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a b s t r a c t 

Breast cancer is the most common female cancer globally, with approximately 12% of patients eventually de- 

veloping metastatic disease. Critically, limited effective treatment options exist for metastatic breast cancer. Re- 

cently, von Willebrand factor (VWF), a haemostatic plasma glycoprotein, has been shown to play an important 

role in tumour progression and metastasis. In breast cancer, a significant rise in the plasma levels of VWF has 

been reported in patients with malignant disease compared to benign conditions and healthy controls, with an 

even greater increase seen in patients with disseminated disease. Direct interactions between VWF, tumour cells, 

platelets and endothelial cells may promote haematogenous dissemination and thus the formation of metastatic 

foci. Intriguingly, patients with metastatic disease have unusually large VWF multimers. This observation has 

been proposed to be a result of a dysfunctional or deficiency of VWF-cleaving protease activity, ADAMTS-13 

activity, which may then regulate the platelet-tumour adhesive interactions in the metastatic process. In this 

review, we provide an overview of VWF in orchestrating the pathological process of breast cancer dissemination, 

and provide supporting evidence of the role of VWF in mediating metastatic breast cancer. 
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Breast cancer is the most common female malignancy with 523,000

ases reported in Europe in 2018 [1] . Although huge advancements have

een made in the treatment of breast cancer, the prevention of tumour

rogression and metastasis remains a clinical challenge. Despite devel-

pments in frontline therapy, about 30% of the patients with breast can-

er do not respond to treatment, and approximately 12% eventually de-

elop metastatic disease [ 2 , 3 ]. Unfortunately, metastatic breast cancer

s associated with a poor prognosis and a low 5-year-survival rate of

6% [2] . This warrants the need for a reliable biomarker that would en-

ble early detection of metastasis, and the discovery of more effective

nti-metastatic therapies. 

During the metastatic process of cancers, primary tumour cells dis-

odge from the tumour mass and intravasate across the endothelium to

nter blood vessels. Tumour cells then travel systemically in the circula-

ion, and extravasate to secondary sites, establishing micro- and macro-

etastasis. The interactions between cancer cells and endothelial cells

re crucial in driving metastasis [4] . In the absence of endothelial dam-

ge or activation, the vessel endothelial cells remain quiescent [ 5 , 6 ].

owever, dysfunctional endothelium, including inflammation and ac-
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ivation of the vessels, triggers the upregulation of adhesive molecules,

ecretion of growth factors and cytokines, and alters vascular permeabil-

ty. All of these contribute to cancer metastasis by facilitating the adhe-

ion of tumour cells to the endothelium, and promoting transendothelial

igration [ 5 , 6 ]. The activation of endothelial cells also triggers the se-

retion of VWF multimers into the lumen of vessel as well as the suben-

othelial matrix [7] . Critically, these VWF multimers serve as a molec-

lar bridge, facilitating the adhesion and aggregation of platelets and

umour cells along the endothelium, promoting transendothelial migra-

ion and subsequently cancer dissemination [ 6 , 8 ]. Emerging evidence

ow also suggests that platelet-decorated VWF multimers tether immune

ells, including neutrophils and monocytes, promoting diapedesis and

igration of leukocytes to sites of inflammation [ 9 , 10 ]. 

Significant interplay exists between coagulation and cancer, first

escribed by Trousseau in the 1860 ′ s [11] . Trousseau’s syndrome or

ancer-associated thrombosis is in fact the second leading cause of death

n cancer patients, with the risk of venous thromboembolism (VTE) be-

ween 4- to 7-fold higher in patients with cancer than in those without

ancer [ 12 , 13 ]. This risk is highest in patients with advanced metastatic

ancer [12] . Intriguingly, there is increasing evidence suggesting that

he coagulation pathways and haemostatic proteins are not mere by-
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Fig. 1. VWF as a complex multimeric 

