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Lymphomas represent a diverse group of malignancies that emerge from lymphocytes.
Despite improvements in diagnosis and treatment of lymphomas of B-cell origin, relapsed
and refractory disease represents an unmet clinical need. Therefore, it is of utmost
importance to better understand the lymphomas’ intrinsic features as well as the
interactions with their cellular microenvironment for developing novel therapeutic
strategies. In fact, the role of immune-based approaches is steadily increasing and
involves amongst others the use of monoclonal antibodies against tumor antigens,
inhibitors of immunological checkpoints, and even genetically modified T-cells.
Metabolic reprogramming and immune escape both represent well established cancer
hallmarks. Tumor metabolism as introduced by Otto Warburg in the early 20th century
promotes survival, proliferation, and therapeutic resistance. Simultaneously, malignant
cells employ a plethora of mechanisms to evade immune surveillance. Increasing evidence
suggests that metabolic reprogramming does not only confer cell intrinsic growth and
survival advantages to tumor cells but also impacts local as well as systemic anti-tumor
immunity. Tumor and immune cells compete over nutrients such as carbohydrates or
amino acids that are critical for the immune cell function. Moreover, skewed metabolic
pathways in malignant cells can result in abundant production and release of bioactive
metabolites such as lactic acid, kynurenine or reactive oxygen species (ROS) that affect
immune cell fitness and function. This “metabolic re-modeling” of the tumor
microenvironment shifts anti-tumor immune reactivity toward tolerance. Here, we will
review molecular events leading to metabolic alterations in B-cell lymphomas and their
impact on anti-tumor immunity.

Keywords: B-cell-derived Non-Hodgkin lymphoma, chronic lymphocytic leukemia, metabolism, immune escape,
immune therapeutics
INTRODUCTION

Metabolic reprogramming is a well-established hallmark of cancer (1). In fact, emerging evidence
suggests that metabolic reprogramming does not only confer bioenergetic advantages but also
impacts immune surveillance, thus being closely interconnected with immune escape, another
hallmark of cancer (1). In this mini-review on B-cell-derived lymphomas, we will focus on
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metabolic alterations, the underlying molecular mechanisms,
and their impact on anti-tumor immunity.

In general, cells meet their energetic demands in form of
adenosine triphosphate (ATP) by different degrees of either
glycolysis or mitochondrial oxidative phosphorylation (OxPhos).
Although both metabolic axes happen simultaneously, there is a
distinct fine-tuning of the balance between glycolysis and OxPhos.
Non-proliferating, quiescent or differentiated cells primarily rely
on OxPhos in the presence of oxygen and only switch to glycolysis
under hypoxia. Highly proliferative cells obtain most of their ATP
by aerobic glycolysis despite the availability of oxygen, a
mechanism introduced by Otto Warburg in the 1920s and
referred to as the “Warburg effect” (2).

Although aerobic glycolysis is less efficient, energy generation
is faster and provides intermediates such as nucleotides, amino
acids, and carbons for fatty acid (FA)/lipid synthesis; all crucial
components for dividing cells. Consequently, aerobic glycolysis
is predominantly found in activated immune cells such as
effector T-cells (3) but also in most dividing malignant cells (4).

OxPhos provides an enhanced metabolic flexibility as it can
be fueled by different sources, primarily glucose, glutamine, and
FAs. Cell types that preferentially utilize OxPhos are slow-
dividing, long-lived immune cells such as regulatory and
memory T-cells (5) or leukemia stem cells (6).

Apart from the energy provision, metabolic processes impact a
plethora of cellular functions by amongst others interfering with
translation, epigenetics, and post-translational modifications as
reviewed by Patel et al. (7). As such, metabolism represents a
central regulator of cell fate and function.

