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Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease
pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a
combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-
protein interaction (PPI) data, domain-domain interaction (DDI) data, weighted domain frequency score (DFS), and cancer linker
degree (CLD) data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I)
using individual algorithm, (II) combining algorithms, and (III) combining the same classification types of algorithms. When
compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority,
are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two
independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer
microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

1. Introduction

It has been known for a long time that cancer is a result of loss
of cell cycle control. The loss of control is a result of series of
genetic mutations involving activation of proto-oncogenes to
oncogenes and inactivation of tumor-suppressing genes.
Oncogenes and tumor suppressors may cause cancer by
alternating the transcription factors, such as the p53 and ras
oncoproteins, which in turn control expression of other
genes. Therefore, understanding how oncoprotein-oncopro-
tein interacts and how oncoproteins drive the cell division
cycle is indispensable for the study of molecular oncology.
Predicting novel cancer-related proteins is an important topic
in biomedical research; experimental techniques such as
microarrays are being used to characterize cancer. However,
the process could be time consuming and labor-intensive.
Nagaraj and Reverter [1] proposed a Boolean logic based

approach to predict colorectal cancer genes. Li et al. [2] took
GO enrichment scores and KEGG enrichment scores as
features to predict retinoblastoma related genes. The above
two studies are confined to predict specific cancers. For
general types of cancers, Hosur et al. [3] combined linear
programming formulation for interface alignment to predict
cancer related PPIs. Aragues et al. [4] used PPI data to predict
cancer-related proteins. In this study, we extended Aragues’s
study by employing PPI data and domain information to
attain improved performance.

Protein-protein interactions are inherent in almost every
cellular process. In fact, PPI is the core of the entire interac-
tomics system in living cells. PPI appears when two or more
proteins bind together and perform a biological function
[5]. Almost all major research topics in molecular biology
involve PPI such as cellular function [6], genetic diseases
[7], conserved patterns [8], and homologous relationships
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[9]. The recent availability of PPI data has made it possible
to study human disease at a system level. It is reported that
since disease genes exhibit an increased tendency for their
protein products to interact with one another, they tend
to be coexpressed in specific tissues and display coherent
functions [10]. Ideker and Sharan reported in a review article
[11] on the applications of PPI networks to study disease
in four major areas: (i) identifying new disease genes, (ii)
studying their network properties; (iii) identifying disease-
related subnetworks, and (iv) performing network-based
disease classification. Another study [12] investigated the
human cancer PPI network from a structural perspective,
that is, protein interactions through their interfaces. Their
findings indicated that cancer-related proteins have smaller,
more planar, more charged, and less hydrophobic binding
sites than noncancer proteins.

It is known that proteins are composed of multiple func-
tional domains. A domain is a unit of function associated
with different catalytic functions or binding sites, as found
in enzymes or regulatory proteins. It is hypothesized that
cancer proteins, also known as tumor associated genes,
may share common functional domains [13], and thus a
weighted domain score for each tumor associated gene’s
domain is determined. Novel cancer proteins are determined
by translating full cDNA sequences to the corresponding pro-
tein sequences and calculating the weighted domain scores.
Another work [14] used established methods to identify
the network topology of a cancer protein network. They
showed that cancer proteins contain a high ratio of structural
domains, which have a high propensity for mediating protein
interactions. Recently, Clancy et al. designed a statistical
method to infer the physical interactions between two com-
plexes for the human and yeast species [15]. Domains such
as the immunoglobulin domain, Zinc-finger, and the protein
kinase domains are the top three most frequently observed
cancer protein domains. Many other works also employed
PPI and DDI to characterize disease networks [7, 16–20]. In
our previous works [21, 22], a one-to-one DDI model was
proposed to obtain specific sets of DDI for oncoproteins and
tumor suppressor proteins, respectively.Three specific sets of
DDI, that is, oncoprotein and oncoprotein, tumor suppressor
protein and tumor suppressor protein, and oncoprotein and
tumor suppressor protein, are derived from their PPIs.

Weka (http://www.cs.waikato.ac.nz/∼ml/weka/) [23] is
a well known software tool which provides environments
related to machine learning, data mining, text mining,
predictive analysis, and business analysis. Machine learning
and data mining algorithms have been widely used in bioin-
formatics and computational biology [24–28]. The present
authors adopted amino acid composition profile informa-
tion with the SVM classifier to improve protein complexes
classification [29]. Additionally, we also proposed identifying
microRNAs target of Arabidopsis thaliana by integrating
prediction scores from PITA, miRanda, and RNAHybrid
algorithms [30]. Recently, Li et al. [31] used random forest
machine learning algorithm and topology features to identify
the functions of protein complexes.

In this research, we began by collecting cancerous protein
interaction data. That is, only interactions involved with
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Figure 1: System flowchart for this study.

cancer proteins are considered.These types of interactions are
known as cancerous PPIs. Noncancerous protein interaction
means either one or both of the proteins are not yet identified
in relation to cancer. Given the cancerous PPIs, a set of DDI
rules for cancer proteins are derived. In addition to this
set of DDI, we also considered other features: the weighted
domain frequency scores (DFS): DFS C for cancer proteins
and DFS X for noncancer proteins and the cancer linker
degree (CLD) score. A total of four features (DDI, DFS C,
DFS X, and CLD) are adopted to make novel cancer protein
predictions by using 39 machine learning algorithms from
the Weka tool. In addition, we also verified the accuracy of
the predictive model on two independent datasets. Finally,
using differentially expressed genes found in lung cancer
microarray data as a case study, we discovered some potential
cancer genes for further experimental investigation.