plasma glycoprotein. The D’D3 domain is es- 

sential for the formation of VWF multimers, 

and the CK domain is responsible for dimerisa- 

tion via disulphide linkages [ 25 , 27 , 28 ]. The 

protease ADAM28 cleaves the linking regions 

of D3-A1 and A1-A2 domains [30] , whereas 

ADAMTS-13 cleaves VWF at the A2 domain 

[ 29 , 31 ]. Some of the well characterised ligands 

of VWF contributing to its haemostatic function 

include coagulation factor VIII (binds to D3 do- 

main) [21] , GPIb 𝛼 (binds to A1 domain) [22] , 

collagen type III (binds to A3 domain) [23] and 

GPIIb/IIIa (binds to C4 domain) [24] . 
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tanders in the process of cancer progression. In fact, the blood coag-

lation system facilitates tumour progression and dissemination, while

ts inhibition through anticoagulation has been shown to significantly

ttenuate the metastatic potential of cancer cells in several animal mod-

ls [14-17] . Importantly, VWF is a major determinant of VTE in cancer

atients. Emerging evidence also suggests that VWF may orchestrate the

etastatic process independent of its established haemostatic functions

18] . This indicates the complex intertwined relationship between co-

gulation and metastasis, whereby coagulation activation not only pro-

otes thrombosis in cancer patients but may also contribute directly to

ancer progression. 

tructure, physiological functions and proteases of VWF 

VWF is produced in endothelial cells and megakaryocytes. Following

ts biosynthesis, VWF is stored in the 𝛼-granules of megakaryocytes/

latelets, as well as the Weibel-Palade bodies (WPB; storage granules in

ndothelial cells) [19] . Interestingly, recent evidence suggests that VWF

s also synthesised and released by cancer cells [20] . 

VWF is a complex multi-domain structure that interacts with a vari-

ty of ligands, including collagen, coagulation factor VIII, as well as sev-

ral endothelial and platelet integrins, P-selectin, 𝛼v 𝛽3, GPIIb/IIIa and

PIb 𝛼 [21–24] . VWF is a large multimeric protein comprising multiple

onomers ( ∼270 kDa), with the size of multimers in the plasma found to

e up to 20,000 kDa. Importantly, the multimerisation of VWF is a criti-

al determinant of its functional activity [ 9 , 25 ]. Recent reassessment of

he mosaic architecture of VWF has led to the proposal of its repeated

omain structures ( Fig. 1 ) in the order of D1-D2-D ′ -D3-A1-A2-A3-D4-C1-

2-C3-C4-C5-C6-CK [ 25 , 26 ]. Notably, (i) the N-terminal D’-D3 domains

ontain disulphide linkages for multimer formation, and also serve as

he binding region for coagulation factor VIII, (ii) the central A-domains

re responsible for much of its adhesive functions, which regulate the

inding to collagens and platelets, and (iii) the C-terminal cystine knot

CK) domain is important for VWF dimerisation [ 25 , 27 , 28 ]. Under phys-

ological conditions, VWF multimerisation is regulated by specific pro-

eases, ADAMTS-13 (A disintegrin and metalloproteinase with a throm-

ospondin type 1 motif, member 13), which cleaves VWF at a unique site

ithin the A2 domain, converting highly active high molecular weight

ultimers into less active lower molecular weight forms [29] . More re-

ently, an additional member of the ADAMs protease family, ADAM28,

as also been shown to cleave VWF [30] . ADAM28 appears to be of par-

icular importance in the context of cancer cell biology, since it is highly

xpressed by tumour cells [30] . 
2 
Biologically, VWF plays a pivotal role in haemostasis [32] . During a

lood vessel injury, the subendothelium is exposed. This enables circu-

ating VWF to bind to collagens, leading to shear stress-induced unfold-

ng of the A1 domain and tethering of flowing platelets via platelet re-

eptors, glycoproteins Ib 𝛼 (GPIb 𝛼) and IIb/IIIa (GPIIb/IIIa; also known

s 𝛼II 𝛽𝛽3 integrin), thus forming a platelet thrombus at the site of in-

ury [25] . GPIb 𝛼 is mainly responsible for platelet-vessel wall adhesion,

hereas GPIIb/IIIa participates in both platelet-vessel wall adhesion and

latelet crosstalk [31] . Subsequently, the platelets adhere to fibrins, a

rocess mediated by the C domains of VWF under high shear stress con-

itions [33] . VWF also serves as a carrier of the coagulation factor VIII,

hich is essential for normal haemostasis [31] . 

