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A B S T R A C T   

Background: Lung adenocarcinoma (LUAD) has emerged as one of the most aggressive lethal 
cancers. Anoikis serves as programmed apoptosis initiated by the detachment of cells from the 
extracel-lular matrix. Cuproptosis is distinct from traditional cell death modalities. The above two 
modes are both closely related to tumor progression, prognosis, and treatment. However, whether 
they have synergistic effects in LUAD deserves further investigation. 
Methods: The anoikis-related prognostic genes (ANRGs) co-expressed with cuproptosis-associated 
genes (CAGs) were screened using correlation analysis, analysis of variance, least absolute 
shrinkage, and selection operator (LASSO), and COX regression followed by functional analysis, 
and then LUAD risk score model was constructed. Using consensus clustering, the relationship 
between different subtypes and clinicopathological features, immune infiltration characteristics, 
and somatic mutations was analyzed. A nomogram was developed by incorporating clinical in-
formation, which provided a prediction of the survival of patients. Finally, a comprehensive 
analysis of ANRGs was performed and verified by the HPA database. 
Results: A total of 27 ANRGs associated with cuproptosis were obtained. On this basis, three 
distinct ANRGs subtypes were identified, and the differences between clinical prognosis and 
immune infiltration were observed. A risk score model has been constructed by incorporating 
seven ANRGs signatures (EIF2AK3, IKZF3, ITGAV, OGT, PLK1, TRAF2, XRCC5). A highly reliable 
nomogram was developed to help formulate treatment strategies based on risk score and the 
clinicopathological features of LUAD. The seven-gene signature was turned out to be strongly 
linked to immune cells and validated in single-cell data. Immunohistochemistry proved that all of 
them are highly expressed in LUAD tissues. 
Conclusion: This study reveals the potential relationship between cuproptosis-related ANRGs and 
clinicopathological features, tumor microenvironment (TME), and mutation characteristics, 
which can be applied for predicting the prognosis of LUAD and help develop individualized 
treatment strategies.  
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1. Introduction 

LUAD is among the most highly invasive and lethal cancer types in the world with a very low five-year survival rate (<20%) [1,2]. 
Currently, the primary treatment modalities for LUAD comprise surgery, radiation, and chemotherapy, as well as targeted therapy and 
immunotherapy [3]. There is still a lack of suitable treatment options for many LUAD patients despite the increasing number of novel 
treatments being introduced into clinical practice. Considering LUAD’s high mutagenicity and metastatic nature, developing an 
effective gene signature to reveal the potential mechanism of tumor metastasis is critical for predicting patient prognosis and guiding 
clinical treatment. 

Anoikis refers to one kind of programmed cell death induced by normal adherent cells disconnected from the extracellular matrix 
(ECM) for a long time, which is indispensable for maintaining tissue stability and preventing abnormal cell growth or cell adhesion to 
abnormal ECM [4]. After detaching from the adhesion of ECM and cell-to-cell contact, tumor cells can survive through autocrine and 
paracrine mechanisms and resist anoikis, regaining the adhesion ability to metastasize and invade [5]. Therefore, further study on the 
molecular mechanism of controlling anti-anoikis in tumors can help explore better therapeutic directions. 

Copper is a key cofactor for all life forms. Copper ion carriers are small molecules that bind to copper and transport it into cells. 
Several pieces of evidence suggest that the mechanism of copper ion carrier-induced cell death involves the accumulation of intra-
cellular copper [6]. Tsvetkov et al. have demonstrated that copper ion carrier-induced cell death could be a new cell death pathway, 
which is quite distinct from traditional cell death modalities such as necroptosis, ferroptosis, etc. This process is called cuproptosis. The 
researchers found that copper ions cause abnormal aggregation of thioredoxin by directly binding to thioredoxin in the tricarboxylic 
acid cycle and interfering with iron-sulfur proteins (Fe/S protein) in the respiratory chain complex, resulting in a proteotoxic stress 
response that ultimately leads to cell death [7]. 

