
and Lehmacher8 implemented the AVE and MAX test proposed by Hung7 using the above proposed adjustment
on the same dataset and concluded that the combination (2, 2) and (3, 2) are superior at 2.5% significance level
(one-sided) with strong FWER control. Furthermore, using Holm’s method, they showed that dose combinations
(2, 1) and (3, 1) are also effective at significance level 2.5% (one-sided) to control the FWER at 5%. Soulakova12

cited the same example and concluded using Holm’s approach that all the four combinations: (2, 1), (2, 2), (3, 1),
and (3, 2) are superior and effective at significance level 5%. However, unlike Hellmich and Lehmacher,8 they
conducted a test for both effectiveness and superiority and did not assume a priori that the dose combinations
means are always greater than or equal to the monotherapy means.

5 Simulation studies

In this section, a simulation study is presented. The main objective of this simulation study is to compare the
performance of the following approaches: (1) Hung’s method, (2) parametric bootstrap method, (3) Bonferroni
correction and (5) LFC approach with regards to their (a) ability to control the overall type 1 error at 5%
significance level and (b) power to detect the superior dose combinations. We consider 11 scenarios overall,
amongst which Scenario 1 and Scenario 2 are designed to investigate the strong control of type 1 error rate
and Scenario 3 to Scenario 11 are designed to compare power performance of the different testing strategies. In
Scenario 1 to Scenario 3 we are considering a balanced factorial design with r¼ 2, s¼ 1, and nij¼ n for all (i, j)
combinations. In Scenario 4 to Scenario 11 we are considering an unbalanced factorial design with r¼ 3, s¼ 2, and
differing nij for the (i, j) combinations.

5.1 Simulation scenarios

The simulation scenarios are divided into two parts. Section 5.1.1 refers to some new scenarios which are
introduced in this article and Section 5.1.2 refers to the scenarios taken from Hung (2000).7

5.1.1 New scenarios

We are considering three scenarios. Scenario 1 refers to an extreme situation where the parameters are drawn from
the restricted parameter space LFCfeasible. Note that in Table 5 where we are presenting Scenario 1, we assign d¼ 2
and a¼ 9999, where 9999 represents an essentially large number close to the LFC where some dose combination
means are infinitely larger than those of the monotherapies. Scenario 1 is to evaluate the ability of the different
methods in controlling the type 1 error rate under extreme situations. For this we simulate the data randomly from
one of the four cases shown in Table 5, where each LFi represents a configuration that can occur in a 3� 2 factorial
design:

However, as Scenario 1 is very extreme, Scenario 2 is considered to evaluate the performance of the different
methods under a more realistic set up, where the value of a in Scenario 1 is replaced by 0.7. To evaluate the power
performance across different sample sizes in a balanced design, data are simulated under Scenario 3 shown in
Table 6.

We consider five different sample sizes for the above described scenarios: 10, 25, 50, 75, 100. We evaluate the
empirical type 1 error and power based on 5000 simulation runs assuming normally distributed errors with
standard deviation 1. For the parametric bootstrap method, 5000 bootstrap samples are used.

5.1.2 Scenarios from Hung (2000)

Scenarios 4–11 are reproduced from Hung (2000).7 They are introduced to assess the power performances of the
different methods under different effect sizes. Effect sizes here indicate the value of the contrast comparing the dose
combination with the best monotherapy (�ij¼�ij – max(�i0, �0j)). We want to further investigate the power
performance of the different methods under a balanced and unbalanced design. Two possible effect sizes (E1
and E2) are shown in Tables 7 and 8. The average effect size (average of �ij) is 0.3 for both designs but in E1 all
effect sizes is equal and in E2 the combination of the lower dose A1 has a smaller effect compared to E1. For the
above two designs, we consider four possible sample size allocations (S1, S2, S3, S4) given in Tables 9 to 12. S1 is a
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Table 5. Four least favorable null configurations in a 3� 2

factorial design.

Least Favorable Config Drug A

Drug B

0 1

LF4 0 d dþ a

1 d dþ a

2 d dþ a

LF3 0 d dþ a

1 d dþ a

2 dþ 2a dþ 2a

LF2 0 d dþ a

1 dþ 2a dþ 2a

2 d dþ a

LF1 0 d d
1 dþ a dþ a

2 dþ a dþ a

Table 6. Scenario 3: A balanced design scenario devised to evaluate the

power of the different methods across different sample sizes.

Drug B

Drug A 0 1

0 2 2

1 2 2.5

2 2 2.5

Table 7. Dose-response means for the

factorial design E1.

