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Elevated plasma homocysteine levels (tHcy) have been 
consistently associated with the risk of ischemic stroke 

in observational studies.1 Moreover, experimental studies sug-
gest that increases in total homocysteine aggravates vascular 

disease.2 However, some clinical trials that investigated the 
benefit of lowering tHcy with B vitamins to reduce the risk 
of stroke have been negative.3–6 In contrast, a recent large 
primary prevention trial in China, the China Stroke Primary 
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Prevention Trial (CSPPT), which recruited only hypertensive 
patients, demonstrated a beneficial effect in reducing risk of 
stroke.7 Possible reasons for this conflicting evidence include 
insufficient stroke phenotyping particularly if homocysteine is 
a predominant risk factor for one type of stroke, dietary folate 
fortification reducing tHcy in populations in which trials have 
been performed, interactions between treatment and risk fac-
tors, and insufficient treatment duration.

A subtype-specific effect, with elevated homocysteine pri-
marily increasing risk for small vessel disease (SVD) stroke, 
has been suggested by both epidemiological data and secondary 
analysis of clinical trials. Case–control studies have suggested 
that elevated homocysteine is primarily a risk factor for lacunar 
stroke8,9 and that there may be heterogeneity even within this 
subtype, with strongest associations in those SVD cases with 
multiple lacunar infarcts and confluent leukoaraiosis on mag-
netic resonance imaging (MRI).10 Most previous clinical trials 
that investigated the benefit of lowering homocysteine studied 
stroke as a combined event lumping together all different eti-
ologies (ie, hemorrhage and ischemic and ischemic stroke sub-
types). A secondary analysis in the Vitamins to Prevent Stroke 
(VITATOPS) trial3 found a borderline treatment effect in patients 
with lacunar stroke (hazard ratio 0.80 (95% confidence interval 
[CI] 0.67–0.96)), whereas an MRI VITATOPS substudy found 
vitamin-lowering therapy was associated with reduced white 
matter lesion volume progression in patients with severe white 
matter lesions.11 A further possibility is that elevated homocys-
teine may interact with certain cardiovascular risk factors, and 
treatment effect may only be detected if these interactions are 
taken into account; of possible relevance, the positive CSPPT 
trial was only performed in hypertensive individuals.

Another possible explanation for the conflicting epidemio-
logical and clinical trial data is that the association between 
homocysteine and risk of ischemic stroke is a reflection of 
reverse causality or residual confounding, that is, elevated 
tHcy does not play a causal role in stroke pathogenesis but are 
merely noncausally associated with an increased risk of stroke. 
Genetic studies have the potential to overcome these issues 
by using genetic variants associated with elevated tHcy as a 
proxy for tHcy because the inheritance of genetic variants is 
random and not influenced by confounding factors. The most 
often studied genetic variant, showing the strongest association 
with increased tHcy, is the cytosine (C) to thymine (T) substi-
tution at position 677 of the methylene tetrahydrofolate reduc-
tase (MTHFR) gene (rs1801133).12–14 Case–control studies that 
investigated the association of the MTHFR C677T variant with 
stroke yielded inconsistent results, which is likely because of 
small sample sizes and the varying stroke phenotypes stud-
ied. Meta-analyses have produced conflicting results with an 
association reported between MTHFR and ischemic heart dis-
ease and stroke in one study but not with stroke in another.12,15 
Studies using detailed MRI-based stroke phenotyping have 
suggested the association may be confined to, or strongest in, 
patients with the lacunar stroke subtype.10

Based on the above data, we hypothesised that the 
MTHFR C677T variant may be a specific risk factor for SVD 
but not for other stroke subtypes. Lacunar infarcts are small 
and frequently not seen on computed tomography, and there-
fore, MRI is important for accurate diagnosis.16 Therefore, 

we determined whether the MTHFR polymorphism is associ-
ated with MRI-confirmed lacunar stroke. We compared these 
results with similar analyses from patients with cardioembolic 
and large artery stroke. In addition, we determined whether 
the same polymorphism was associated with MRI white mat-
ter hyperintensities, another marker of SVD. Because of the 
known association of hypertension with both tHcy and stroke, 
and in view of the positive results from the recent CSPPT 
study, we also stratified the analyses by hypertension status.