2. Methods

2.1. System Flowchart. In this study, a system was set up to
predict cancer proteins by integrating four types of features.
Firstly, cancer and noncancer PPIs were collected from bio-
logical databases, and then those interactions were annotated
by using the domain information. Next, we determined
four feature scores; data normalization is needed to ensure
consistency in their distribution.The system flowchart of this
study is illustrated in Figure 1.

2.2. Data Sources and Datasets Generation. Cancer proteins
(tumor suppressor protein (TSP) or oncoprotein (OCP)) of
the learning datasetwere integrated from Institute of Biophar-
maceutical Sciences of Taiwan National Yang Ming Univer-
sity, Tumor Associated Gene (TAG, http://www.binfo.ncku
.edu.tw/TAG/GeneDoc.php) database [13], and Memorial
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Figure 2: Data sources and datasets generation.

Sloan-Kettering Cancer Center (MSKCC, http://cbio.mskcc
.org/research/cancergenomics/index.html). Noncancer pro-
teins were from BioGrid (http://thebiogrid.org/) [32]. On the
other hand, cancer proteins of the independent test dataset
for Case Study 1 were obtained from two resources, that is,
Online Mendelian Inheritance in Man (OMIM, http://www
.ncbi.nlm.nih.gov/omim) and the human lung cancer data-
base (HLungDB) [33].

Protein domain informationwas downloaded fromPFam
database (http://pfam.xfam.org/) [34]. PPIs for both can-
cer and noncancer proteins were retrieved from BioGrid
database. The Swiss ID of proteins was obtained from Swiss-
Prot Database (http://www.expasy.org/sprot/).

There are three classified combinations of protein inter-
action adopted as input data in the current study: “𝐶-𝐶”
indicates cancer-cancer protein interaction, “𝐶-𝑋” indicates
cancer-noncancer protein interaction, and “𝑋-𝑋” indicates
noncancer-noncancer protein interaction. Figure 2 depicts
input data sources and dataset generation of this research.

2.3. Feature ScoresGeneration. Wederived four feature scores
based on three different approaches, which are domain-
domain interaction, weighted domain frequency, and cancer
linker degree. For the domain-domain interactions, it may
happen that some relationships are derived fromhomologous
sequences, which may produce a bias in the 10-fold valida-
tion; therefore, some redundancies (by a certain homology
degree that includes domains) should be removed. By extract-
ing the homologous PPIs by using the “UniRef50” dataset
obtained from the UniProt Reference Clusters (UniRef,
http://www.uniprot.org/uniref/), we found that, among the
123751 edges derived from BioGrid database, only 431 edges
(approximately 0.348%) are homologous PPIs and 86 edges
are cancer PPIs; it means that most of the PPIs are not homol-
ogous PPIs. We removed the 431 PPIs and the remaining
123320 PPIs are used in our experiment. In addition, the 431
homologous PPIs comprise 180 proteins, in which 179 pro-
teins still appear in other nonhomologous PPIs; therefore, the
total number of domains, that is, 3970, remains unchanged.

2.4. One-to-One Domain Interaction Model. Assuming that
proteins 𝑃

𝑖
and 𝑃

𝑗
contain 𝑀 and 𝑁 domains, respectively,

and then given an interacting protein pair (𝑃
𝑖
, 𝑃

𝑗
), one consid-

ers that there are 𝑀𝑁 possible domain pairs. The set of
domain pairs of two proteins 𝑃

𝑖
and 𝑃

𝑗
, 𝑆
𝑖,𝑗
, is defined by

𝑆
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To measure the likelihood of a DDI combination, a DDI
pair interaction matrix 𝐼 is introduced. The element 𝐼
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denotes the weighted combination probability of a domain
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respectively. Subsequently, protein domains are randomized
while maintaining the number of domain assignments for
each protein the same as the original set. The randomized
counterpart of 𝐼

𝛼,𝛽
, ⟨𝐼rand
𝛼,𝛽

⟩, is performed in order to justify
the protein domain pair calculation. Then, the domain pair
score of the domain pair (𝛼, 𝛽), 𝑅

𝛼,𝛽
, is defined by

𝑅

𝛼,𝛽
=

𝐼

𝛼,𝛽

⟨𝐼
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⟩

, (3)

where ⟨𝐼rand
𝛼,𝛽

⟩ denotes the ensemble average (we randomized
the data 20 and 40 times, and it was found that the results
converge after 40 times) of the randomized counterpart of
𝐼

𝛼,𝛽
. This result provides a criterion to rank the domain pairs.

If the ratio 𝑅

𝛼,𝛽
is larger than one, then the correlation is

stronger than the randomized counterpart, so the domain
pair (𝛼, 𝛽) is a preferred DDI relation.

Given the set of domain annotation for any two proteins,
one can turn around and compute a score that signifies PPI
based on the set of𝑅

𝛼,𝛽
values for DDI.This derived PPI score

can answer the question whether any two proteins interact or
not given their domain components. The DDI score for the
protein pair (𝑃

𝑖
, 𝑃

𝑗
), DDI

𝑖,𝑗
, is defined as follows:

DDI
𝑖,𝑗
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where 𝑆(𝑃
𝑖
) and 𝑆(𝑃

𝑗
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𝑃

𝑖
and 𝑃
𝑗
, respectively.