Owed to its vital importance metabolism is tightly regulated
by both intrinsic and extrinsic mechanisms. Malignant cells
display aberrations in those regulatory circuits leading to
metabolic profiles that favor survival, growth, and immune
escape. In the follow, we will discuss the most prominent
metabolic alterations described in B-cell-derived Non-Hodgkin
lymphomas (B-NHLs) including chronic lymphocytic
leukemia (CLL).
METABOLIC ALTERATIONS IN B-NHLs
AND CLL

Diffuse Large B-cell Lymphoma (DLBCL)
As the most common form of B-cell lymphomas, aggressive
DLBCL accounts for about 35% of all newly diagnosed B-NHLs
(8). The DLBCL displays a pronounced heterogeneity in terms of
genetic background and outcome. The cell of origin (COO)
algorithm categorizes DLBCLs based on the gene expression
profiles (GEPs) into “germinal center B-cell like” (GCB) types
resembling normal germinal center B-cells and “activated B-cell
like” (ABC) types with GEPs reminiscent of in vitro activated
B-cells (9–11). An additional classification framework known as
consensus cluster classification (CCC) revealed three separate
clusters with distinct metabolic fingerprints: OxPhos-DLBCL,
B-cell receptor (BCR)-DLBCL, and host response (HR)-DLBCL
(12). OxPhos-DLBCLs display a prominent mitochondrial
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component, with elevated OxPhos, an overall increased
mitochondrial contribution to the total energy turnover, and a
greater incorporation of carbons derived from FAs and glucose
into the tricarboxylic acid (TCA) cycle. In contrast, non-
OxPhos-DLBCLs are metabolically rewired toward aerobic
glycolysis (13). Immunohistochemical studies in DLBCL
revealed expression of transporters of lactate (i.e., MCT1 and
TOMM20) that can fuel the TCA cycle of malignant cells in a
process better known as the “reverse Warburg effect” (14).
Interestingly, OxPhos-DLBCL exhibited marked susceptibility
toward inhibition of mitochondrial FA oxidation (FAO) and of
PPARg that regulates FA uptake and storage (13). BCR-DLBCLs
were susceptible to pharmacological SYK inhibition (15), which
in turn leads to a downregulation of glycolytic components (such
as GLUT1 and hexokinase 2) (16).

As a central hub for the integration of metabolic processes,
mammalian target of rapamycin (mTOR) controls nutrient/
amino acid sensing, glycolysis, OxPhos, and consequently
proliferation and survival. It serves as the core component of
two multi-protein complexes (mTORC1 and mTORC2) that
regulate different cell processes [reviewed in (17)]. Non-GCB
DLBCLs depict increased mTOR-activity, which is linked to
inferior survival (18). However, an in vitro study conducted on
different DLBCL cell lines demonstrated therapeutic efficacy of
mTOR inhibitors independent of COO. Overall, no clear link
between COO- or CCC-based classifications and mTOR activity
could be established yet.

Furthermore, DLBCLs (over-)express indoleamine-2,3-
dioxygenase (IDO), which catalyzes breakdown of the essential
amino acid L-tryptophan into the catabolite L-kynurenine (19).
The latter one could promote expression of the pro-oncogenic
Bcl-6 in DLCBL (20). In fact, both enhanced IDO expression (21)
as well as elevated serum L-kynurenine levels (22) were linked to
reduced response rates and inferior 3-yr overall survival (OS).

Follicular Lymphoma (FL)
The second most common type of B-NHL is the indolent
follicular lymphoma (FL) (23). In FL SYK is, similar to
DLBCL, highly activated and regulates mTOR (24). In
addition, recurrent somatic mutations of RRAGC that encodes
for the Ras-related GTP-binding protein C are the leading cause
for mTORC1 activation in FL (25) and render FL cells more
susceptible toward mTOR-induced cytotoxicity (26). Beyond
that, metabolism of FLs remains largely unexplored. Notably,
transformation into DLBCL is associated with an enhanced
expression of the glycolytic machinery, which is in line with
the increased glucose uptake as revealed by 18F-FDG PET/CT in
transformed lymphomas (27, 28).

Mantle Cell Lymphoma (MCL)
MCL represents about 5-10% of B-NHLs. Despite being classified
as indolent, it has a rather aggressive disease course. MCL cell
lines display constitutive mTOR activation (29). A dysregulation
of the upstream PI3K/AKT pathway has been implicated as a
driver of mTOR in MCL. This notion is further corroborated by
the observation that the phosphatase and tensin homologue
(PTEN), which acts as an intrinsic PI3K/AKT inhibitor, can be
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reduced or undetectable in MCL (30). Inhibiting mTOR was
effective in targeting MCL metabolism (31) and is approved for
the relapsed/refractory (r/r) situation based on positive data from
clinical studies (32). The Bruton tyrosine kinase (BTK) inhibitor
ibrutinib abolishes BCR signaling and has emerged as a potent
therapeutic option for r/r MCL. BTK-blockade markedly affected
the (ibrutinib-responsive) MCLs’ metabolic activity including
glycolysis and the TCA cycle (33). Interestingly, Zhang et al.
reported that ibrutinib-resistant MCLs depict a metatobolic
rewiring toward glutaminolysis-fueled OxPhos (34). These
drug-resistant cells were readily targeted by a OxPhos
inhibitor, showing promising efficacy in patient-derived
preclinical models.