Recent research has led to the discovery of additional non-

aemostatic functions of VWF, including smooth muscle cell prolifera-

ion [ 34 , 35 ], immune response [36] , angiogenesis [ 32 , 37–39 ] and can-

er metastasis [ 9 , 18 , 20 ]. 

DAMTS-13 protease: a disintegrin and metalloproteinase with a 

hrombospondin type 1 motif, member 13 

The size of VWF multimers, and thus its haemostatic activity, is crit-

cally regulated by ADAMTS-13 that cleaves VWF into smaller multi-

ers under shear forces in flowing blood [25] . ADAMTS-13 specifically

leaves within the A2 domain of VWF, at position Tyr1605-Met1606

 29 , 31 ]. The unfolding of VWF and exposure of the cryptic cleavage

ite are the prerequisites of ADAMTS-13 proteolytic activity; thus, these

rocesses are dependent on the shear stress in the circulation [31] . Af-

er proteolysis, the ultra-large and highly haemostatically active VWF is

educed into smaller and less active forms [ 31 , 40 ]. Deficiency or dys-

unction in ADAMTS-13 results in the life threatening microangiopathy

ermed thrombotic thrombocytopenic purpura (TTP) [41] . TTP is char-

cterised by the unregulated accumulation of large adhesive VWF multi-

ers and consumption of platelets in platelet-rich microthrombi within

he vasculature. 

DAM28 protease: a disintegrin and metalloproteinase 28 

Unlike ADAMTS-13 which only cleaves VWF under conditions of

hear stress that induce unfolding of the A2 domain, ADAM28 also

leaves native VWF. ADAM28 targets the linker regions of D3-A1 and

1-A2 domains ( Fig. 1 ) [30] . Little is known about the physiological

oles of ADAM28 on VWF. However, the role of ADAM28 expression

s implicated in cancer metastasis. For example, ADAM28 expression

y tumour cells enhances lung metastasis in various cancers including
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reast and renal cell carcinoma [30] , and its inhibition has been shown

o suppress non-small cell lung cancer (NSCLC) metastasis [42] . 

WF adhesion and interactions with breast cancer cells 

With regards to VWF expression in different subtypes of breast can-

er, it has been reported that patients with invasive lobular carcinoma

ILC) have higher VWF RNA expression than patients with invasive duc-

al carcinoma (IDC) and other histology presentations [43] . In addition,

WF and PTEN were also found to share nine co-occurrent alterations in

LC, possibly working in tandem to promote tumour progression [43] .

nother study has shown that VWF tumour mRNA levels correlated with

ts VWF serum protein levels in patients with HER2-negative breast can-

er, suggesting that VWF might be produced by tumour cells with an

utflow to the systemic circulation [44] . 

Growing evidence demonstrates that tumour cells not only induce

he release of VWF multimers from endothelial cells, but also utilise

WF to adhere to the endothelium [45] . Furthermore, the VWF multi-

ers may serve as a bridging platform that tethers platelets and tumour

ells to form heterotypic aggregates, promoting cancer metastasis by fa-

ilitating transendothelial migration across the blood vessel wall [46] .

he role of the platelet-tumour aggregates in metastasis are detailed in

he subsequent sections of this review. The aggregates may also form

 platelet “cloak ” that shields tumour cells from immune surveillance

nd natural killer cell-mediated cytolysis [47] . Moreover, MCF-7 breast

ancer cells have been reported to express pseudo-GPIb 𝛼 receptors on

heir surface which may facilitate direct interactions with VWF, inde-

endent of platelets [48] . In support of this, treatment of MCF-7 and

DA-MB-231 breast cancer cells using GPIb 𝛼 antibodies, not only re-

uced platelet-tumour cell interactions, but also attenuated the adhesion

f tumour cells to endothelial cells in vitro [49] . 