2.5. Weighted Domain Frequency Score (DFS). The two fea-
ture scores (DFS C and DFS X) are defined in this section
as the variations from the study by Chan [35]. Among the
total of 3970 collected human domain types, the numbers
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of 381 and 2750 of them appear only in cancer proteins and
noncancer proteins, respectively, and 839 of them appear
in both cancer proteins and noncancer proteins. This result
supports the propensity that certain domain types reside in
cancer and noncancer proteins.

Let 𝐶 = (𝐶
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in noncancer proteins. For each domain 𝛼, let 𝐶(𝛼) and𝑋(𝛼)
denote the numbers of occurrence of domain 𝛼 in cancer
proteins and noncancer proteins, respectively. A higher score
value suggested that the domain has a high propensity
which resides in cancer or noncancer proteins. Then, two
weightedDFS values for the protein pair (𝑃

𝑖
, 𝑃

𝑗
), DFS 𝐶
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and
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where 𝑚 and 𝑛 are the total number of domain types that
appear in cancer and noncancer proteins, respectively, and
𝑆(𝑃

𝑖
) and 𝑆(𝑃
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) denote sets of protein domains in proteins 𝑃

𝑖

and 𝑃
𝑗
, respectively.

The weighted DFS is adopted to measure the propensity
of domain occurrence in cancer and noncancer proteins.

2.6. Cancer Linker Degree (CLD). The last feature is named
the cancer linker degree (CLD) score which was adopted
from the model proposed by Aragues et al. [4]. In organisms,
proteins interact with each other to form a protein complex
in order to perform special functions. We can conjecture the
category of function and the level of activity by observing
their interaction partners. For a given protein pair (𝑃

𝑖
, 𝑃

𝑗
),
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Then, the cancer linker degree score for the protein pair
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As an illustration, an example is presented in Figure 3,
where 𝐶

𝑎
and 𝐶

𝑏
are cancer proteins, and 𝑋

𝑎
, 𝑋
𝑏
, 𝑋
𝑐
, and

𝑋

𝑑
are noncancer proteins.
The CLD score represents the interaction ratio for a

specified PPI interacting with a cancer partner. If the CLD
score is close to one, it implies that the interaction edge is
connecting many cancer nodes and could be located in the
core of the cancer-related protein clusters.

2.7. Data Normalization. The four features scores consist
of DDI score (DDI

𝑖,𝑗
), weighted domain frequency scores

(DFS 𝐶
𝑖,𝑗

and DFS 𝑋
𝑖,𝑗
), and cancer linker degree score
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Figure 3: The calculation of score CLD for the protein pair (𝑃
𝑖
, 𝑃

𝑗
).

(CLD
𝑖,𝑗
). Due to the fact that the distributions of the numer-

ical values for the above four features are not consistent
between each other, data normalization is needed. For the
value after normalization, 𝑌 is defined by

𝑌 =

𝑋

𝐷,𝑊,𝐶
−min

max−min
,

(8)

where 𝑋𝐷,𝑊,𝐶 denotes the unnormalized feature value and
max and min are the maximum and minimum values for
𝑋

𝐷,𝑊,𝐶, respectively.

2.8. Machine Learning Algorithms and Performance Statistical
Measures. Since different choices of machine learning algo-
rithms resulted in different predictions of performance, we
conducted several comprehensive experiments to determine
the optimal combinations of the algorithms. Thirty-nine
machine learning algorithms in Weka are discussed in this
study. Readers may refer to [23] for detailed descriptions
about these algorithms. According to Weka, machine learn-
ing algorithms are divided into six classification types, that is,
“Bayes” (6 algorithms), “functions” (6 algorithms), “Misc” (2
algorithms), “lazy” (4 algorithms), “rules” (9 algorithms), and
“trees” (12 algorithms). A rigorous 10-fold cross validation test
is performed to test the classification performance.

Six statistical measures are introduced to quantify the
prediction performance, that is, accuracy (ACC), specificity
(SPE), sensitivity (SEN), 𝐹-score (𝐹1), Matthew’s correlation
coefficient (MCC), and positive predictive value (PPV),
which are defined in terms of TP, TN, FP, and FN, where they
denote true positive, true negative, false positive, and false
negative events, respectively.Their definitions are listed in (9).
SPE and SEN measure how well a true cancer protein or a
true noncancer protein is identified. 𝐹1 conveys the balance
between SPE and SEN. ACC andMCC provide an integrative
measure of correct identification. PPV is positive predictive
fraction. In addition, the AUC (area under the curve) score,
which provides a global performance evaluation, is also
included:

ACC =

TP + TN
TP + TN + FP + FN

,

SPE = TN
TN + FP

,
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SEN =

TP
TP + FN

,

𝐹

1
=

2 × SPE × SEN
SPE + SEN

× 100%,

MCC

=

(TP ∗ TN) − (FN ∗ FP)
√(TP + FN) ∗ (TN + TP) ∗ (TP + FP) ∗ (TN + FN)

,

PPV =

TP
TP + FP

.