Significant change of copper ion level would occur in tumor tissue. These variations may enhance the development or aggres-
siveness of the tumor [8]. Cuproptosis requires the participation of mitochondrial respiration and significantly reduces the respiratory 
reserve capacity [9]. When copper overload occurs, it disrupts the iron-sulfur cofactor and stimulates the copper-driven Fenton re-
action and generates destructive ROS [6]. Reactive oxygen species (ROS) serve as highly active state of oxygen, produced in the process 
of mitochondrial oxidative metabolism, including cardiovascular disease, cancer and autoimmune disorders [10]. ROS can stimulate 
glucose oxidation and enhances oxidative stress in cancer cells, restoring cellular susceptibility to anoikis [11]. XIAP, a key molecule in 
cell death, is involved in the regulation of neuronal differentiation, intracellular ROS production and copper homeostasis. XIAP could 
regulate MURR1 protein reduction through ubiquitination and proteasomal degradation, thus regulating intracellular copper levels, 
might participate in the process of cuproptosis [12]. After cytochrome c promoting the activation of caspase9, XIAP, as an important 
regulator of the balance between cell survival and cell death, can bind to caspase9, and then induced anoikis [13]. Studies have shown 
that Tetrathiomolybdate (TM) could significantly enhance the anoikis of tumor cells by down-regulating XIAP protein [14].In contrast, 
the synergistic effect of cuproptosis and anoikis in tumor progression as well as metastasis has not been thoroughly explored further. 
Herein, the relationship between cuproptosis co-expressed anoikis-related genes (ANRGs) and various LUAD subtypes, mutation 
characteristics, and tumor microenvironment (TME) have been comprehensively evaluated and constructed an ANRGs-based risk 
scoring model which could help to develop therapeutic options that are more individualized and accurate. 

2. Materials and methods 

2.1. Data collection and cohorts processing 

Transcriptome data of lung cancer (TCGA-LUAD) along with associated clinical and somatic mutation data were accessed from The 
Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) database. The copy number variant data have been captured utilizing 
the UCSC Xena [15] (https://xena.ucsc.edu/) database. In turn, the LUAD dataset GSE26939 was acquired from Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The FPKM values of TCGA-LUAD were translated into transcripts per kilobase 
million (TPM) identical to those from microarrays. The two datasets were combined, and the batch effect of merged cohort was 
removed by using the R package “SVA”. The final dataset (TCGA-GEO) contained 632 LUAD clinical features like age, sex, tumor, node, 
metastasis, stage, survival status, and follow-up time have been involved. 

2.2. Acquisition of anoikis-related prognostic genes co-expressed with cuproptosis 

A total of 13 genes related to cuproptosis have been identified referring to a previous study [7], followed by acquisition of 557 
genes related to anoikis utilizing the GeneCards (https://www.genecards.org/) database and Harmonizome portals [16]. The R 
package “limma” was applied to calculate the anoikis-related genes whose expressions were positively correlated with 
cuproptosis-associated genes (cor >0.3). For constructing the Venn diagram, these anoikis-related genes were intersected with genes in 
TCGA-GEO data set by the jvenn portal (http://jvenn.toulouse.inra.fr/app/index.html) [17], and also compared their expressions in 
normal and tumor tissues to obtain significantly different genes. Univariate Cox regression was performed on differentially expressed 
genes (DEGs) to obtain the final prognosis-related genes, and then the forest map was plotted. 
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2.3. Characterization analysis of anoikis-related prognostic genes (ANRGs) 

The interactions among ANRGs have been examined while analyzing their somatic mutation incidence, genetic loci, and CNV. For 
ANRGs, the protein-protein interaction network (PPI) has been generated from the STRING (https://cn.string-db.org/) database [18]. 
Finally, GO [19] as well as KEGG [20] functional analyses were performed using the R package “ClusterProfiler". 

2.4. Consensus clustering analysis of ANRGs 

Consistent unsupervised clustering analysis was performed by using R package “ConsensusClusterPlus”, thereby patients were 
divided into different molecular subtypes based on ANRG expression. On this basis, the reliability of clustering was verified by 
principal component analysis (PCA) utilizing the “ggplot2” package. After this, the intra-group and inter-group correlations increased 
and decreased respectively. The differential analysis of ANRG expression across different subtypes has been performed and then 
compared the prognostic value of patients with different subtypes by R package “ClusterSur". 

2.5. Molecular subtyping and clinical immune characterization of ANRGs 

The relationship among molecular subtypes, clinicopathological features (including age, sex, tumor, node, metastasis, and stage), 
and prognosis were analyzed, which showed disparate clinical value of different subtypes identified by the consensus clustering 
method. Subsequently, single sample gene set enrichment analysis (ssGSEA) was applied to assess the relationship between different 
subtypes and immune cell infiltration. The enrichment analyses have been carried out utilizing the MSigDB database’s ‘c2.cp.kegg. 
v7.5.1.symbols.gmt’ data and the ‘GSVA’ R package. 

2.6. Development of the ANRG-based risk-scoring model 

All samples were equally classified into the training (n = 311) and test groups (n = 311) to develop the risk score model of ANRGs 
prognostic signatures.The “glmnet” R package was utilized for minimizing the risks of over-fitting by applying the Lasso COX 
regression algorithm on ANRGs. The changing trajectory for every independent variable has been examined and then subjected to 10- 
fold cross-validation to bulid a model. Multivariate Cox analysis has been done to select candidate genes to establish a risk score of the 
ANRGs signature in the training set. 