Methods
Stroke Populations
We included 1359 MRI-defined lacunar stroke cases from the UK 
young lacunar stroke DNA study, the Leuven Stroke Study (LSS), 
and the MRI-confirmed lacunar stroke collaboration (MCLSC), in-
cluding cohorts from the UK, Germany, Italy, and Australia (Table 
I in the online-only Data Supplement). Lacunar stroke was defined 
as a clinical lacunar syndrome17 with an anatomically corresponding 
lacunar infarct on MRI (subcortical infarct ≤15 mm in diameter). All 
MRI scans were centrally reviewed by one physician (H.S. Markus). 
Exclusion criteria were stenosis >50% in the extra- or intracranial 
cerebral vessels; cardioembolic source of stroke, defined accord-
ing to the Trial of Organization 10172 in Acute Stroke Treatment 
(TOAST) criteria18 as high or moderate probability; subcortical in-
farct >15 mm in diameter, as these can be caused by embolic mecha-
nisms (striatocapsular infarcts); any other specific cause of stroke 
(eg, lupus anticoagulant, cerebral vasculitis, dissection, monogenic 
forms of stroke, eg, cerebral autosomal-dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy [CADASIL]). Large-
artery and cardioembolic stroke cases were obtained from Genetic 
Risk Factors for Leukoaraiosis Study (GENESIS), LSS, MCLSC, 
and the Wellcome Trust Case Control Immunochip Consortium 
(WTCCC2-Immunochip), including cohorts from the UK, Germany, 
Belgium, Italy, Sweden, Poland, Austria, and Australia. Cases were 
classified into stroke subtypes according to the pathophysiological 
TOAST classification,18 using clinical assessment, as well as brain 
and vascular imaging where available. Hypertension was defined as 
prescription of antihypertensives before stroke or systolic blood pres-
sure >140 mm Hg or diastolic blood pressure >90 mm Hg >1 week 
post stroke. Fourteen thousand four hundred and forty-eight ancestry-
matched controls were obtained from the same geographical location 
as the cases in each group. A description and characteristics of all 
cohorts are given in Table I in the online-only Data Supplement.

White Matter Hyperintensity Volumes Population
The white matter hyperintensity (WMH) volume population 
(n=3670) was derived from the International Stroke Genetics 
Consortium (ISGC) WMH collaboration. This collaboration mea-
sured WMH volumes in patients with ischemic stroke from the UK, 
Italy, Belgium, Germany, Australia, and USA (Table II in the online-
only Data Supplement). Inclusion criteria were >18 years of age, 
self-reported European ancestry, and a diagnosis of ischemic stroke. 
Exclusion criteria were any other cause of white matter disease, in-
cluding CADASIL, vasculitis, and demyelinating and mitochondrial 
disorders. MRI scans were acquired as part of routine clinical practice 
for evaluation of ischemic stroke. Fluid-attenuated inversion recovery 
sequences were primarily used for leukoaraiosis analysis; however, 
in their absence, T2 sequences were used. All scans were quantita-
tively graded to obtain a WMH volume, which was normalized for 
intracranial volume. WMH volume was measured in the hemisphere 
contralateral to the infarct and doubled to obtain whole brain vol-
umes. Patients with bilateral nonlacunar infarcts were excluded. All 
neuroimaging analyses have been previously described.19

Genotyping
Direct genotyping of rs1801133 was performed in all cohorts except 
WTCCC2-Immunochip using commercially available arrays from 
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Affymetrix or Illumina. In WTCCC2-Immunochip, rs1801133 was 
imputed from the 1000 Genomes integrated variant set (March 2012) 
using IMPUTE v2.20 The SNP was imputed with high accuracy (impu-
tation info score =0.91). The SNP passed genotyping frequency thresh-
olds (>97%) and was in Hardy–Weinberg equilibrium in all groups. To 
control for population stratification, individuals were removed that did 
not segregate with Hapmap II European populations based on ancestry 
informative principal component analysis using EIGENSTRAT soft-
ware or multidimensional scaling in PLINK software, and ancestry-
informative covariates were included in all analyses.21,22

Statistical Analysis
In each cohort, logistic regression was performed to test for associa-
tion of MTHFR C677T with MRI-defined lacunar stroke, cardioem-
bolic stroke, and large artery stroke, assuming an additive model and 
adjusting for ancestry-informative principal components.

For each cohort, the association between WMH volume and 
MTHFR C677T was determined by performing linear regression of 
WMH volume on genotype dosages. Results across all cohorts were 
combined using a fixed-effects inverse variance weighted meta-anal-
ysis method. Subsequently, we repeated the analyses for MRI-defined 
lacunar stroke and WMH volume stratified by hypertension status.

We set our P value threshold for the main analyses to P<0.05 and 
then used a Bonferroni-corrected value (P=0.005) to assess signifi-
cance in secondary analyses.