Chronic Lymphocytic Leukemia (CLL)
CLL as the most common adult leukemia of the Western world is
a heterogeneous disease characterized by accumulating
monoclonal B-lymphocytes (35). Circulating CLL cells are
mainly quiescent and proliferation predominantly occurs in
lymph nodes (LNs) and the bone marrow (BM). Nevertheless,
circulating CLL cells possess a marked metabolic activity that
differs from healthy B-lymphocytes. As they traffic between
hypoxic (i.e., LN and BM) and normoxic compartments (i.e.,
peripheral blood), CLL cells were found to constitutively express
hypoxia-inducible factor (HIF-1a), which gets further
upregulated within LNs thus promoting aerobic glycolysis (36,
37). Hypoxia-induced upregulation of glycolytic genes is further
supported by adenosine signaling, which is triggered by the CLL
cells’ ectonucleotidases CD39 and CD73 (37).

CLL cells per se contain more mitochondria than conventional
B-lymphocytes. Endogenous nitric oxide (NO) levels correlate
positively with mitochondrial mass (38). In fact, NO can drive
mitochondrial biogenesis, as NO supplementation increases
mitochondrial mass in B-NHL-derived cell lines, whereas NO
inhibition antagonizes this process (39). Correspondingly, Jitschin
et al. demonstrated enhanced mitochondrial OxPhos, respiration,
and respiratory capacity (40). The thereby amplified electron
turnover via the mitochondrial electron transport chain yielded
increased levels of ROS within the CLL cells but also systemically.
Oxidative stress led then to a compensatory upregulation of heme-
oxygenase-1 in CLL cells, a key cellular antioxidant, which also
functions as a positive switch for the key activator ofmitochondrial
transcription factor A. Mitochondrial biogenesis, increased
respiration, and oxidative stress appear to form a positive self-
reinforcing feedback loop. As previously shown for solid tumors,
pyruvate can act as a scavenger ofmitochondrial superoxide inCLL
cells. Increased oxidative stress under hypoxia led to enhanced
pyruvate uptake while normoxic conditions led to a pyruvate
release (36).

In fact, CLL cells from patients with higher disease stages and
those withmolecular features associated with a poor prognosis, like
unmutated IGHV (U-CLL) and ZAP-70 positivity, showed higher
mitochondrial respiration (41, 42). Both aforementioned genetic
risk factors foster BCR signaling. Consistently, BCR-targeting
reduces the metabolic activity (41). In general, CLL cells and
conventional B-cells did not differ in terms of their basal glycolytic
rate. However, CLL cells showed an elevated glycolytic capacity
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and glycolytic (together with respiratory) reserve. Furthermore,
patients with U-CLL had higher lactic acid serum concentrations
and displayed an elevated glycolytic capacity as compared to their
mutatedcounterparts (M-CLL)(43).Thissuggests thatCLLcells are
better equipped toadapt tofluctuationsofbioenergetic resources. In
fact, microenvironmental stimuli further support the CLL cells’
metabolic flexibility as contact to LN- or BM-resident stromal cells
elicits a glycolytic switch in a Notch/Myc-dependent manner (44).
Transferring these findings into the clinics, patients with higher
glycolytic capacity and reserve have a worse OS and a shorter time-
to-treatment (43). Furthermore, CLL samples with higher
glycolytic flexibility showed an increased resistance to novel
drugs affecting the mitochondria, such as venetoclax and
navitoclax (43).