The risk score of the ANRGs signature was depicted as followed: 
RiskScore = Σ (Expi * coefi), Coefi and Expi denoting the risk coefficient and expression for each gene. Based on the median risk 

score, the training cohort was classified into low-risk group and high-risk group, and Kaplan-Meier (KM) survival analysis was per-
formed subsequently. Similarly, the testing and all sets have been classified into low-as well as high-risk groups. KM survival curves as 
well as receiver operational feature curves (ROCs) were applied to assess the model’s predictive ability. 

2.7. Construction and characteristics of nomogram for risk scoring model 

Final nomogram was established with R package “rms” according to the clinicopathological features and risk score. Its clinical 
reliability has been verified by analyzing the calibration curve. Forest plot was applied to instantiate the influence of each variable on 
the model (p-values, HR, and 95% CI). Decision curve analysis (DCA) was used to evaluate the net benefit value of model under 
different thresholds. 

2.8. Stratification analysis based on risk score 

The differences in risk scores were compared by cluster typing, while CIBERSORT was used for evaluating the proportion of im-
mune cell types across low-as well as high-risk groups, with the sum of all estimated immune cell type scores in each sample being 1. At 
the same time, spearman rank correlation was used to test the relationship between risk score and immune cell infiltration. Further, the 
relationships between the two risk groups and the tumor microenvironment score, tumor mutational burden, microsatellite instability 
(MSI), and tumor stem cell (CSC) index were also analyzed. 

2.9. Comprehensive analysis of risk score-associated prognostic markers 

The relationship between 22 infiltrating immune cell components and risk score prognostic signatures has been explored. Then 
“MAF Tools” (R package) were applied to analyze somatic mutation patterns based on risk groups. Further, the correlation between 
ANRGs and the chemosensitivity of various small molecule drugs in the GDSC and CTRP databases by Gene Set Cancer Analysis (GSCA; 
http://bioinfo.life.hust.edu.cn/GSCA/#/) database [21] has also been examined. Tumor Immune Single-Cell Hub (TISCH; http:// 
tisch.comp-genomics.org/) [22], a large single-cell RNA-SEQ online database focused on TME has been applied for the systematic 
study of TME heterogeneity across different datasets as well as cell types. The LUAD single-cell dataset GSE146100 was selected for 
further analyzing the immune profiles of markers. In the Human Protein Atlas (HPA; https://www.proteinatlas.org/), human proteins 
are mapped in organs, tissues, and cells by combining omics techniques, and this dataset was applied to obtain immunohistochemical 
images of individual marker proteins in LUAD. 
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Fig. 1. Identifying cuproptosis co-expressed anoikis-related prognostic genes (ANRGs) in LUAD. (A) Sankey diagram showing the positive corre-
lation between 13 cuproptosis-associated genes and 141 anoikis-related genes (cor >0.3). (B) Identification of 122 intersecting genes by Venn chart. 
(C) Heat map revealing the differentially expressed ANRGs between tumor and normal tissue. (D) A forest plot illustrating 27 ANRGs obtained by 
univariate COX regression analysis. (E) The interaction network of 27 ANRGs in LUAD. The differences in correlations are indicated by different 
colors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 2. The landscape of mutation characteristics and function of ANRGs. (A)Mutation profiles of 27 ANRGs in 616 samples. The right bar chart 
illustrates the frequency of mutations, and the stacked bar chart below depicts various mutation types. (B) The alteration localization of ANRGs on 
23 chromosomes. (C) CNVs frequency of 27 ANRGs in LUAD. (D–E) Circle chart and bar plot for GO analyses of ANRGs. (F) Bubble plot illustrating 
KEGG pathway enrichment analyses. 
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2.10. Statistical analysis 

Statistical differences between two groups were compared by Wilcox test, while differences among three groups were compared 
using the Kruskal-Wallis test or ANOVA. Analysis of correlation coefficients was conducted using Spearman’s correlation coefficient, 
while the independent predictors of OS were determined by univariate and multivariate Cox regression analyses. A two-sided P value 
of less than 0.05 was considered statistically significant (*P < 0.05, **P < 0.01, and ***P < 0.001). All statistical analyses and 
drawings were conducted by R software version 4.2.1. 