(9)

3. Results

A total of 123320 PPIs, which are composed of 15214 cancer
PPIs and 108106 noncancer PPIs, 2863 cancer proteins, and
3970 domains were used in our experiment. A 10-fold cross
validation test was conducted to determine the optimal
threshold settings for each classifier. We assumed the “𝐶-
𝐶” type PPI as a positive set and the rest as a negative
set. According to our previous work [30], the balanced
trained dataset usually has better performance than the
unbalanced one; hence, the algorithms are trained with an
equal size ratio of 1 : 1 for the positive and negative dataset.
Since the sizes of the original positive and negative sets
differ by a factor of about 6 (unbalanced learning set), to
generate a balanced learning set, the 15214 positive target
interactions (cancer PPIs) were kept, and a total of 15214
noncancer PPIs were randomly selected from the negative
set. Later on, the above-mentioned seven statistical measures
are determined. For comparison, the corresponding results
of unbalanced dataset are listed in Supplementary File 1,
Appendix Tables S1 to S5, in Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2015/312047, where
the performance of MCC and PPV is much worse due to
the very large TN and very small TP. Therefore, the use of
balanced datasets is more preferable.

3.1. Performance Comparison by Individual Machine Learning
Algorithm and Voting with the Majority. The performance
comparison for the individual algorithm is listed in Table 1.
The LMT algorithm of the “trees” type achieved the highest
ACC (0.772), 𝐹1 (0.774), and MCC (0.548) among the
39 algorithms. Interestingly, according to either ACC, 𝐹1,
or MCC, the top six algorithms (LMT, SimpleCart, J48,
J48graft, REPTree, and FT) are all of the “trees” type. On the
other hand, the LWL algorithm of the “lazy” type, the VFI
algorithm of the “misc” type, the ConjunctiveRule algorithm
of the “rules” type, and the DecisionStump algorithm of the
“trees” type achieved the highest SPE and PPV (1.000), and
the Nnge algorithm of the “rules” type achieved the highest
SEN (0.858), while the Ridor algorithm of the “rules” type
achieved the highest AUC (0.780). We also tried to combine
the subsets of the four features for predicting the cancer
proteins, but the predictive performance is not markedly
improved.

The individual classifier has its own strengths and weak-
nesses; therefore, it is inspired to integratemultiple classifiers,
that is, voting with the majority system, to improve the
classification performance. Thirty-nine machine learning
algorithms in Weka were selected and integrated using
various types of votingwith themajority system. In this study,
the voting with the majority system involved an odd number
of algorithms. For example, top 5 in Table 2 represents com-
bining the top 5 algorithms extracted from Table 1, which are
LMT, SimpleCart, J48, J48graft, and REPTree. Performance
comparison by voting with the majority is listed in Table 2.
The best performance in voting is attained when the top 23
algorithms are selected, which have the highest 𝐹1 (0.786)
and PPV (0.890). When comparing Table 1 with Table 2,
except SEN, the top voting with the majority system (top
23) is better than top individual algorithm (LMT) in the
other six performance measures, and it also outperformed
all thirty-nine individual algorithm in ACC, 𝐹1, MCC, and
AUC.We also noted that the best performance of voting with
themajority system (top 23) delivered lower FP events, that is,
186, than those of the top three individual algorithms, which
are 303, 297, and 307, respectively. In other words, the voting
approach does not introduce spurious events.

3.2. Performance Comparison with Group Voting with the
Majority. Performance comparison by voting with the
majority for each group is listed in Table 3 (Misc type is
omitted here, because it contains only two algorithms). For
instance, under the “functions” type, the “Top: 3” classifier
in Table 3 represents the combination of “functions” type
algorithms, that is, MultilayerPerceptron, Logistic, and Sim-
pleLogistic algorithms (see Table 1).The results indicated that
“trees” type achieved the highest ACC (0.781), SEN (0.749),
𝐹1 (0.786), MCC (0.567), MCC (0.513), and AUC (0.788),
while the “rules” type had the highest SPE (0.838), and “lazy”
type achieved the highest PPV (0.883).

For clarity, Figure 4 illustrates the majority voting results
for various types of algorithms; the results suggest that “trees”
type algorithms perform better in most of the performance
measures.

3.3. Performance Comparison with the Competing Study.
Since there are four features that are considered in this study,
it is necessary to study their significance in classification
performance. To study the prediction performance of the four
features individually, we evaluated the feature importance
by the area under the curve (AUC) value [36, 37]. Features
with a higher AUC score are ranked as more important than
features with a low score. The results of AUC values for the
four features are given in Table 4. The DFS C feature ranks
at the top in AUC value, while the DFS X feature has the
lowest AUC value. These results suggest that DFS C feature
has the greatest discrimination information between positive
datasets and negative datasets.

To demonstrate the effectiveness of the present study,
we compared our results with the work by Aragues et al.
[4], which uses the CLD feature only. As shown in Table 5
and Figure 5, for a single classifier, our method achieved
better performance than Aragues’s in all seven performance



6 BioMed Research International

Table 1: Performance comparison for the individual algorithm sorted by 𝐹1 value.