Integrin expression is one of the important contributors to the in-

reased metastatic potential of tumour cells. It is known that VWF binds

o tumour cells via GPIIb/IIIa receptor and its hemi-identical twin, 𝛼v 𝛽3

ntegrin [ 30 , 50–52 ]. The 𝛼v 𝛽3 integrin shares the same 𝛽 subunit as

PIIb/IIIa receptor, and its 𝛼 subunit shares 40% homology with 𝛼IIb

53] . A static cell adhesion model demonstrated that binding of VWF to

16-BL6 melanoma cells was mediated by 𝛼v 𝛽3 integrin expressed on

he tumour cell surface [52] . Moreover, under condition of shear stress,

locking 𝛼v 𝛽3 integrins inhibited VWF-mediated melanoma cell adhe-

ion [50] . MDA-MB-231 breast cancer cells have been found to express

v 𝛽3 integrin, which can mediate VWF binding to tumour cells [ 50 , 52 ,

4 ]. However, in this case, adhesion of VWF via the 𝛼v 𝛽3 integrin in-

uces apoptosis in breast cancer cells [ 18 , 30 ]. The role of 𝛼v 𝛽3 integrin

n VWF-mediated apoptosis and metastasis is discussed in further detail

n later sections of this review. 

Taken together, this highlights several distinct mechanisms through

hich VWF may interact with breast cancer cells, by direct adhesion via

 number of integrins or indirectly through platelet-VWF interactions. 

levated levels of VWF in patients with metastatic breast cancer 

VWF has been shown to play an important role in tumour progres-

ion and metastasis [9] . Elevated levels of VWF in the plasma have been

eported in various cancers, including breast, bladder, prostate and ovar-

an carcinoma, compared to benign disease and normal healthy controls

55-58] . Moreover, studies have detected higher levels of plasma VWF

n metastatic disease compared to primary cancer presentations [58-60] .

mportantly, the increased plasma levels of VWF in patients with cancer

ave also been shown to be associated with a poorer prognosis [61] . In

reast cancer specifically, an association has been found between an in-

rease in VWF concentration and a higher tumour grade, and that VWF

ould potentially be a biomarker of relapse [62] . Notably, a significant

ise in the plasma levels of VWF has been demonstrated in patients with

alignant disease compared to benign conditions and healthy controls
3 
 p < 0.005), with an even greater increase seen in patients with dissemi-

ated disease compared to early stage cancer ( p < 0.0001) [58] . The in-

reased plasma VWF in patients with cancer is conventionally thought to

riginate from the activated endothelial cells and platelets [20] . How-

ver, emerging evidence suggests that some cancer cells, for example

he gastric adenocarcinoma and osteosarcoma cells, also express VWF

 20 , 63 ]. 

In a study using a 4T1 murine model of breast cancer metastasis,

lasma levels of VWF have been found to be significantly elevated at

he late phases of metastasis, specifically in the fourth to fifth week af-

er cancer cell inoculation, when robust metastatic lesions had formed

n the lungs [64] . No significant changes were observed in the plasma

evels of VWF at the early phases of metastasis, specifically in the first

nd second week after tumour cell inoculation in the 4T1 murine model,

hen only micrometastases were detected. This finding supports a role

or VWF in cancer dissemination and the initiation of a metastatic focus

ormation [ 30 , 65 ]. Intriguingly, VWF levels fell in the fifth week fol-

owing inoculation of breast cancer cell in mice, however the underlying

iological mechanism mediating this decrease remains unclear [64] . In

ddition, it has also been found that VWF levels increased within the

rimary tumour microenvironment, but not at the distal metastatic site

64] . This potentially indicates that the primary tumour and the asso-

iated microenvironment drive the progressive increase of VWF in the

lasma, which also correlate with cancer progression with time [64] . 

It has been shown that VWF levels are strongly correlated with the

rotein levels of scatter factor ( p < 0.0001). This invasogenic and angio-

enic cytokine is encoded by the MET oncogene, which is often aber-

antly expressed in cancer pathologies [66] . Importantly, scatter factor

s also associated with breast tumour aggressiveness [67] . Similarly, el-

vated VWF levels correlated with increased breast tumour invasiveness

67] . In support of this, clinical studies have reported markedly elevated

erum levels of VWF in breast cancer patients with more aggressive dis-

ase stage (TNM of T2) (TNM is a cancer staging system - tumour (T),

ode (N) and metastasis (M)) compared to those with less aggressive

isease stage (TNM of T1) ( p = 0.019). Patients with advanced disease

TNM of M1) also had significantly higher levels of VWF than patients

ith less aggressive disease (TNM of T1) ( p = 0.001) [68] . The elevated

evels of VWF have also been correlated with higher levels of the cancer

ntigen CA15–3, a breast tumour marker which is also raised in dissem-

nated disease ( p = 0.027) [68] . 