3. Results 

3.1. Identifying cuproptosis co-expressed anoikis-related prognostic genes 

The whole 141 anoikis-associated genes were discovered to be positively co-expressed (cor >0.3) with cuproptosis-associated genes 
after calculations (Fig. 1A, Supplementary Table S1). Then, 122 common genes were acquired by Venn Plot (Fig. 1B), and for verifying 
their role in LUAD, their expression between tumor and normal tissues has been compared. LUAD tissues exhibited significant 
upregulation of 43 genes among those DEGs (Fig. 1C). As shown in Figs. S1 and S2, 27 out of 43 DEGs were significantly associated 
with prognosis as per a univariate COX regression analysis. According to the forest plot (Figs. 1D), 23 genes, excluding OGT, IKZF3, 
EIF2AK3, and LTB4R2, were found to be linked to poor prognosis. A network diagram of 27 ANRGs was constructed, which 
comprehensively analyzed the interrelationship among these genes as well as their influence on LUAD patients’ prognoses (Fig. 1E). 

3.2. Genetic variation and functional analysis of ANRGs 

As illustrated in Fig. 2A, the somatic mutation status of ANRGs in LUAD has been evaluated, which revealed that 166 (26.95%) of 
616 LUAD samples had mutations with the CENPF gene possessing the highest mutation rate, followed by BRCA2 and BRCA1. The five 
ANRGs (HMGA1, LTB4R2, MRPL12, PBK, and UQCRC1) were not mutated. The interactions between ANRGs, as revealed by PPI 
analysis, are depicted in Fig. S3. Moreover, exploring the somatic CNV of these ANRGs showed their prevalence in all 27 ANRGs. 
Among these, ADRM1, BIRC5, MRPL12, and MTDH had extensively increased CNV while BRCA2, XRCC5, MAD2L1, PBK, and UQCRC1 
had moderately decreased CNV (Fig. 2B). Fig. 2C depicted CNV alterations on the ANRGs’ respective chromosomes. To explore the 
potential biological behavior of ANRGs, a functional enrichment analysis of 27 genes was conducted. GO showed that these genes were 
mainly linked to mitosis and cell cycle regulation (Fig. 2D–E). KEGG analysis proved that they were significantly concentrated in 
apoptosis, cell cycle, and neurodegenerative pathways (Fig. 2F). 

3.3. Consistent clustering typing analysis based on ANRGs in LUAD 

To investigate the ANRGs’ clinical significance and functional biological patterns, consensus clustering has been conducted for 
categorizing LUAD patients as per ANRGs’ expression levels. Fig. 3A–B shows that the whole cohort was well separated into subtypes 
A, B, and C when K = 3. Furthermore, based on ANRGs expression, PCA showed considerable variations in the transcriptional profiles 
of ANRGs across three subtypes (Fig. 3C). Moreover, remarkable variations were detected in the Kaplan-Meier survival curves of the 
three subgroups, with patients in cluster B having the worst prognosis (Fig. 3D). The box plot showed considerable variations in ANRG 
expression among three subtypes, except for IKZF3 and OGT, other genes’ expressions were remarkably higher in cluster B than that in 
clusters A or C which further demonstrated that ANRGs play a key role in determining prognoses for LUAD patients and may serve as 
potential therapeutic targets (Fig. 3E). 

3.4. Clinical characterization and immune infiltration analysis of genotyping 

A comparison of clinicopathological characteristics of various LUAD subtypes indicated significant differences (Fig. 4A). Further, to 
determine the relationship between ANRGs and TME, the infiltration degree of 23 immune cells in three subtypes was evaluated by 
using ssGSEA analysis. As shown in Fig. 4B, significant discrepancies in the enrichment of major immune cells were observed betwixt 
these clusters. The expression of other immune cells was lowest in cluster B, except activated CD4+ T-cells, Gamma delta (γδ T cells) T- 
cells, and Type-2 T-helper-cells (TH2). The cluster B was significantly concentrated in the TCA cycle, DNA replication mismatch repair, 
nucleotide excision repair, base-excision repair, homologous recombination, and other cell cycle-related functions as revealed by the 
GSVA enrichment analysis. On other hand, cluster C was significantly concentrated in metabolic pathways including arachidonic-acid- 
metabolism, Tyrosine metabolism, Fatty Acid Metabolism, Histidine metabolism and the PPAR signaling pathway (Fig. 4C–E). 

Fig. 3. Subtypes of LUAD based on ANRGs. (A) Consensus clustering matrix defining three subtypes with k = 3. (B) The cumulative distribution 
function (CDF) plot shows the fractal reliability when k takes different values. (C) PCA shows remarkable differences across the three subtypes based 
on ANRGs expression. (D) K-M curve showing significant OS differences between the three clusters. (E) Analysis of differential ANRGs expression in 
various subtypes. 
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3.5. Construction of ANRGs risk model 