Type Algorithm ACC SPE SEN 𝐹1 MCC PPV AUC
Trees LMT 0.772 0.802 0.748 0.774 0.548 0.821 0.774
Trees SimpleCart 0.770 0.804 0.742 0.773 0.546 0.825 0.775
Trees J48 0.767 0.799 0.741 0.770 0.538 0.818 0.771
Trees J48graft 0.767 0.799 0.742 0.769 0.538 0.818 0.771
Trees REPTree 0.766 0.796 0.741 0.767 0.536 0.818 0.767
Trees FT 0.763 0.798 0.735 0.766 0.528 0.821 0.766
Rules DTNB 0.760 0.804 0.728 0.763 0.527 0.833 0.765
Trees NBTree 0.760 0.796 0.733 0.763 0.527 0.819 0.764
Trees RandomForest 0.760 0.777 0.744 0.761 0.524 0.791 0.761
Rules Ridor 0.718 0.910 0.650 0.758 0.492 0.954 0.780
Rules Jrip 0.754 0.790 0.726 0.757 0.512 0.817 0.757
Rules DecisionTable 0.752 0.790 0.722 0.756 0.509 0.817 0.757
Rules PART 0.744 0.758 0.745 0.748 0.494 0.754 0.751
Lazy Kstar 0.744 0.766 0.725 0.744 0.491 0.784 0.744
Functions MultilayerPerceptron 0.724 0.792 0.683 0.734 0.462 0.835 0.739
Trees LADTree 0.720 0.762 0.696 0.727 0.447 0.788 0.729
Trees RandomTree 0.721 0.721 0.720 0.721 0.440 0.723 0.721
Lazy LWL 0.610 1.000 0.560 0.720 0.350 1.000 0.780
Misc VFI 0.610 1.000 0.560 0.720 0.350 1.000 0.780
Rules ConjunctiveRule 0.610 1.000 0.560 0.720 0.350 1.000 0.780
Trees DecisionStump 0.610 1.000 0.560 0.720 0.350 1.000 0.780
Trees ADTree 0.709 0.762 0.685 0.719 0.433 0.787 0.724
Bayes BayesNet 0.714 0.755 0.683 0.717 0.431 0.796 0.719
Lazy IB1 0.713 0.716 0.711 0.713 0.427 0.718 0.713
Lazy Ibk 0.713 0.716 0.711 0.713 0.427 0.718 0.713
Functions Logistic 0.669 0.652 0.692 0.672 0.342 0.606 0.673
Bayes BayesianLogisticRegression 0.670 0.655 0.687 0.671 0.342 0.622 0.673
Functions SimpleLogistic 0.669 0.652 0.691 0.670 0.342 0.605 0.672
Functions SMO 0.665 0.641 0.699 0.667 0.334 0.580 0.670
Functions VotedPerceptron 0.642 0.606 0.721 0.657 0.305 0.467 0.664
Rules Nnge 0.522 0.511 0.858 0.641 0.128 0.052 0.686
Rules OneR 0.635 0.629 0.641 0.635 0.269 0.610 0.634
Functions RBFNetwork 0.624 0.603 0.655 0.627 0.254 0.529 0.629
Bayes NaiveBayes 0.598 0.571 0.660 0.614 0.214 0.410 0.615
Bayes NaiveBayesUpdateable 0.598 0.571 0.660 0.614 0.214 0.410 0.615
Bayes NaiveBayesSimple 0.598 0.571 0.660 0.613 0.214 0.411 0.614
Bayes NaiveBayesMultinomial 0.576 0.554 0.634 0.590 0.168 0.366 0.594
Misc HyperPipes 0.570 0.568 0.579 0.571 0.143 0.534 0.572
Rules ZeroR 0.510 0.510 0.510 0.510 0.010 0.510 0.510

measures. From Tables 1 and 5, we can see that the best single
classifier of the current method (LMT) outperforms the best
single classifier of Aragues’s method (SimpleCart) in all seven
performance measures; the difference value of ACC is 11.9%,

SPE is 15.1%, SEN is 9.6%, 𝐹1 is 12.1%, MCC is 24.5%, PPV is
17.4%, and AUC is 12.1%.

From Tables 5 and 6, we can see that, using the CLD
feature only, the best performance in voting is attained when
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Table 2: Performance comparison by voting with the majority sorted by 𝐹1 value.

Classifiers ACC SPE SEN 𝐹1 MCC PPV AUC
TOP: 23 0.774 0.855 0.721 0.786 0.562 0.890 0.787
TOP: 11 0.781 0.829 0.744 0.785 0.569 0.855 0.787
TOP: 13 0.781 0.827 0.746 0.785 0.567 0.851 0.786
TOP: 9 0.783 0.820 0.751 0.784 0.568 0.844 0.786
TOP: 19 0.776 0.841 0.734 0.784 0.566 0.872 0.787
TOP: 21 0.775 0.856 0.723 0.784 0.564 0.889 0.789
TOP: 25 0.775 0.855 0.723 0.784 0.562 0.888 0.789
TOP: 27 0.774 0.847 0.727 0.784 0.562 0.879 0.787
TOP: 17 0.779 0.826 0.742 0.783 0.565 0.852 0.784
TOP: 7 0.780 0.819 0.748 0.782 0.563 0.840 0.784
TOP: 15 0.779 0.824 0.742 0.782 0.564 0.852 0.785
TOP: 29 0.773 0.836 0.730 0.780 0.556 0.867 0.783
TOP: 3 0.777 0.811 0.749 0.779 0.558 0.831 0.780
TOP: 5 0.776 0.811 0.748 0.779 0.556 0.830 0.780
TOP: 31 0.775 0.827 0.738 0.777 0.556 0.853 0.783
TOP: 33 0.774 0.819 0.738 0.776 0.552 0.847 0.778
TOP: 35 0.771 0.811 0.738 0.773 0.545 0.837 0.775
TOP: 37 0.768 0.802 0.739 0.770 0.540 0.826 0.772
TOP: 39 0.768 0.802 0.739 0.770 0.541 0.826 0.771

Table 3: Performance comparison by voting with the majority for five classification types.