Results
Stroke Analyses
MTHFR C677T was significantly associated with lacunar 
stroke (odds ratio [OR] 1.20, 95% CI 1.09–1.33; P=0.0003), 
but not with large-artery stroke (OR 1.01, 95% CI 0.93–1.08; 
P=0.88) or cardioembolic stroke (OR 1.03, 95% CI 0.96–1.11; 
P=0.44; Figure 1).

In the lacunar stroke cases, the association was most pro-
nounced in homozygotes (OR 1.48, 95% CI 1.20–1.84 for TT 
versus CC; P=0.0003 and OR 1.17, 95% CI 1.01–1.36 for CT 
versus CC; P=0.03).

The overall prevalence of hypertension in the lacunar 
stroke cases was 72.6%. There were no differences in the 
prevalence of hypertension according to MTHFR genotype 
(72.0% in CC, 73.4% in CT, and 71.2% in TT). Stratifying the 
lacunar stroke cases for hypertension status demonstrated the 
association of MTHFR C677T with lacunar stroke was present 
in hypertensives (OR 1.24, 95% CI 1.11–1.38; P=0.0002), but 
not in normotensives (OR 1.09, 95% CI 0.92–1.29; P=0.30). 
In hypertensive and normotensive cases separately, the asso-
ciation of MTHFR C677T with lacunar stroke was again most 
pronounced in homozygotes (Table).

WMH Volumes Analyses
MTHFR C677T was significantly associated with WMH volume 
(OR 1.06, 95% CI 1.01–1.11; P=0.04; Figure 2). In the second-
ary analyses in which we stratified by hypertension status, there 
was a borderline association for either hypertensive cases (OR 
1.06, 95% CI 1.00–1.13; P=0.05), although this did not pass the 
Bonferroni-corrected threshold, whereas there was no association 
in normotensive cases (OR 1.02, 95% CI 0.95–1.11; P=0.57).

Discussion
In the present study, we showed that the tHcy-associated 
genetic variant MTHFR C677T was associated with lacunar 

stroke risk and cerebral SVD, but not for large artery or car-
dioembolic stroke, and that this association was restricted to 
patients with hypertension. Thereby, this study supports the 
hypothesis that homocysteine is a risk factor for specifically 
SVD and not for the other stroke subtypes.

Previous genetic association studies linking homocys-
teine to ischemic stroke have produced conflicting results.15 
Such candidate studies may be influenced by publication bias, 
which is reduced in large multicentre GWAS studies. A recent 
analysis of 18 SNPs associated with tHcy reported equivocal 
results in 12 389 ischemic stroke cases (METASTROKE).23 
There was no association between any SNPs associated with 
tHcy and all ischemic stroke or large artery or cardioembolic 
subtypes, consistent with this study. However, one SNP was 
associated with lacunar stroke (rs9369898, MUT), but no 
association was found with the MTHFR polymorphism.

Our study is the first large-scale study to include MRI-
based phenotyping of lacunar stroke. The majority of stroke 
cases in previous studies have relied on CT brain imaging 
in combination of a diagnosis of a lacunar stroke syndrome. 
In ≤50% of cases, a clinical lacunar syndrome is caused by 
pathologies other than SVD.24

Figure 1. Forest plot for the association of MTHFR C677T with 
stroke subtypes. The size of the box is inversely proportional to 
the estimate variance of the effect estimator. GENESIS indicates 
Genetic Risk Factors for Leukoaraiosis Study; LSS, Leuven 
Stroke Study; MCLSC, magnetic resonance imaging–confirmed 
lacunar stroke collaboration; and WTCCC2-Immunochip, Well-
come Trust Case Control Immunochip Consortium.
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Another possible reason for the conflicting results between 
different studies is dietary folic acid fortification in certain pop-
ulations. This was present in some cohorts in METASTROKE 
and might have attenuated any association with MTHFR 
C677T in METASTROKE.15 In the present study, folic acid 
fortification was not used in any of the included stroke cohorts, 
but was used in some of the included WMH volume cohorts. 
The association shown between MTHFR C677T and WMH 
volume in the present study might have been attenuated by the 
inclusion of these folic acid–fortified cohorts.