WF as a regulator of breast cancer metastasis 

Independent of its contribution to haemostasis, accumulating evi-

ence suggests that VWF may also play several important roles in cancer

etastasis [18] . For example, VWF may orchestrate cancer dissemina-

ion via an array of pathways, including angiogenesis and hypercoagu-

opathy [ 54 , 69 , 70 ]. 

ngiogenesis 

One hallmark of cancer is angiogenesis, which promotes the prolif-

ration, invasion and migration of cancer cells. It is a complex multistep

rocess involving an angiogenic switch to allow vascular proliferation

nd cancer progression when the tumour grows to a certain size, where

he oxygen and nutrient requirements can no longer be met [70] . Potent

ngiogenic factors include vascular endothelial growth factor (VEGF)

nd fibroblast growth factor 2 (FGF-2), which are often present in a tu-

our microenvironment. Importantly, these factors have been shown to

ave a synergistic effect on the upregulation of VWF mRNA and protein

evels in endothelial cells [70] . It has been reported that breast cancer

ells exert a significant effect on the upregulation of angiogenic genes,

ncluding VWF, thus promoting metastasis [69] . Notably, this feature is

imited to certain types of cancers. Specifically, breast and colon cancer

ells are able to enhance the angiogenic properties of the endothelial



C.Y. Goh, S. Patmore, A. Smolenski et al. Translational Oncology 14 (2021) 101033 

c  

t

H

 

i  

A  

m  

t  

a  

t  

m  

I  

h  

f  

b  

b  

u  

f  

p  

V  

g

 

m  

c  

k  

a  

a  

m  

t  

a  

g  

v  

a  

b  

t  

V  

t  

t  

l  

t  

i  

e  

c  

t  

f  

s  

a  

l  

[

S

 

c  

m  

b  

c  

s  

c  

t  

f  

D  

V  

N  

o  

p  

a  

c

T

 

o  

𝛼  

i  

c  

a  

i  

l  

n  

V  

a  

a  

c  

s  

M  

A  

k  

p  

t  

p  

p  

e  

d  

s

 

c  

i  

(  

d  

i  

h  

m  

h  

t  

V  

V  

i  

c

 

i  

1  

c  

d  

l  

v  

t  

t  

b

T

H

 

a  

H  

a  

H  

t  
ells, whereas osteosarcoma or rhabdomyosarcoma cells do not affect

hese angiogenic genes [69] . 

ypercoagulopathy and tumour cell-induced platelet aggregation 

It has been demonstrated that patients with disseminated disease,

ncluding metastatic breast cancer, have a deficiency of VWF-cleaving

DAMTS-13 protease activity [ 54 , 71 , 72 ]. Interestingly, patients with

etastatic disease have 165% more ultra-large VWF compared to pa-

ients with localised tumours ( p < 0.001) [72] . This observation may be

ttributed to a deficiency or dysfunction of ADAMTS-13 activity de-

ected in the plasma of patients with metastatic cancer, or the aug-

ented VWF secretion from the tumour microenvironment [ 54 , 72 ].

mportantly, it has been demonstrated that this highly polymeric VWF

as a significantly enhanced functionality evidenced by the ristocetin co-

actor and tumour-induced platelet aggregation assays [72] . It has also

een shown that VWF multimers with the largest size have a greater

inding affinity to its platelet receptors, GPIb 𝛼 and GPIIb/IIIa receptors

nder conditions of shear stress [73] . In a non-cancer setting, the dys-

unctional ADAMTS-13 in patients with thrombotic thrombocytopenic

urpura (TTP), results in the presence of highly adhesive ultra-large

WF multimers in the blood that bind tightly to platelets to form ag-

regates [74] . 