Type Classifiers ACC SPE SEN 𝐹1 MCC PPV AUC

Bayes TOP: 3 0.672 0.653 0.695 0.672 0.346 0.609 0.673
TOP: 5 0.599 0.571 0.660 0.614 0.215 0.410 0.614

Functions TOP: 5 0.673 0.653 0.700 0.676 0.349 0.600 0.676
TOP: 3 0.669 0.652 0.692 0.672 0.342 0.606 0.673

Lazy TOP: 3 0.743 0.837 0.688 0.755 0.504 0.883 0.763

Rules

TOP: 5 0.764 0.825 0.721 0.769 0.537 0.856 0.774
TOP: 7 0.764 0.826 0.721 0.769 0.537 0.857 0.774
TOP: 9 0.765 0.817 0.726 0.769 0.534 0.848 0.771
TOP: 3 0.755 0.838 0.705 0.766 0.528 0.877 0.771

Trees

TOP: 11 0.781 0.831 0.744 0.786 0.567 0.859 0.788
TOP: 9 0.780 0.820 0.748 0.783 0.563 0.842 0.785
TOP: 7 0.779 0.816 0.748 0.781 0.561 0.838 0.782
TOP: 3 0.777 0.811 0.749 0.779 0.558 0.831 0.780
TOP: 5 0.776 0.811 0.748 0.779 0.556 0.830 0.780

Table 4: The AUC value of the four features.

Feature AUC Rank
DFS C 0.677 1
CLD 0.651 2
DDI 0.546 3
DFS X 0.526 4

the top 3 algorithms (SimpleCart, REPTree, and FT) are
selected using the CLD feature only, but the performance of

voting with the majority is approximately equal to that of the
individual algorithm. As shown in Table 6 and Figure 6, the
proposed method significantly outperformed Aragues’s in all
seven performancemeasures. FromTables 2 and 6, we can see
that the best voting with the majority of the current method
(top 23) outperforms the best voting with the majority of
Aragues’s method (top 3) in all seven performance measures;
the difference value of ACC is 12.2%, SPE is 20.2%, SEN is
6.9%, 𝐹1 is 13.4%, MCC is 25.8%, PPV is 24.0%, and AUC
is 13.4%. These results suggest that the proposed method is
superior to the competing study.
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Figure 4: The seven performance measures for group voting with the majority.

4. Discussion

In this section, we designed two case studies to demonstrate
the performance of the proposedmethod and showed how to
discover potential cancer proteins, respectively.

4.1. Case Study 1. To investigate the performance of the
proposed method, we retrieved lung cancer protein data
from OMIM and HLungDB databases. Among the 2599
experimentally confirmed lung cancer proteins, there are a
total of 1302 cancer proteins not appearing in our original
training dataset, which could be used as the independent

test dataset. List of the 1302 cancer proteins can be found in
Supplementary File 2. The LWL, VFI, ConjunctiveRule, and
DecisionStump were excluded from Case Study 1 because of
their intrinsically high PPV which may bias the performance
estimation. Consequently, as shown in Table 7, the hit num-
ber and hit ratio denote how many cancer proteins are true
positive events and true positive ratios, respectively. Most
of the algorithms had a hit ratio remarkably consistent over
75%, especially, the Ridor algorithm which achieved 89.4%.
Compared with classifiers with higher ranks in 𝐹1 (Table 1),
the results appear to suggest that classifiers with high PPV
achieve better hit ratios.
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Table 5: Performance comparison for the individual algorithm using the CLD feature sorted by 𝐹1.

Type Algorithm ACC SPE SEN 𝐹1 MCC PPV AUC
Trees SimpleCart 0.653 0.651 0.652 0.653 0.303 0.647 0.653
Trees REPTree 0.650 0.650 0.649 0.650 0.300 0.649 0.650
Trees FT 0.645 0.649 0.641 0.646 0.288 0.658 0.646
Rules DecisionTable 0.642 0.650 0.639 0.644 0.288 0.663 0.644
Rules DTNB 0.642 0.650 0.639 0.644 0.288 0.663 0.644
Trees NBTree 0.643 0.648 0.639 0.644 0.287 0.661 0.644
Bayes BayesNet 0.642 0.647 0.640 0.643 0.286 0.657 0.643
Trees ADTree 0.642 0.644 0.641 0.643 0.283 0.646 0.643
Rules Ridor 0.614 0.659 0.639 0.642 0.257 0.635 0.647
Trees LADTree 0.642 0.648 0.641 0.642 0.287 0.653 0.644
Trees LMT 0.639 0.656 0.625 0.640 0.280 0.693 0.640
Rules PART 0.639 0.655 0.625 0.639 0.278 0.695 0.639
Trees J48 0.639 0.655 0.627 0.639 0.280 0.689 0.641
Trees J48graft 0.639 0.655 0.627 0.639 0.280 0.689 0.641
Rules Jrip 0.637 0.639 0.638 0.638 0.277 0.634 0.638
Rules OneR 0.635 0.629 0.641 0.635 0.269 0.610 0.634
Functions VotedPerceptron 0.611 0.579 0.697 0.632 0.248 0.392 0.638
Lazy LWL 0.612 0.582 0.683 0.629 0.246 0.431 0.632
Trees DecisionStump 0.612 0.582 0.684 0.629 0.246 0.428 0.632
Rules ConjunctiveRule 0.613 0.583 0.681 0.628 0.245 0.437 0.631
Bayes NaiveBayes 0.619 0.595 0.656 0.623 0.242 0.496 0.627
Bayes NaiveBayesSimple 0.619 0.595 0.656 0.623 0.242 0.496 0.627
Bayes NaiveBayesUpdateable 0.619 0.595 0.656 0.623 0.242 0.496 0.627
Trees RandomForest 0.623 0.616 0.631 0.623 0.247 0.591 0.624
Lazy Ibk 0.622 0.613 0.632 0.622 0.242 0.586 0.622
Trees RandomTree 0.622 0.613 0.632 0.622 0.242 0.586 0.622
Bayes BayesianLogisticRegression 0.621 0.612 0.630 0.621 0.240 0.583 0.621
Functions Logistic 0.621 0.612 0.631 0.621 0.241 0.582 0.621
Functions SimpleLogistic 0.621 0.612 0.633 0.621 0.241 0.578 0.621
Functions SMO 0.619 0.607 0.640 0.621 0.245 0.549 0.622
Lazy Kstar 0.619 0.606 0.640 0.620 0.242 0.547 0.623
Functions MultilayerPerceptron 0.618 0.598 0.649 0.620 0.242 0.518 0.621
Functions RBFNetwork 0.618 0.598 0.647 0.620 0.240 0.517 0.620
Lazy IB1 0.594 0.564 0.683 0.619 0.214 0.351 0.624
Rules Nnge 0.544 0.601 0.529 0.562 0.106 0.832 0.564
Misc HyperPipes 0.510 0.510 0.510 0.510 0.010 0.510 0.510
Rules ZeroR 0.510 0.510 0.510 0.510 0.010 0.510 0.510
Bayes NaiveBayesMultinomial 0.500 0.561 0.447 0.480 −0.008 0.489 0.569
Misc VFI 0.500 NA 0.500 NA NA 1.000 NA