Another metabolically important aspect is the role of free fatty
acids (FFAs). Lipoprotein lipase (LPL) is the major enzyme
catalyzing hydrolysis of triglycerides into FFAs and is mainly
present in adipose tissue, playing a key role in lipid metabolism.
CLL cells carry LPL on their cell membrane, while LPL gene
expression is elevated in U-CLL cells (45, 46). LPL facilitates
lipoprotein uptake, which enables CLL cells (unlike normal B-
cells) to store and metabolize FFAs (46). Intracellular FFAs can
then be used to promote the already more active OxPhos in CLL
cells (47). Moreover, FFAs may themselves drive mitochondrial
biogenesis through activation of PPARg (48). Upregulation of
LPL in CLL cells is at least partly mediated by STAT3, since
STAT3 binds to the LPL promotor and STAT3 knockout
downregulated LPL protein levels (46). In addition to LPL,
CD36 (a cell surface FA translocase) density is higher on CLL
cells as compared to non-malignant B-cells. CD36 expression
(and the consecutive FA uptake) were driven by STAT3 and
inhibition of FA uptake reduced CLL cell viability (49). Again,
BTK-inhibition reduced LPL levels and FFA metabolism both
in vitro and in patients at least partly through interfering with
STAT3 (50). Interestingly, CLL ibrutinib-resistant cases could be
targeted by an FAO-inhibitor highlighting the importance of
FAO metabolism and OxPhos (51). Emphasizing the relevance
of FFA metabolism in CLL, the OS of patients with high LPL
levels was worse than for those with low ones (45).

Taken together, metabolic adaptations and flexibility occur in
multiple facets in DLBCL, FL, MCL, and CLL (Figure 1). They
confer enhanced survival, proliferation, and therapeutic resistance
but at the same time, we can therapeutically exploit them.
LYMPHOMA METABOLISM AND ITS
POTENTIAL IMPACT ON ANTI-
LYMPHOMA IMMUNITY

Tumors including B-cell malignancies have developed a variety
of mechanisms to evade the anti-tumor immunity. Amongst
others, four major “metabolic strategies” have been identified
(Figure 2): 1) competition over nutrients, 2) production of
bioactive metabolites, 3) induction/promotion of regulatory,
tolerogenic immune cells, and 4) metabolic control of immune
checkpoints (ICPs).
November 2020 | Volume 10 | Article 594782
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The most studied example of nutrient competition is the
increased glucose consumption by malignant cells caused by
elevated expression levels of glucose transporters and enzymes of
the glycolytic machinery {as seen in BCR-DLBCL [e.g., GAPDH
expression (52) and lactate secretion (13)], transformed FL [e.g.,
GAPDH and aldolase A (27, 28)], MCL [e.g., glycolytic flux (33)],
and CLL in the LN-/BM-niche [e.g., glycolytic flux and key
glycolytic enzymes (44)]}. This is detrimental for T- and NK-cells
as their proliferation, activation, and differentiation is highly
dependent on glucose as a fuel for both aerobic glycolysis and
OxPhos [reviewed in (53)]. Similarly, tumoricidal (M1)
macrophages depend on glucose to fully mount their effector
cytokine response [reviewed in (54)]. Additionally, increased
activity of lipid/FFA-consumptive enzymes (i.e., LPL and CD36
Frontiers in Oncology | www.frontiersin.org 4
as seen in CLL) as well as of glutaminase (as seen in DLBCL)
contribute to a nutrient-poor environment. Apart from the
depletion of basic bioenergetic substrates, increased expression of
the ectonucleotidases CD39/CD73 (as seen in CLL) reduces
extracellular ATP (exATP) by enzymatic conversion to
adenosine. exATP was shown to be particularly important for
long-lived T-cell immunity through purinergic signaling
promoting mitochondrial fitness (55). Expression of L-
tryptophan-depleting IDO (as seen in DLBCL) has been linked to
inferior progression free survival and OS in B-cell malignancies
(21). In T-cells L-tryptophan shortage leads to cell cycle arrest (56)
at least partly due to a stress response caused byuncharged transfer-
RNAs (57), and to reduced proliferation caused by mTOR
inhibition (58). Furthermore, tryptophan is essential for clonal
A B