To exploit the value of ANRGs in LUAD clinical treatment, the above genes were utilized to establish a prognostic model capable of 
quantifying each patient’s prognosis by applying a minimal λ Lasso-Cox regression analysis for further selecting the best prognostic 
indicator (Fig. 5A–B) and finally obtained a risk score model “ANRGsScore” integrating seven ANRGs markers. In accordance with the 
multivariate COX result, the following formula was established: Risk Score = (− 0.5208*EIF2AK3) + (− 0.2569*IKZF3) +
(0.1752*ITGAV) + (− 0.3677*OGT) + (0.1646*PLK1) + (0.3154*TRAF2) + (0.4500* XRCC5). Seven hub ANRGs expression patterns 
(Fig. 5C–D), risk score distributions, and clinical status of patients across both low-as well as high-risk subgroups have been compared 
for two cohorts: the training (n = 311) and testing sets (n = 311). The ROC curves were plotted over time to calculate the area under the 
ROC curve (AUC) at different time points to estimate the performance of the prediction model. The risk distribution plots showed that 
with increasing risk score, survival time decreased, while mortality increased (Fig. 5E–H). In the training set, the AUC for 1-, 3-, and 5- 
year survival was correspondingly 0.732, 0.743, and 0.712, respectively (Fig. 6A). The validation set also likewise indicated that the 
model was instructive for clinical applications (Fig. 6B). In the high-risk subgroup, K-M survival analyses of both sets showed a worse 
prognosis (Fig. 6C–D). 

3.6. Risk score-based nomogram 

For quantifying the individual risk assessment of LUAD patients while taking into account the impact of clinicopathological and 
other factors on the prognosis model, a nomogram containing ANRGs Score and clinical information has been constructed for 
anticipating 1-, 3-, and 5-year survival probability. The nomogram primarily included three parameters, that is, T- and N-stage along 
with ANRGs Score (Fig. 6E). DCA was used to determine the usability and effectiveness of the prediction model, which proved that the 
nomogram could predict the survival probability of LUAD patients at different times (Fig. 6F). Further, the calibration chart 
demonstrated that the developed nomogram performed similarly to the ideal model (Fig. 6G). The forest plot also further demon-
strated that T Stage, N Stage, and ANRGs Score in nomogram were the main factors affecting prognosis (Fig. 6H). The relationship 
across the three subtypes, risk scores, and clinical outcomes of cluster B patients was identified in Sanger diagrams for visualizing their 
clinical characteristics, and we found that most of the cluster B patients with high-risk scores have died which was also consistent with 
previous conclusions. 

3.7. Correlation analysis between different risk scores, tumor microenvironment, and mutation characteristics 

Three subtypes of LUAD showed considerable variations in their respective risk scores when analyzing the link between risk score 
and subtypes of LUAD (Fig. 7A). For the immune infiltration difference of the tumor microenvironment among different risk scores, the 
correlation of different immune cells provided clues for the composition of the immune microenvironment (Fig. 7B). Significant 
variations of immune cell infiltration could be found in the comparison between the high-risk and low-risk groups (Fig. S4). The low- 
risk group showed superior infiltration of immune cells involved in tumor immune activation, such as B cells memory, T cells CD4 
memory resting, monocytes, and mast cells resting (Fig. 7C). In addition, the tumor microenvironment mesenchymal and immune 
score in various risk groups was also obtained (Fig. 7D). In previous studies, TMB and MSI have been linked to immunotherapy effects. 
Interestingly, compared to the low-risk group, mutation data analysis showed significantly higher TMB in the high-risk group (Fig. 7E), 
implying it may benefit from immunotherapy. Correlation analysis revealed that the ANRGs Score was positively associated with TMB 
across different subtypes (Fig. 7F). In terms of MSI, a low ANRGs score was considerably associated with MSI-L status while higher with 
microsatellite stability (MSS) status (Fig. 7G). Finally, the correlation analysis between the ANRGs score and tumor cell stemness score 
demonstrated the ANRGs score to be considerably and positively correlated with RNAss, which indicates more pronounced stem cell 
characteristics and lower cellular differentiation for tumor cells with higher risk scores. 

3.8. Comprehensive analysis of ANRGs signature 

Based on the analyses of the seven-gene signature that comprised the risk score model and the abundance of immune cells, it has 
been found that many of these signatures were closely linked to multiple immune cell infiltrations (Fig. 8A). As illustrated in Fig. 8B 
and C, analyzing the differences in the distribution of somatic mutations among the seven signatures within different ANRGs Score 
groups revealed that TMB has been highly prevalent in the high-score group, where the most prominent somatic mutation was ITGAV 
(3%) while the most significant one in the low-risk group was OGT (4%). According to research, genetic mutations and tumor cell 
heterogeneity affect the sensitivity of tumors to certain drugs. It was also found that there exists a significantly positive correlation 
between ITGAV expression and the susceptivity of most chemotherapeutic drugs retrieved from the CTRP and GDSC databases 
(Fig. 8D–E). A single-cell data analysis revealed 11 cell types and 18 cell clusters in the GSE146100 dataset and showed the distribution 
of various cell types (Fig. 8F) as well as the expression of seven signatures in different cells (Fig. S5). There was a significant expression 