The SVD-specific effect of MTHFR C677T in the pres-
ent study might reflect the effects of increased tHcy in SVD 
patients with this genetic variant. Although we did not assess 
tHcy in the present study and, therefore, cannot draw conclu-
sions on this association in the present study, previous stud-
ies support this hypothesis of possible SVD-specific effect 
of increased tHcy. Secondary analyses of the VITATOPS 
trial suggested that homocysteine-lowering therapy may 
be associated with improved outcome in SVD (both lacu-
nar stroke and WMH) but not in other stroke subtypes.3 In 
the VITATOPS trial, in which lacunar stroke subtyping was 
largely based on a clinical stroke syndrome with computed 
tomography imaging, a borderline significant reduction in 
recurrent stroke occurred in patients with SVD; based on our 
results, one could hypothesise that this treatment effect might 
be stronger in MRI-confirmed lacunar stroke. Consistent with 
this specific effect in SVD are the results of an MRI sub-
study in 359 individuals from VITATOPS; although no asso-
ciation was found in the group as a whole, in a subanalysis 
of patients with MRI evidence of severe SVD at baseline, 
B vitamin supplementation was associated with a significant 
reduction in WMH volume change.11 Two meta-analyses on 
previous genetic association studies linking MTHFR with 
WMH on MRI could not confirm an association between 
MTHFR and WMH.25,26 Individual studies that were included 
in these meta-analyses had only small number of patients, and 
it was suggested that much larger studies would be needed 
to detect an association.25 In the present study, we included 
twice as many subjects as the largest study in the previous 
meta-analyses that assessed WMH on a dichotomous scale 
and three times as many subjects as the study that assessed 
WMH volume.

We found that the association of MTHFR C677T with 
lacunar stroke was restricted to hypertensive individuals. One 
possible explanation for this finding exclusively in hyperten-
sive individuals might be that the association acts through 
increased susceptibility to, or interaction with, high blood 
pressure. Interestingly, the recent large primary prevention 
CSPPT trial showed a benefit of homocysteine-lowering 
therapy in reducing stroke risk in hypertensive individuals 
from a population in which folic acid fortification was not 
occurring.7

The major strength of our study is the confirmation of all 
lacunar strokes by MRI and the relatively large sample size. 
Furthermore, the approach of using a genetic proxy for tHcy 
reduces the likeliness of reversed causality and residual con-
founding compared with previous observational studies. The 
relationship between tHcy and stroke in observational stud-
ies might be confounded by unmeasured or not adequately 
measured factors (eg, other dietary factors) that are causally 
associated with stroke. In contrast, genetic studies rely on the 
fact that genetic variants are fixed from conception and are not 
influenced by other traits.

Moreover, the stroke cohorts were derived from countries 
in which folic acid fortification was not implemented at the 
time of stroke, which maximized the chances of demonstrating 
an effect for MTHFR C677T. We also included an analysis of 
WMH volume in ischemic stroke patients. Stroke patients rep-
resent an enriched population in whom WMH are increased. It 
has been shown, however, that the genetic factors underlying 

Table.  Association Between MTHFR C677T Genotypes and 
MRI-Defined Lacunar Stroke

MTHFR Genotype OR P Value

All lacunar stroke

    CT vs CC 1.17 (95% CI 1.01–1.36) 0.03

    TT vs CC 1.48 (95% CI 1.20–1.84) 0.0003

Hypertensive lacunar stroke

    CT vs CC 1.19 (95% CI 1.01–1.40) 0.04

    TT vs CC 1.58 (95% CI 1.25–2.00) 0.0001

Normotensive lacunar stroke

    CT vs CC 1.07 (95% CI 0.84–1.37) 0.58

    TT vs CC 1.23 (95% CI 0.85–1.78) 0.28

CI indicates confidence interval; MRI, magnetic resonance imaging; and OR, 
odds ratio.

Figure 2. Forest plot for the association of MTHFR C677T with 
WMH. The size of the box is inversely proportional to the esti-
mate variance of the effect estimator. ASGC indicates Australian 
Stroke Genetics Collaborative; GENESIS, Genetic Risk Factors 
for Leukoaraiosis Study; ISGS, Ischemic Stroke Genetics Study; 
LSS, Leuven Stroke Study; MGH, Massachusetts General Hospi-
tal; SGUL, St Georges University of London; SWISS, Sibling with 
Ischemic Stroke Study; and WTCCC2, Wellcome Trust Case-
Control Consortium 2.
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WMH in ischemic stroke patients seem to be similar to those 
in population-based studies of WMH.19

A potential limitation of the present study is that we did 
not have independent replication cohorts available to vali-
date our findings, and therefore, future studies are warranted 
to confirm these interesting findings. Furthermore, although 
MTHFR C677T is strongly associated with tHcy in other stud-
ies,12,14 we could not also directly assess the association of 
tHcy with stroke subtype in the present study because tHcy 
measurements were not available in all of our cohorts.

In summary, we showed that MTHFR C677T was associ-
ated with lacunar stroke in hypertensive individuals, support-
ing a possible causal role for homocysteine in the pathogenesis 
of cerebral SVD. Our results suggest that any future trials 
investigating the benefit of lowering homocysteine in stroke 
patients should focus on the SVD subtype and that they should 
incorporate MRI-based diagnosis.
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