The increased concentration of the highly adhesive VWF multimers

ay modulate platelet-tumour cell interactions along the endothelium,

ontributing to tumour invasion and metastasis [72] . Platelets are well

nown to play an important role in metastasis. Cancer cells can cause

ggregation of platelets in a process called tumour cell-induced platelet

ggregation, which correlates to greater metastatic potential of the tu-

our cells [ 75 , 76 ]. Consistent with this, the inhibition of this aggrega-

ion process decreases the metastatic potential of cancer cells without

ffecting the growth of the primary tumour [ 77 , 78 ]. Platelet aggre-

ates promote transmigration of tumour cells through the vessel wall

ia endothelial activation. In this process, VWF is important in potenti-

ting the cancer-cell platelet aggregation [79] . On the one hand, VWF

inds to platelets via the GPIb 𝛼 and GPIIb/IIIa receptors, and activates

he endothelium to increase vascular permeability. On the other hand,

WF binds to tumour cells via GPIIb/IIIa receptor or its hemi-identical

win 𝛼v 𝛽3 integrin, thereby facilitating the extravasation of cancer cells

hrough the activated endothelium [ 50 , 52 , 54 ]. Collectively, the ultra-

arge VWF binds to the platelet GPIb 𝛼 and GPIIb/IIIa receptors, and at

he same time adheres to tumour cells via GPIIb/IIIa receptor and 𝛼v 𝛽3

ntegrin, to facilitate the metastatic process ( Fig. 2 ). The resultant het-

rotypic aggregates are more likely to adhere to endothelial surfaces

ompared to single tumour cells [ 58 , 72 ]. In addition, it has been found

hat the release of tumour thrombin induces the production of VWF and

acilitates the adhesion of cancer cells to the endothelium [ 80 , 81 ]. In

upport of this, many in vivo studies that utilise antibody treatment have

lso shown marked reduction of metastatic potential in cancer cells fol-

owing the inhibition of GPIb 𝛼 and GPIIb/IIIa receptor sites and VWF

 72 , 80 , 82 , 83 ]. 

hielding metastatic cells from chemotherapy 

VWF has also been demonstrated to protect disseminated tumour

ells (DTCs) from chemotherapy [84] . In one study, bone marrow

esenchymal stem cells and microvascular niches were seeded with

asal HMT-3522-T4–2 breast tumour cells to mimic DTCs. Following

hemotherapeutic treatment with doxorubicin, VWF knockdown re-

ulted in apoptosis of up to 70% of DTCs, and the level of apoptosis

orrelated with the level of VWF depletion. In fact, the levels of apop-

osis were similar to those treated with an antibody that inhibited the

unction of 𝛼v 𝛽3 integrin. This suggests that the 𝛼v 𝛽3 integrin protects

TCs from chemotherapy through downstream signalling triggered by

WF, although the exact underlying mechanism remains unclear [84] .

otably, the depletion of VWF did not affect the survival or outgrowth
4 
f the breast tumour cells in the absence of chemotherapy [84] . Im-

ortantly, inhibiting the integrin-mediated interactions between DTCs

nd the perivascular niche, driven partly by VWF, sensitises DTCs to

hemotherapy [84] . 

he paradoxical role of VWF in breast cancer metastasis 

Some studies have shown a protective role of VWF in the initiation

f metastatic foci. The adhesion of circulating VWF to tumour cells via

v 𝛽3 integrin, mediates apoptosis of several tumour cell lines in vitro,

ncluding breast cancer cells MCF-7. Mechanistically, the apoptotic pro-

ess occurs via the downstream signalling of the TP53 phosphorylation

nd CASP3 activation pathways [30] . In this case, ADAM28 cleaves and

nactivates VWF, inhibiting the process of apoptosis, thus promoting

ung metastasis [30] . Interestingly, certain aggressive cancer cells are

ot susceptible to the pro-apoptotic function of VWF. This resistance of

WF-mediated apoptosis was dependent on tumour cell expression of

 specific metalloproteinase ADAM28 that cleaves VWF, rendering its

poptotic function inactive. The aggressive MDA-MB-231 breast cancer

ells have been shown to express higher levels of ADAM28 and demon-

trate resistance to VWF-induced apoptosis, whereas the less aggressive

CF7 breast cancer cells have been found to express lower levels of

DAM28 and are susceptible to apoptosis [ 30 , 85 ]. Importantly, the

nockdown of ADAM28 in the MDA-MB-231 cells resulted in increased

rogrammed cell death and decreased lung metastases. This suggests

hat tumour-expressed ADAM28 inactivates VWF within the circulation,

otentially favouring tumour cell survival within the vasculature, thus

romoting cancer dissemination. Notably, the VWF-mediated apoptotic

ffect appears to be specific to tumour cells, as VWF did not induce cell

eath in non-neoplastic cell lines examined. This highlighted the high

pecificity with which VWF induces tumour cell apoptosis [ 30 , 42 ]. 