Drug B

Drug A B0 B1 B2

A0 0 0.2 0.5

A1 0.1 0.5 0.8

A2 0.3 0.6 0.8

A3 0.6 0.9 0.9

Table 8. Dose-response means for the

factorial design E2.

Drug B

Drug A B0 B1 B2

A0 0 0.2 0.5

A1 0.1 0.25 0.65

A2 0.3 0.70 0.90

A3 0.6 1.0 1.0
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balanced design. S2 is introduced to increase the power of dose combination (A2, B1). Here (A2, B1) denotes the
dose combination with dose level 2 of Drug A and dose level 1 of Drug B. S3 is designed such that more sample
size is allocated to monotherapies corresponding to Drug A. This is introduced to ensure sufficient power of the
drug combinations when compared with the first monotherapies. S4 is introduced to ensure more power for
combinations with higher doses, particularly when the data is simulated from E2.

Table 9. Sample size scenario (S1) for the

drug combination designs (E1 and E2).

Drug B

Drug A B0 B1 B2

A0 50 50 50

A1 50 50 50

A2 50 50 50

A3 50 50 50

Table 10. Sample size scenario (S2) for the

drug combination designs (E1 and E2).

Drug B

Drug A B0 B1 B2

A0 50 90 35

A1 35 35 35

A2 90 90 35

A3 35 35 35

Table 11. Sample size scenario (S3) for the

drug combination designs (E1 and E2).

Drug B

Drug A B0 B1 B2

A0 50 20 20

A1 70 50 50

A2 70 50 50

A3 70 50 50

Table 12. Sample size scenario (S4) for the

drug combination designs (E1 and E2).

Drug B

Drug A B0 B1 B2

A0 50 56 56

A1 30 30 30

A2 58 58 58

A3 58 58 58
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5.2 Simulation results

Tables 14 and 15 shows how the type 1 error rate is controlled under the different methods for Scenario 1 and
Scenario 2, respectively. Table 16 presents the empirical power of the different approaches under Scenario 3.
Table 17 presents the empirical power of the different approaches under each effect size pattern and each sample
size allocation for scenarios in Table 13.

From Tables 14 and 15 we observe that the Bonferroni method and the LFC approach show a more
conservative behavior compared to Hung’s and the bootstrap approach. Note that though the Bonferroni
method is criticized quite often in the literature, it performs almost as good as the LFC approach in our
simulations.

The type 1 error is somewhat inflated for small sample sizes (e.g. nij¼ 10, 25 8i, j) with the bootstrap method.
Tables 16 and 17 indicate that the parametric bootstrap approach shows uniformly better power performance than
the other methods across all the sample sizes. This is because, under the alternative scenarios, the critical value of
the bootstrap method is mostly below the critical value of the LFC approach. This has been elaborated in Section
4. The power performance of Hung’s7 approach is similar to the power performance of the LFC approach. This is
because they are essentially the same, one using an approximate and the other the exact distribution of the same
test statistics. Note that we have used only 5000 iterations for the bootstrap approach in our simulation studies but

Table 13. Scenario 4–Scenario 11.

Scenario

Dose

Response Design

Sample

Size

Scenario 4 E1 S1

Scenario 5 E1 S2

Scenario 6 E1 S3

Scenario 7 E1 S4

Scenario 8 E2 S1

Scenario 9 E2 S2

Scenario 10 E2 S3

Scenario 11 E2 S4

Table 14. Empirical type 1 error rate for the

different methods: Scenario 1.

Sample Size Bonf Hung Boot LFC

10 0.045 0.057 0.047 0.045

25 0.050 0.055 0.053 0.051

50 0.047 0.049 0.048 0.047

75 0.044 0.045 0.046 0.044

100 0.048 0.050 0.049 0.049

Table 15. Empirical type 1 error rate for the

different methods: Scenario 2.

Sample Size Bonf Hung Boot LFC

10 0.038 0.050 0.058 0.038

25 0.049 0.053 0.061 0.049

50 0.047 0.049 0.050 0.047

75 0.043 0.045 0.047 0.044

100 0.048 0.050 0.049 0.048
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as the number of iteration increases the inflation in type error is expected to reduce. Nevertheless, there will still be
some inflation regardless of the number of bootstrap samplings and as the number of bootstrap iteration increases
the method becomes more time consuming and the improvement is not significant, so we adhered to 5000
iterations. Summing up, the bootstrap approach is giving power improvement by 6–10% over the other
approaches across all the scenarios.