Fig. 4. Clinical characterization and immune infiltration analysis in three subtypes of LUAD. (A) Differences in ANRG expression and respective 
clinicopathological features across the three different clusters as depicted in a heat map. (B) Profiles in immune infiltration among three clusters. 
(C–E) GSVA of biological processes across the three independent subtypes with red representing activated pathways and blue representing inhibited 
pathways. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Risk prediction model development based on ANRGs signature. (A) LASSO regression analysis with 10-fold cross-validation establishing a 
model incorporating ANRGs associated with prognosis. (B) Coefficient profile plots of ANRGs. (C–D) The heat map shows the expression pattern of 
seven hub ANRGs at different risk groups in training and testing sets. (E–F) Illustration of the ANRGs model based on the risk score of training as 
well as testing sets. (G–H) Survival time and status in low-as well as high-risk groups for training and testing sets. 
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of IKZF3 in most immune cells, however, ITGAV was more prominent in endothelial, fibroblast, and epithelial cells, while OGT and 
XRCC5 were detected in all cell types (Fig. 8G). Finally, based on the HPA database, the seven-ANRG signature was verified in terms of 
their expression levels by immunohistochemistry, and in comparison to normal tissues, they were highly expressed in LUAD tissue 
(Fig. 9A–G). 

4. Discussion 

LUAD constitutes more than 40% of non-small cell lung cancers, making it the most prevalent histological type [23]. There are four 
stages in the advancement of LUAD, starting with atypical adenomatous hyperplasia (AAH), progressing to adenocarcinoma in situ 
(AIS), minimally invasive adenocarcinoma (MIA), and eventually developing into invasive adenocarcinoma, of which the most 
common subtype is invasive non-mucinous adenocarcinoma [24]. Despite great progress made in the pathogenesis of adenocarcinoma, 
LUAD remains one of the most invasive and lethal types of tumors with an overall survival time of low than 5 years [25]. Immuno-
therapy is an emerging therapeutic approach that includes ICP inhibitors (ICIS), therapeutic antibodies, and cellular therapies [26]. 
Also, more and more immunosuppressants are receiving approval for clinical use in recent years, but the survival, as well as prognosis 
of patients, are not improved significantly. Since adenocarcinomas are highly metastatic and heterogeneous, it is imperative to develop 
gene signatures that identify the potential mechanism of tumor metastasis in guiding treatment and prognosis prediction. 

Tsvetkov et al. have reported the correlation between elesclomol-mediated cancer cytotoxicity increased ferritin-1 (FDX1) levels, 
mitochondrial respiration frequency, and dependent on copper availability [27]. In addition, mitochondrial respiration-dependent 
cells were more sensitive to elesclomol processing than anaerobic glycolysis-dependent cells [28]. A distinct cell death type known 
as cuproptosis occurs when intracellular copper accumulates, causing mitochondrial lipid-based proteins aggregation and Fe/S pro-
teins destabilization. Copper can directly bind to lipoproteins and induce abnormal oligomerization and TCA cycle disruption, which 
may be a key step in cuproptosis [29]. In contrast, elesclomol treatment did not activate caspase-3, a hallmark of apoptosis, and 
inhibiting the apoptotic pathway or other known PCD pathways could not prevent cuproptosis, indicating that this copper-dependent, 
mitochondria-induced cell death is distinguished from known cellular death patterns such as apoptosis, necroptosis, or ferroptosis, but 
its sensitivity mechanisms remain largely unknown. 

When loss of either cell adhesion or improper adhesion to ECM occurs, normal epithelial cells losing contact with ECM would 
rapidly undergo apoptosis, which is called anoikis [30]. Anoikis is a specific PCD pathway initiated by the detachment of cells from 
ECM playing an important role in body development, tissue homeostasis and sickness development [31]. However, the primary 
characteristic of tumor development is the ability to transform cells in “independent” growth conditions. One of the creatures of 
invasive cancer cells is their ability to escape anoikis allowing them to survive under adverse metastatic conditions with loss of ECM. 
This resistance to anoikis turns out to be associated with loss of intracellular environmental homeostasis, cancer growth, and 
metastasis which has been termed anoikis resistance. Such anoikis-resistant cancer cells possess the ability to spread through the 
peripheral circulatory system in distant tissues or organs [5]. The investigation of the molecular mechanism of anoikis-resistance will 
aid in the development of effective therapies for human malignancies. 