Similar findings have also been observed in vivo in other types of

ancer. Specifically, using a VWF-deficient murine model following the

njection of B16-BL6 murine melanoma cells or Lewis lung carcinoma

LLC) cells, VWF was found to play a protective role against tumour cell

issemination by inducing apoptosis of metastatic cells [18] . However,

t is noteworthy that previous studies have demonstrated that the in-

ibition of VWF using monoclonal antibodies prevented metastasis for-

ation in mice [86] . This is not the first time that contradicting results

ave been reported from genetically-altered mice compared to inhibi-

ion studies using pharmacological agents. The opposing results in these

WF studies could potentially be explained by the genetic ablation of

WF in the VWF-deficient mice, as opposed to the partial and transient

nhibition of VWF in antibody studies, in which only the VWF plasma

ompartment is targeted [18] . 

While ADAM28 acts as a semi-functional homologue of ADAMTS-13

n cleaving circulating VWF, it is interesting to note that while ADAMTS-

3 levels have been shown to decrease in a range of metastatic can-

er including breast, ADAM28 expression is correlated with advanced

isseminated disease [ 30 , 72 , 87 , 88 ]. This is potentially due to the

ocalised, pathological expression of ADAM28 on tumour cells. Con-

ersely, ADAMTS-13 circulates as a soluble protease cleaving VWF mul-

imers within the circulation under physiological conditions. Collec-

ively, it is interesting to speculate that the VWF-apoptosis axis may

e specific to tissue localisation and microenvironment. 

herapeutic implications of VWF in breast cancer metastasis 

DAC inhibitors 

Histone deacetylase (HDAC) inhibitors are a class of anti-cancer

gents that induce apoptosis and cell cycle arrest in tumour cells [89] .

DAC 1 and 2 can act as promoters or repressors of the VWF gene in

 cell type-specific manner [ 90 , 91 ]. Specifically, the recruitment of

DAC, histone acetyltransferase (HAT) and GATA6 trans-acting factor

o the VWF promoter region, determines the activation or repression of
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Fig. 2. Heterotypic aggregates comprising 

platelets, tumour cells and VWF. The ultra- 

large VWF tethered along the endothelium me- 

diates platelet adhesion and aggregation via 

GPIb 𝛼 and 𝛼IIb 𝛽3 (GPIIb/IIIa) platelet recep- 

tors. Platelet-decorated VWF multimers may 

also tether tumour cells via the GPIIb/IIIa re- 

ceptor and 𝛼v 𝛽3 integrin. The resultant het- 

erotypic aggregates formed along the endothe- 

lial surfaces may facilitate the extravasation of 

cancer cells across the endothelial cell wall and 

contribute to metastasis [ 50 , 52 , 54 , 58 , 72 ]. 

t  

f  

i  

d  

t  

r  

m  

i  

s  

e  

t  

p  

(  

t  

a

D

 

t  

c  

i  

m  

f  

o  

i  

(  

d  

[  

f  

n  

v  

d  

t  

o  

m  

h  

t

C

 

s  

t  

b  

t  

a  

t  

t  

a  

t  

c  

t  

g  

i  

c  

d  

d  

t  

a  

a  

o  

t  

H  

w  

9  

a  

c

he VWF gene [90] . In endothelial cells, the HDAC, nuclear transcription

actor Y (NFY) and GATA6 interaction is shifted towards the favour-

ng of the VWF gene promoter activation, potentially through the en-

othelial cell-specific signalling [90] . In non-endothelial cells, however,

he NFY inhibits the activation of the VWF promoter region via HDAC

ecruitment [90] . An in vivo study of breast carcinoma in a murine

odel treated with the HDAC inhibitor MS-275 demonstrated signif-

cantly reduced tumour growth, decreased VWF-positive blood ves-

els (decreased angiogenesis), decreased lung metastasis and reversed

pithelial-mesenchymal transition (EMT) [92] . Mechanistically in the

umour cells, the HDAC inhibitors enhanced the apoptosis-inducing

otential of tumour necrosis factor-related apoptosis-inducing ligand

TRAIL) [ 92 , 93 ]. In addition, these data suggest that transcriptional

argeting of VWF expression via HDAC inhibitors may serve to attenu-

te breast cancer metastasis. 