We further observe from Table 17 that we can gain in power by choosing an unbalanced design with more
sample size allocation in the combination doses compared to the component doses. In S3 the power performance
dropped as more sample size is allocated to the monotherapies of Drug A compared to the dose combinations,
whereas in S4, the power across all the methods are becoming better when more sample size is allocated to higher
dose combinations compared to the monotherapies. The marginal improvement of Hung’s method over the LFC
approach is due to the approximate nature of the first.

6 Discussion

We observe from our simulation experiments that both the bootstrap method and the LFC approach, proposed in
this article, meet the nominal level for attaining the global null hypothesis if per group sample sizes are not too
small (e.g. 50 or more). They also strongly control the FWER at the desired significance level. Since the LFC
approach is conservative across all sample sizes, the bootstrap approach is providing more power compared to the
LFC. The LFC and Bonferroni approach performs surprisingly similar to each other. This is likely due to the fact
that the least favorable null configuration will be the one where the test statistics are either independent or have
low correlation. This follows from Slepian’s inequality25 which says that the type 1 error from a ‘‘max’’ test, like
the ones discussed in this article, increases with the decrease in the correlation between the component test
statistics that combine to generate the max test statistic. The ideal maxima will occur when all the test statistics
are uncorrelated, which will lead to the similar type 1 error as the type 1 error under the Bonferroni adjustment.
However, in reality when there are multiple dose combinations involved, it is improbable to achieve this ideal
maxima and hence the LFC type 1 error will always be greater than or equal to the Bonferroni type 1 error. This is
also evident in our simulations. Note that we have only tested for superiority in our null hypothesis in equation (3).
In order to test for effectiveness, we only need to add one additional test per dose combination, namely the test

Table 16. Empirical power of the 5% level

max test for the different methods under

Scenario 3.

Sample Size Bonf Hung Boot LFC

10 0.1488 0.1718 0.2192 0.1530

25 0.4330 0.4432 0.5104 0.4380

50 0.7886 0.7936 0.8358 0.7904

75 0.9288 0.9308 0.9450 0.9304

100 0.9800 0.9790 0.9840 0.9806

Table 17. Empirical power of the 5% level max test for the different methods under the data

scenarios in Table 13.

Scenario

Dose Response

Design

Sample

Size Bonf Hung Boot LFC

Scenario 4 S1 0.5622 0.5818 0.6596 0.5690

Scenario 5
E1

S2 0.5626 0.5750 0.6466 0.5670

Scenario 6 S3 0.4160 0.4510 0.5478 0.4222

Scenario 7 S4 0.5794 0.5974 0.6702 0.5846

Scenario 8 S1 0.7214 0.7350 0.7968 0.7286

Scenario 9
E2

S2 0.7538 0.7750 0.8254 0.7570

Scenario 10 S3 0.6102 0.6362 0.7322 0.6154

Scenario 11 S4 0.7930 0.8030 0.8572 0.7966
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against placebo, such that we have overall the union of an intersection of three (instead of two) tests. Moreover, it
is unlikely that we have non-efficacy but superiority with regard to both monotherapies. Hence, we have only
considered superiority in our testing problem.

Resampling-based bootstrap approaches have already been suggested by other authors.15,26 Soulakova15

proposed a resampling based framework for a multiple dose factorial design where she identified all the
effective and superior combinations without any considerations of the role of the nuisance parameters
(difference in monotherapies) in the resampling distribution. Accordingly, she observed family-wise error rate
inflations in multiple situations. Frommolt and Hellmich26 addressed this issue by a resampling-based bootstrap
approach, where the nuisance parameters are estimated and accounted for in the resampling approximation of the
test statistic’s null distribution. But this bootstrap-based testing performed similar to the Hung’s approach. The
virtue of the parametric bootstrap approach suggested in this article is that, unlike the earlier approaches, it is
performing better than the Hung’s7 approach under the alternative hypothesis. As one of the reviewers pointed
out, a potential downside of the parametric bootstrap approach is that it relies on the normal distribution
assumption, which may not be always true. However, it is only a concern for small sample sizes; for large
sample sizes, one can easily show using the central limit theorem that the test statistics is approximately t
distributed regardless of the underlying data distribution.