Although anoikis is a barrier to metastasis, tumor cells tend to acquire stronger resistance to anoikis, thus increasing the potential of 
metastasis. Whereas copper toxicity is closely related to mitochondrial activity, and mitochondrial oxidative metabolism is a key 
inhibitor of tumor metastasis, excessive accumulation of copper induces cell death and participates in a key step of the TCA cycle. Some 
studies have shown that ROS produced by mitochondrial respiration is an inherent by-product of oxidative metabolism [32], which 
can stimulate glucose oxidation and enhance oxidative stress in cancer cells, restoring cellular susceptibility to anoikis [11]. The joint 
role of cuproptosis and anoikis in tumor growth and metastasis has not been further investigated. Therefore, a comprehensive analysis 
of the molecular characteristics of anoikis-related genes (ANRGs) co-expressed with cuproptosis in LUAD is of great significance for the 
development of precise therapeutic regimens. 

Several studies have demonstrated that ARGs display a vital role in tumor metastasis, invasion and prognosis. According to Miao 
et al., FOXC2 is capable of promoting the growth, metastasis, and resistance to drugs of ovarian carcinoma cells [33]. In another study, 
Liu et al. confirmed CRABP2’s close association with the migration and invasive ability of thyroid cancer cells with an adverse effect on 
prognosis [34]. The use of ANRGs as prognostic indicators in LUAD, however, is limited. On the basis of cuproptosis-related genes’ 
expressions, 141 co-expressed anoikis-related genes were identified with further acquisition of 27 ANRGs by differential and survival 
analyses. Using an unsupervised consistent clustering algorithm, a total of three LUAD subtypes were obtained, which exhibited 
significant differences in expression and survival. Also, considerable variations in immune cell infiltration were found across these 
three groups. GSVA enrichment analysis showed that LUAD subtypes were abundant in the cell cycle and oxidative metabolism 
pathways. 

Considering the critical role of anoikis in tumor growth and metastasis, as well as the heterogeneity among different subtypes of 
LUAD, it is crucial to determine ANRGs’ prognostic significance in LUAD patients. Therefore, a quantitative prognosis risk score 
(ANRGsScore) based on 7 ANRGs has been developed including EIF2AK3, IKZF3, ITGAV, OGT, TRAF2, XRCC5, PLK1. Previous studies 

Fig. 6. The clinical value of a nomogram for LUAD patients. (A–B) ROC curves predicting sensitivity as well as specificity for 1-, 3-, and 5-year 
survival in training and testing sets. (C–D) Survival analysis between high and low-risk subgroups. (E) Nomogram for predicting the RFS of pa-
tients based on risk score and clinicopathological factors. (F) DCA curves of the nomogram for OS among LUAD patients. (G) Cumulative curves of 
nomogram showing the survival probability over time progression. (H) Forest plot presenting multivariable Cox regression analysis of clinical 
characteristics and risk score. (I) Alluvial diagram of a relationship between subtypes, risk score, and living status. 
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confirmed that these gene signatures are closely associated with tumor progression. The ECM regulates cell adhesion and cell 
attachment, while integrin regulates the location and activity of protein hydrolases during ECM remodeling, promoting tumor invasion 
and migration [35]. Previous research demonstrated integrin subunit α-V gene (ITGAV) can promote the occurrence, metastasis, 
proliferation, invasion, and self-renewal of breast cancer [36]. Furthermore, a positive association between ITGAV expression and 
chemotherapeutic drug sensitivity was exhibted, which has guiding implications in clinical practice. Alvaro et al., have found that in 
breast cancer, breast epithelial cells detached from ECM can synergistically induce antioxidant response and autophagy through 
activation of PERK to reduce the level of ROS to delay anoikis [37–39]. It has also been demonstrated that OGT/O-GlcNAcylation has a 
high level in many cancers and is closely related to poor survival, unanchored growth, migration, and invasion of lung cancer [40,41]. 
Anoikis resistance of tumor cells was found to be promoted by TRAF2 interacting with the N-terminus of FAK. Similarly, 
down-regulation of TRAF2 and FAK was found to increase the susceptibility of human breast cancer cells to anoikis in MDA-MB-231 
[42,43]. Most cancer types are accompanied by a decline in genetic integrity and stability, and the key function of XRCC5 is to 
maintain genomic stability and human ontogeny. A study has demonstrated that XRCC5 alterations were more common in LUAD and 
played a key role in tumorigenesis [44]. Lin et al., found that NF-kB subunit relA could directly bind to the PLK1 promoter and further 
inhibited the ubiquitination and degradation of b-catenin protein, thus regulating the level of b-catenin protein and protecting 
esophageal cancer cells from anoikis [45]. Li et al. reported that Aiolos (encoded by IKZF3) reduces the expression of adhesion-related 
genes, and interferes with cell-matrix interactions, thus blocking the process of anoikis and promoting metastasis [46,47]. 