FIGURE 1 | Metabolic alterations in B-cell lymphomas and CLL. (A) B-NHL (DLBCL, MCL, FL) often exhibit an elevated mTOR signaling activity enabling increased
glycolysis, OxPhos, proliferation and survival. This can be driven by the BCR in a PI3K/AKT-dependent or independent manner, or by genetic events such as the
loss of PTEN expression resulting in constitutively active PI3K/AKT. Increased OxPhos was also found to be fueled by elevated lactate shuttling into the TCA cycle
due to increased lactate importer expression. Additionally, both increased expression of IDO as well as glutaminolysis-driven PD‑L1 induction provide enhanced
immune-suppression. (B) CLL cells display a high mitochondrial biomass and high levels of OxPhos generating large amounts of energy and ROS that in turn drive
mitochondrial biogenesis and generation of antioxidants (at least partly by HO-1). This vicious cycle confers enhanced oxidative stress resistance, survival and
suppression. OxPhos and mitochondrial biogenesis could also be driven by increased activity of LPL and CD36 consuming triglycerides and importing free fatty
acids (FFA). In contrast, microenvironmental trigger (e.g., hypoxia or LN-/BM-stroma) can induce transcription factors, such as Myc or HIF-1a leading to a glycolytic
switch (enabled by high metabolic flexibility), and an increase of the adenosinergic axis culminating in enhanced survival, proliferation, and suppression.
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expansion and effector T-cell differentiation via metabolic
reprogramming through mTOR (59).

Simultaneously, the different rewiredmetabolic activities lead to
accumulation of various bioactive (and potentially immuno-
modulatory) metabolites within the tumor microenvironment
(TME). This includes lactate (as a result of enhanced glycolytic
activity)which leads to the inhibitionofT- andNK-cells viablunted
lactate export acidifying the cytoplasm (60) as well as reduced
NFAT levels (61) resulting in diminished cytokine production and
effector function. Similarly, the IDO catabolite L-kynurenine
inhibits immune-cell function (62), e.g., by induction of T-cell
exhaustion (63, 64) andderegulationofNK-cell activating receptors
(65). In fact, increased L-kynurenine serum concentration is
associated with inferior OS in DLBCL (22). Accumulating
extracellular adenosine converted from exATP by CD39/CD73
(as seen in CLL) can blunt immune responses by activating
adenosine receptors that signal via cyclic AMP and protein kinase
A. T-cells respond with reduced proliferation (66, 67), NFkB
activity (68), and cytokine production (67, 69, 70) as well as
Frontiers in Oncology | www.frontiersin.org 5
increased exhaustion (71). NK cells are similarly affected by
adenosine (67, 72). Abundant ROS (as seen in CLL, DLBCL, and
FL) regularly leads tooxidative stress inmalignancies.Again,T-and
NK-cells are particularly sensitive toward ROS-induced
cytotoxicity (73, 74), e.g., through impairment of T-cell receptor
signaling (75, 76) leading to reduced cytokine production (77). This
is reflected by the negative prognostic impact of oxidative stress in
DLBCL (78) and FL (79).

However, those bioactive metabolites are not only capable of
direct immune cell suppression, but can also favor preferential
survival and/or induction of tolerogenic cell types. Actually,
regulatory T-cells (Tregs), myeloid-derived suppressor cells
(MDSCs), and pro-tumorigenic M2-like macrophages accumulate
in B-cell-derived malignancies. As a prime example, kynurenine
directly promotes reprogramming toward Tregs by inducing their
master transcription factor FOXP3 (80). At the same time, Tregs are
more resistant thanconventional (potentially tumor-directed)T-cells
toward detrimental effects caused by abundant lactate (81) or ROS
(82) thereby enjoying a survival benefit.
FIGURE 2 | Immunometabolic evasion mechanisms of B-cell lymphomas and CLL. Metabolic alterations lead to the reduction of essential immune cell nutrients and
at the same time to the generation of bioactive metabolites. In addition to their direct immuno-suppressive nature, these byproducts also increase the frequencies of
tolerogenic, suppressive immune cells (such as Tregs, myeloid-derived suppressor cells [MDSCs] and M2-like macrophages) either indirectly via the creation of
favorable conditions or directly inducing their differentiation. Furthermore, certain metabolic programs can promote the expression of immune checkpoints such as
PD-L1. Taken together, these events ultimately lead to the overall suppression of immune attack and increase the tumor cells’ survival and persistence.
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As stated above, a novel, fourth mechanistic axis has been
established interconnecting metabolic activity and expression of
ICPs such as PD-L1 that prevent mounting of an effective anti-
tumor immunity.PD-L1 is found inB-NHLandcanhave anegative
prognostic impact (e.g., for DLBCL) (83, 84). Consequently, ICP
blockade is currently undergoing clinical evaluation. Recent studies
have demonstrated that glucose uptake and glutaminolysis are
required for a stable PD-L1 expression. In DLBCL, glutaminolysis
contributes to STAT3 induction, which positively regulates PD-L1
(85). Glucose serves as a substrate for posttranslational protein
glycosylation,whileN-glycosylationofPD-L1maintains its stability
and interaction with its cognate receptor (86).