4.2. Case Study 2. It is known that interacting proteins are
often coexpressed; one can identify differentially expressed
genes (DEGs) among a large number of gene expressions and
understand themechanism of lung cancer formation induced
by these DEGs [38]. We further explored the potential cancer

genes fromDEGs inmicroarray data. Four sets of lung cancer
microarray data were downloaded from the GEO database
[39] and summarized in Table 8. Experiments GSE7670 [40]
andGSE10072 [41] use theHG-U133A array, whereGSE19804
[42] and GSE27262 [43] use HG-U133 plus 2.0 chip.
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Figure 5: The performance comparison of the individual algorithm for Aragues (blue) and the proposed method (red).

The tested DEGs are collected from the intersection set
of the above four microarray datasets. Among the 1345
common DEGs in the four microarray datasets, 360 DEGs
were excluded because of their appearance in the original
training set; another 209 DEGs are also removed due to their
lacking of domain data or PPI data.The remaining 776 DEGs
serve as input data.

Five classifiers, including the top three classifiers accord-
ing to the 𝐹1measure, LMT, SimpleCart, and J48 algorithms,
as well as the top one classifier according to PPV measure,
LWL algorithm, along with the top one classifier according
to Case Study 1, Ridor algorithm, were selected for evaluating
potential cancer genes under strictly uniformed voting; that
is, only the one with five votes which all five classifiers
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Table 6: Performance comparison by voting with the majority using the CLD feature sorted by 𝐹1.

Classifiers ACC SPE SEN 𝐹1 MCC PPV AUC
TOP: 3 0.652 0.653 0.652 0.652 0.304 0.650 0.653
TOP: 27 0.648 0.646 0.650 0.648 0.296 0.643 0.648
TOP: 17 0.646 0.653 0.639 0.647 0.291 0.671 0.647
TOP: 25 0.646 0.647 0.648 0.647 0.296 0.643 0.648
TOP: 5 0.646 0.651 0.639 0.646 0.293 0.666 0.646
TOP: 15 0.645 0.654 0.638 0.646 0.291 0.674 0.646
TOP: 19 0.643 0.651 0.640 0.646 0.289 0.663 0.645
TOP: 23 0.644 0.648 0.645 0.646 0.294 0.648 0.647
TOP: 29 0.646 0.645 0.648 0.646 0.292 0.641 0.647
TOP: 13 0.644 0.653 0.639 0.645 0.291 0.669 0.646
TOP: 31 0.644 0.642 0.648 0.645 0.292 0.634 0.644
TOP: 7 0.643 0.650 0.639 0.644 0.288 0.663 0.644
TOP: 9 0.643 0.650 0.639 0.644 0.290 0.662 0.644
TOP: 11 0.644 0.651 0.639 0.644 0.290 0.665 0.644
TOP: 21 0.642 0.649 0.642 0.644 0.289 0.659 0.645
TOP: 39 0.644 0.638 0.648 0.644 0.288 0.627 0.644
TOP: 37 0.642 0.635 0.649 0.643 0.285 0.620 0.644
TOP: 35 0.641 0.635 0.648 0.642 0.286 0.619 0.642
TOP: 33 0.641 0.635 0.648 0.641 0.285 0.620 0.642

predict as a cancer protein was considered. Among the 776
DEGs, a total of 565 DEGs (72.8%, a higher value can be
obtained if we relax the strictly uniformed requirement)
were evaluated as potential cancer genes. The complete 565
potential cancer genes derived from the second case study are
listed in Supplementary File 3.