The methods suggested here only provide a set of superior dose combinations but do not propose an optimal
dose for future use in the drug developments process. We also cannot infer anything beyond the observed doses if
the nature of dose response relationship is not known a priori. Hence, there is a strong interest in estimating the
dose–response relationship for the drug combination. Hung5,27 suggested a response surface methodology
approach, where after attaining global superiority one can utilize the biological information on the drug
combination study and apply a statistical model to estimate the relationship between the drug dosages and
mean response. This approach helps us to obtain an optimal dose and make inference around this optimal
dose in a multiple dose drug combination trial. But often it happens that the true dose–response pattern is not
known and then choosing an appropriate dose response model becomes difficult. Hellmich and Lehmacher8

proposed a closed testing procedure for estimating the minimum effective dose and highest effective dose levels
in a dose–response bi-factorial design but they had to assume monotonicity properties to obtain the likelihood
ratio tests and multiple contrast tests for their proposed hypotheses. To the best of our knowledge, there exists no
approach where one can simultaneously control the FWER and infer on the dose–response relationship in a
multiple dose drug combination study without the monotonicity assumption. Hence, it might be interesting to
extend our bootstrap-based multiple testing approach to a modelling framework.
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Appendix 1

Details on the least favourable configurations:
We have a (rþ 1)� (sþ 1) factorial design as shown in Table 18.

Following section 3, the set of all LFC is formally given by

LFC ¼ \
ði, j Þ2K

ðLFCA
ij [ LFC

B
ij Þ ¼ [

�2fA,BgK
\

ði, j Þ2K
LFC

�ij
ij

where K¼ {1,. . ., r}� {1,. . ., s} and s 2 {A, B}K is a map from K to {A, B} already explained section 3.

Proposition. All possible combinations in s are feasible except the case where

LFC� ¼ \
ði, j Þ2K

LFC
�ij
ij ¼ ;:

The set of all infeasible s is given by

�; ¼ f�j9i 6¼ l, j 6¼ k, such that�ij ¼ A,

�ik ¼ B, �lj ¼ B, �lk ¼ A, �rem 2 fA,Bg
K0 g

where K0 ¼ fK n fði, j Þ, ði, kÞ, ðl, j Þ, ðl, kÞgg and srem is a map from K0 to fA,BgK
0

.

Proof. Every configuration s can be visualized as a matrix of A’s and B’s. It is easy to see

LFCA
ij \ LFC

B
ik \ LFC

B
lj \ LFC

A
lk ¼ ; if i 6¼ l, j 6¼ k

This is evident because the above condition will lead to the following submatrix for s which is infeasible

j k

i A B

l B A

2
64

3
75)

j k

i �i0 �0k

l �0j �l0

2
64

3
75and

�i0 � �0j

�0j � �l0

�l0 � �0k

�0k � �i0

2
6664

3
7775

It remains to show that the above constellation is also a necessity condition for infeasibility.
Consider any feasible constellation s. Let us denote the corresponding matrix by W. We show that s cannot

contain any other infeasibility criteria except the one in s; using the following conjectures:

Table 18. A multiple dose drug combination factorial design.

Drug B

Drug A 0 1 2 . . s

0 �00 �01 �02 . . �0s

1 �10 �11 �12 . . �1s

. . . . . . .

r �r0 �r1 �r2 . . �rs
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Claim 1. Here we propose that it is always possible to permute the rows and columns ofW to obtain the following
matrix W0

1 2 . . s1 . . s

1 A A . . A B B B

. A A . B B B B B

. . . . . . . . .

. . . . . . . . .

r . . . . . . . .

where W0 have s1 A’s followed by s – s1 B’s in the first row, s2 A’s followed by s – s2 B’s in the second row, and so
on. Here s1, s2,. . ., sr can be any numbers between 0 and s which satisfies the inequality: s1� s2� . . .� sr. Note that
the above permutation is possible because permuting the rows or columns of W will not have any impact on the
distribution of the test statistics under the LFC s.

Claim 2. Here we show that the matrix W0 will lead to the following mean constellations ls in Table 19 and
the parameters in this constellation can be chosen to meet in the limit, the criteria of an LFC, i.e. each �ij

equals the mean of one of the corresponding monotherapies and becomes infinitely larger for the other
one. Furthermore, we will show that the absence of an infeasible submatrix in ls is sufficient for showing the
feasibility.

Proof of Claim 1. We conduct the following operations on W to obtain W0:
Operation 1: Consider the row with maximum number of A’s in W and permute the rows to make it the first

row. Similarly the row with the second highest number of A’s is brought to the second row and so on. By this, we
obtain a matrix, where the number of A’s in a row is non-increasing from the first to the last row.