Overall, metabolic reprogramming is closely linked to
immunoevasion. However, many of the here described phenomena
are extrapolated from basic studies or translational research within
different disease contexts. Thus, immunometabolic research in B-cell
malignancies needs to be further extended to build a sound basis for
novel treatment strategies.
CONCLUSION AND FUTURE
PERSPECTIVES

The concept of immunometabolic regulation has emerged as an
important research field. Interplay between cells does not only
occur via signaling molecules and receptor-ligand interactions
but also through metabolic communication. Tumor cells have
adapted their metabolic regulatory circuits (Figure 1), which
improves their survivability and resistance toward anti-tumor
immunity and/or (immune-based) therapies (Figure 2).
However, metabolic reprogramming can cause novel metabolic
dependencies and/or vulnerabilities rendering malignant cells
more susceptible toward interferences within their metabolic
framework as already described for DLBCL (13, 15), FL (24, 26),
MCL (31, 32) and CLL (41, 43, 50, 51).

Targeting key (dysregulated) metabolic molecules would
represent one very obvious strategy for re-establishing a (for
immune cells) more favorable environment without lack of
nutrients or presence of detrimental catabolites. However, it
needs to be taken into consideration that bioenergetic processes
ofmalignant cells and of activated immune cells are very similar. As
such, mTOR as a central hub for nutrient sensing and bioenergetic
regulation in various types of B-NHLs would represent a bona fide
target. Activated T-cells are also strongly dependent on mTOR-
regulated uptake of glucose and amino acids [reviewed in (87)].
Thus, targetingmTORwould inevitably affect theT-cell’smetabolic
competence (and consequently anti-tumor function) as seen in
preclinical models (88). Here, focusing on pathways that are not
Frontiers in Oncology | www.frontiersin.org 6
directly associatedwith the cell’s bioenergetics and self-evidently do
not overlap between malignant and immune cells is more
promising. Blockade of IDO (that is not expressed in T- and/or
NK-cells) for example is currently investigated in a number of
malignancies (89). Notably, reducing ROS production (by
histamine application) coupled with IL-2-triggered T- and NK-
cell activation has led to solid clinical effects in patients with acute
myeloid leukemia (90) and comparable observations were reported
when combining bicarbonate that neutralizes an acidic milieu with
ICP blockade in preclinical melanoma models (91).

Nowadays, adoptive transfer of genetically engineered chimeric
antigen receptor (CAR) T-cells has heralded a new era in the
immunotherapy of cancer in particular of B-NHLs (92). The
efficacy of CAR T-cell treatment and their adequate anti-tumor
effect rely on sustainedmetabolic activity and energy supply as well
as in vivo persistence. In analogy to the intrinsic anti-tumor
immune responses, the TME can represent a metabolic barrier for
CART-cells as convincingly shown for IDOandanti-CD19CART-
cells in a preclinical lymphoma model (93). Manipulating the
metabolic equipment of CAR T-cells itself to empower their
function in the TME [reviewed in (94)] poses a promising
approach for optimizing CAR T-cell therapy in the foreseeable
future. Strategies to do so, include additional genetic manipulation
that, e.g., has led to the design of ROS-resistant CAR T-cells, the
expansion of CAR T-cells in presence of cytokines that promote
metabolic fitness such as IL-21 (95), and their combined use with
agents such as adenosine receptor antagonist that target tumor
metabolism-triggered detrimental effects (96).

In summary, the multifaceted metabolic alterations in B-NHL
and CLL have been the subject of intense research. However,
more research is needed to better understand the complex
immunometabolic interactions in order to help us to further
improve the efficacy of emerging immunotherapies such as CAR
T-cells or immune cell engaging antibodies.
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