To validate our findings, we conducted a study of the
literature by randomly selecting five genes (DBF4, MCM2,
ID3, EXOSC4, and CDKN3) from the 565 potential cancer
genes. The results indicated that while EXOSC4 remains
unclear, the others are in agreement with our predictions.
Barkley proposed that miR-29a targets the 3-UTR of DBF4
mRNA in lung cancer cells [44] and Bonte stated that
most cell lines with increased Cdc7 protein levels also had
increased DBF4 abundance, and some tumor cell lines had
extra copies of the DBF4 gene [45]. Alexandrow noted that
Stat3-P and the proliferative markers MCM2 were expressed
in mice lung tissues in vivo [46]. Yang et al. observed that
patientswith higher levels ofMCM2and gelsolin experienced
shorter survival time than patients with low levels of MCM2
and gelsolin [47]. Langenfeld et al. [48] indicated that Oct4
cells give rise to lung cancer cells expressing nestin and/or
NeuN, and BMP signaling is an important regulator of ID1
and ID3 in both Oct4 and nestin cell populations. Tang
claimed that CDKN3 has significant biological implications
in tumor pathogenesis [49]. In [50], a metasignature was
identified in eight separate microarray analyses spanning
seven types of cancer including lung adenocarcinoma, and
these included many genes associated with cell proliferation,
and CDKN3 is among them.

Given a single protein as testing data, we can first treat
this protein as 𝑋. If both PPIs and domains information are
available, one can then apply the present method to classify
the interaction type “𝐶-𝑋”.

Any “𝐶-𝑋” type is classified as “𝐶-𝐶”, and then there
are two possible explanations for this: (i) the classifier is not
completely specific; therefore, one has FP prediction, and
(ii) prediction is a TP event. If one can exclude the first
explanation option, then the present calculation provides a
potential way to assign 𝑋 as 𝐶; in other words, it provides a
feasible solution for predicting cancer proteins.

If the PPI information is missing, given the FASTA
sequence information, one can make use of the STRING
database [51]. STRING is a database that provides known and
predicted PPI derived from four sources: genomic context,
high-throughput experiments, conserved coexpression, and
published literature. On domain prediction, one can carry out
the analysis by using the online tool “SEQUENCE SEARCH”
under PFam [34] to find matching domains. Then, given the
PPIs and domains information, one can conduct the same
analysis as described in the last paragraph; otherwise, one is
facing a difficult task, which requires further discussion or
work.

5. Conclusion

Identifying cancer protein is a critical issue in treating
cancer; however, identifying cancer protein experimentally
is extremely time consuming and labor-intensive. Alternative
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Figure 6: The performance comparison of the voting with the majority for Aragues (blue) and the proposed method (red).

methods must be developed to discover cancer proteins. We
have integrated several proteomic data sources to develop a
model for predicting cancer protein-cancer protein interac-
tions on a global scale based on domain-domain interactions,
weighted domain frequency score, and cancer linker degree.
A one-to-one interaction model was introduced to quantify
the likelihood of cancer-specific DDI. The weighted DFS is
adopted to measure the propensity of domain occurrence in
cancer and noncancer proteins. Finally, the CLD is defined to
gauge cancer and noncancer proteins’ interaction partners.
As a result, voting with a majority system achieved ACC
(0.774), SPE (0.855), SEN (0.721), 𝐹1 (0.786), MCC (0.562),
PPV (0.890), and AUC (0.787) when the top 23 algorithms
were selected, which is better than the best single classifier
(LMT) in six performance measures except SEN.

We compared our performance with the previous work
[4]. It was shown that the present approach outperformed

Aragues’s in all seven performance measures in both indi-
vidual algorithm and combining algorithms. Effectiveness
of the current research is further evaluated by two inde-
pendent datasets; experimental results demonstrated that
the proposed method can identify cancer proteins with
high hit ratios. The current research not only significantly
improves the prediction performance of cancer proteins, but
also discovered some potential cancer proteins for future
experimental investigation. It is anticipated that the current
research could provide some insight into diseasemechanisms
and diagnosis.
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Table 7: Performance evaluation for OMIM and HLungDB data-
sets.

Type Algorithm Hit
number

Hit
ratio

Rules Ridor 1164 0.894
Rules ZeroR 1159 0.890
Trees ADTree 1119 0.859
Misc HyperPipes 1115 0.856
Functions MultilayerPerceptron 1076 0.826
Trees LADTree 1061 0.815
Rules OneR 1047 0.804
Lazy IB1 1023 0.786
Lazy IBk 1023 0.786
Bayes BayesNet 1020 0.783
Rules PART 1019 0.783
Trees J48graft 1018 0.782
Trees J48 1017 0.781
Rules DecisionTable 1011 0.776
Trees FT 1004 0.771
Lazy KStar 999 0.767
Bayes BayesianLogisticRegression 998 0.767
Trees NBTree 995 0.764
Rules DTNB 991 0.761
Trees RandomTree 988 0.759
Trees LMT 983 0.755
Trees REPTree 975 0.749
Trees SimpleCart 973 0.747
Trees RandomForest 973 0.747
Rules JRip 966 0.742
Functions Logistic 964 0.740
Functions SimpleLogistic 964 0.740
Functions SMO 944 0.725
Functions RBFNetwork 925 0.710
Functions VotedPerceptron 844 0.648
Bayes NaiveBayesSimple 827 0.635
Bayes NaiveBayes 826 0.634
Bayes NaiveBayesUpdateable 826 0.634
Bayes NaiveBayesMultinomial 796 0.611
Rules NNge 94 0.072
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