An important factor in tumor growth, metastasis, and therapy is TME, consisting of ECM, mesenchymal cells, tumor vessels, and 
various immune cells [48]. Initiation of metastasis relies on cross-dialogue between tumor cells and stromal cells, and 
epithelial-mesenchymal transformation (EMT) is adopted in single cells [49]. We constructed the ANRG risk score to evaluate the 
change pattern of TME in LUAD patients. Compared with high-risk score, the low-risk group had higher Stromal Score, Immune Score 
and final ESTIMATE TME Score, which demonstrated that the ANRG risk score could be used to observe the immune infiltration of 
LUAD and predict the invasion pattern of TME or tumor immunophenotype. In addition, TMB and MSI have been certificated to be 
associated with tumor proliferation and survival [50]. Tumor cells utilize several mechanisms to maintain survival, including 
restarting metabolic demand to exploit available resources in a new environment, escaping anoikis upon detachment from ECM, and 
immunosuppression by inhibiting the activity of immune cells [51]. A significant role played by lung cancer immunotherapy in 
controlling and clearing cancer cells is to restore the normal anti-tumor immune function of the body by restarting and maintaining the 
tumor-immune microenvironment [52]. The relationship between seven signatures and different immune cell abundance has been 
analyzed and their expression in immune cells was verified based on the single-cell database. It has been turned out that these hub 
genes were closely linked to multiple immune cell infiltrations. According to the results, they might be crucial in predicting immu-
notherapy’s effectiveness. 

Further analysis and validation of ANRGs scores in predicting the prognosis of LUAD patients were carried out. The results revealed 
considerable variations in clinicopathological characteristics, prognosis, mutations, TMB, MSI, and tumor stem cell scores between 
low- and high-risk groups, indicating that ANRGs score is a reliable index for assessing survival outcomes and tumor treatment effects 
of patients. Then, the forecast value of the ANRGs score was further improved by integrating it with clinicopathological creatures to 
establish a quantitative nomogram. This prognostic model may be applied to stratify the prognosis and help individualize the curing of 
patients. 

Although this study has been validated with multiple perspectives and databases, there are still several limitations. First, all 
samples utilized in the study were retrospective data from public databases, which required further verification by extensive pro-
spective studies. Second, considering the heterogeneity between cells, single-cell sequencing techniques should be applied to reveal 
genomic differences between cell proportions and phenotypes. Third, although the prognostic nomogram has high predictive accuracy, 
it fails to include some prominent clinical variables, including surgery, radiotherapy and chemotherapy, and immunotherapy, in the 
analysis. For calibrating the prediction model, a larger and more detailed sample size could be added. Finally, detailed in vivo, as well 
as in vitro experiments, are required for exploring the underlying mechanisms of ANRGs. 

5. Conclusion 

In summary, three subtypes of ANRGs in LUAD have been identified according to TCGA and GEO data. We compared the prognosis 
status of different subtypes and then established a risk score model based on seven signatures. Further, an analysis of clinical features, 
immune infiltration, and mutation characteristics on the basis of the risk score has been carried out. Results indicate that ANRGs are 
valuable prognostic markers that can be utilized to help treat LUAD more accurately. 

Fig. 7. Comparison of the tumor microenvironment and mutation properties between subgroups. (A) Differences in ANRGs score between three 
clusters. (B) The correlation of various TME immune cells. (C) The component percentage of immune infiltrating cells between high-as well as low- 
risk groups. (D) Correlation between immune and stromal scores in different risk subgroups. (E)Tumor mutation burden (TMB) of different risk score 
groups. (F) Spearman correlation of TMB and risk score. (G) Correlations between risk score and MSI. (H) Correlations between risk score and 
CSC index. 
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Fig. 8. Comprehensive analysis of 7 hub genes. (A) Immune cell relationship with seven hub genes. (B–C) Somatic mutation feature-related 
waterfall plot for high-as well as low ANRGs scores. (D–E) Bubble chart depicting the relationship between CTRP/GDSC drug sensitivity and 
seven hub ANRGs. The color transition from blue to red represents the link between CENPI expression and IC50. A positive relationship indicates 
that high expression of this gene provides resistance to the medication and vice versa. (F) Annotation of all LUAD TME-associated cell types in 
GSE146100. (G) Expression of EIF2AK3, IKZF3, ITGAV, OGT, TRAF2, XRCC5, and PLK1 in different cells. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. The immunohistochemistry landscape of seven hub genes. (A) ITGAV (CAB002499), (B) TRAF2 (HPA010634), (C) XRCC5 (HPA025813), (D) 
PLK1 (HPA051638), (E) OGT (HPA030751), (F) IKZF3 (HPA024377) and (G) EIF2AK3 (HPA015737). 
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