Operation 2: Followed by Operation 1, permute the columns of matrixW such that the first row will have all A’s
in the beginning followed by all B0s. This will lead to the following matrix

W00 ¼
A11�s1 B11�s�s1

Yr�1�s1 Zr�1�s�s1

� �

where A11�s1 is a row vector of all A’s and B11�s�s1 is a row vector of all B’s. Due to construction, Zr�1�s�s1 has B’s
in all entries by the following argument: If say the kth row of Zr�1�s�s1 would have at least one A, thenW is feasible
(following the criteria in s;) only when the corresponding kth row of Yr�1�s1 have all entries A. However, this will
lead to the contradiction that (kþ 1)th row of the above matrix W00 has more A’s than the first row. Hence
Zr�1�s�s1 has B’s in all entries. Inductively applying Operation 2 on Yr�1�s1 and thereafter on submatrices of
Yr�1�s1 will lead to the matrix W0.

Proof of Claim 2. It is evident that the permuted matrixW0 in Claim 1 will lead to the mean constellation matrix ls

in Table 19. It remains to show that the absence of an infeasible 2� 3 submatrix in ls is sufficient for showing the
feasibility.

Table 19. ls: The mean constellation matrix following from W 0.

Drug B

Drug A 1 2 . s2 . s1 . s

1 �10 �10 . . . �10 �0s1þ1 �0s

2 �20 �20 . �20 �0s2þ1 . . �0s

: . . . . . . . .

r . . . . . . . .
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We can conclude the following from the LFC criteria: A denotes that the first monotherapy mean
is infitely larger than the second monotherapy mean and B, the vice versa. Hence from W0

it follows, �0j 	 �10 	 �0i8j ¼ 1, . . . , s1, i ¼ s1 þ 1, . . . , s and �0j 	 �20 	 �0i8j ¼ 1, . . . , s2, i ¼ s2 þ 1, . . . , s.
Similar restrictions hold for the other rows in the above matrix. When sl 6¼0 for any l, this will lead to the
following ordering between the means

�0i1 � �10 � �0i2 � �20 . . .� �r�10 � �0ir � �r0 � �0irþ1 ð6Þ

where i1 2 fs1 þ 1, . . . , s0g, i2 2 fs2 þ 1, . . . , s1g, i3 2 fs3 þ 1, . . . , s2g and continuing similarly ir 2 fsr þ 1, . . . , sr�1g
and irþ1 2 fsrþ1 þ 1, . . . , srg assuming s0¼ s and srþ 1¼ 0. Suppose k is the first row index such that sk¼ 0, then
sl¼ 0,8l� k since sl is a sequence of non-increasing numbers, i.e. kth row to rth row in the above matrix ls will
have B’s in all entries. The above mean ordering then becomes

�0i1 � �10 � �0i2 � �20 . . .� �0ik�1 � �k�10 � �0ik

and �k00 	 �0j8k
0 2 fk, . . . , rg, j 2 f1, . . . , sg

) �0i1 � �10 � �0i2 � �20 . . .� �0ik�1 �

�k�10 � �0ik � �k00, 8k
0 2 fk, . . . , rg

ð7Þ

where i1,. . .,ik are same as defined earlier. It can be easily seen that the above mean orderings can be realized by
assuming that for all l 2 {1,. . ., rþ 1} the distinct monotherapy means f�0il , il 2 fsl þ 1 . . . , sl�1gg are equal amongst
themselves. Similar conclusions can be drawn in equation (8) by assuming f�0il , il 2 fsl þ 1 . . . , sl�1gg are equal
amongst themselves for any l 2 f1, . . . , kg and f�k00, k

0 2 k, . . . , rg are equal amongst themselves. Hence, we have
shown that the mean orderings in ls will not lead to any contradictions, thereby proving that the infeasibility
criteria mentioned in s; is the sufficient condition for infeasibility in the LFC approach.

Figure 3. Distribution of critical value for the different methods under the set-up: Drug A and Drug B both have one active dose

group with sample size per dose group¼ 25. The first effect size (d1) is 0.5 and the second effect size (d2) varies along X-axis. Note

that T2
11 is addressed as TB

11 in the article and the plots are shown in terms of the non-centrality parameter of test statistics T2
11, i.e.

�211 ¼ �2=
ffiffiffiffiffiffiffiffiffiffi
2=25
p

, which is the second effect size scaled by the harmonic sum of sample size of the dose combination and the second

monotherapy. This plot is provided to analyze the empirical power performance of the different methods. (a) Boxplot distribution at

d211¼ 0.707; (b) boxplot distribution at d211¼ 1.591; (c) boxplot distribution at d211¼ 3.359; (d) boxplot distribution at d211¼ 5.127.
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