esmopressin 

Clinically, it has been suggested that surgery induces shedding of

umour cells into the circulation or lymphatic system, posing an in-

reased risk for the accelerated process of micrometastatic disease dur-

ng the perioperative period [94] . The interruption of this process might

inimise the survival of tumour cells and thus reduce the potential

ormation of metastatic foci from the dislodged cancer cells. Based

n previous studies that have shown a protective role of VWF in the

nitiation of metastatic foci, a phase II dose-escalation clinical trial

NCT01606072) investigated the provision of high-dose perioperative

esmopressin (dDAVP) to reduce metastasis in breast cancer patients

95] . Functionally, dDAVP increases plasma levels of VWF, coagulation

actor VIII (FVIII) and tissue plasminogen activator (t-PA) [96] . In a

on-cancer setting, dDAVP is the treatment of choice in patients with

on Willebrand disease (VWD; a genetic disorder caused by reduced or

ysfunctional VWF) to stimulate the release of endogenous VWF into

he plasma [97] . Results from this clinical trial reported that high doses
5 
f perioperative dDAVP inhibited lymph node and early blood-borne

etastasis in patients. This effect is potentially mediated by the en-

anced endothelial VWF secretion with consequent haemostatic and an-

imetastatic effects [95] . 

onclusion 

The interplay between the blood coagulation system and cancer dis-

emination has sparked an interest among researchers to further inves-

igate the complex process of metastasis. Importantly, the mechanisms

y which VWF may mediate metastasis in breast cancer are beginning

o be elucidated, as implicated by several studies. VWF contributes to

ngiogenesis which enhances the dissemination of breast tumour cells

o distal secondary sites [ 69 , 70 ]. In addition, it has been shown that pa-

ients with metastatic breast cancer have reduced ADAMTS-13 protease

ctivity, resulting in the presence of adhesive large VWF multimers in

he plasma [ 71 , 72 ]. The ultra-large VWF is capable of binding to can-

er cells and platelets with high affinity, forming heterotypic aggregates

hat promote the adhesion to vessel walls and the subsequent transmi-

ration of tumour cells across the blood vessel [ 72 , 80 , 81 ]. In addition,

t has also been found that VWF shields the metastatic breast cells from

hemotherapy-induced apoptosis [84] . Paradoxically, some studies have

emonstrated the protective roles of VWF in metastasis [ 18 , 30 , 92 ]. As

iscussed in the previous section, the contradicting results could poten-

ially be explained by the genetic ablation of VWF in both tissue beds

nd vasculatures in the VWF-deficient mice studies, in contrast to partial

ntibody-mediated depletion of circulating VWF [18] . These conflicting

pinions also highlight the need for further research in the area in order

o fully define the role of VWF in breast cancer metastasis. Clinically,

DAC inhibitors and dDAVP are potential therapeutic agents of interest

hich may aid in reducing the dissemination of breast cancer cells [ 92 ,

5 ]. However, further studies are warranted to confirm these findings,

nd to unravel their potential role as anti-metastatic agents in breast

ancer. 
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In conclusion, VWF has a well described role in haemostasis, teth-

ring circulating platelets along the endothelial cell wall in response to

ascular injury. More recently however, novel biological roles for VWF

ave been reported including in inflammation, angiogenesis and can-

er cell biology. For example, in breast cancer, plasma VWF levels are

ignificantly elevated in patients with malignant disease compared to

enign conditions and healthy controls. Importantly, these high VWF

evels correlate with presence of metastatic disease and poorer progno-

is. Moreover, elevated plasma VWF levels are an independent predictor

f venous thromboembolism in cancer patients. Consequently, under-

tanding the role of VWF in the setting of breast cancer may not only

erve to attenuate metastasis but also reduce the risk of thrombosis. For

he first time, this review systematically and specifically reports on the

ccumulating evidence for the biological role of VWF in breast cancer

ncluding interaction with breast tumour cells, apoptosis, angiogenesis

nd breast cancer metastasis. 
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