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Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rota-
virus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics,
although recent observational studies have challenged the universality of this pattern. While
numerous studies have examined the association between environmental factors and rotavirus
incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of
rotavirus transmission dynamics to published age distributions of cases from 15 countries,
we obtain estimates of local transmission rates. Model-predicted patterns of seasonal inci-
dence based solely on differences in birth rates and transmission rates are significantly
correlated with those observed (Spearman’s r ¼ 0.65, p , 0.05). We then examine seasonal
patterns of rotavirus predicted across a range of different birth rates and transmission
rates and explore how vaccination may impact these patterns. Our results suggest that the
relative lack of rotavirus seasonality observed in many tropical countries may be due to
the high birth rates and transmission rates typical of developing countries rather than
being driven primarily by environmental conditions. While vaccination is expected to
decrease the overall burden of disease, it may increase the degree of seasonal variation in
the incidence of rotavirus in some settings.
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1. INTRODUCTION

Rotavirus is one of the leading causes of severe diar-
rhoea in children in both developed and developing
countries, and is estimated to cause over half a million
deaths worldwide with much of this mortality burden
concentrated in developing countries [1,2]. Two separ-
ate vaccines against rotavirus have been recently
developed and licensed in many countries throughout
the world. Early observations of vaccine impact in the
USA, Australia and several countries in Latin America
and Europe have highlighted the enormous promise
such vaccines hold for preventing rotavirus-associated
diarrhoea [3]. Clinical trials have estimated that vaccine
recipients benefit from a 49–98% reduction in the risk of
severe rotavirus diarrhoea depending on the setting, with
lower efficacy being observed in low-income regions
of Africa and Asia [4–10]. However, predicting the
population-level impact of vaccination and the impor-
tance of herd immunity requires an understanding of
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the dynamics of infection. This can be achieved through
mathematical modelling studies rooted in biological and
epidemiological data [11–16].

The spatio-temporal patterning of disease can
provide important insight into the underlying transmis-
sion dynamics of infections. Using a mathematical
model for the transmission dynamics of rotavirus, we
have previously shown that the apparent travelling
wave of rotavirus infection in the USA from southwest
to northeast may be due to underlying geographical
variability in birth rates [13]. This pattern is no
longer apparent in the post-vaccination era, suggesting
that susceptible recruitment rather than environmen-
tal factors plays a key role in determining the timing
of rotavirus activity in the US [17]. The model can
also explain the much diminished and delayed peak in
rotavirus activity observed during the 2007–2008
season following the licensing of the RotaTeq vaccine
in the US in 2006, providing an important source of
model validation [13,18,19]. Furthermore, the model
allows quantification of the relative importance of
direct and indirect (herd immunity) protection, which
is essential in determining the long-term impact of
This journal is q 2011 The Royal Society
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vaccination [13]. However, these results are not directly
applicable to the situation of developing countries. Rou-
tine immunization against rotavirus has only been
introduced in developed countries, South Africa, and
a handful of developing countries in Latin America
thus far. While the majority of rotavirus deaths occur
in the poorest nations, the impact of vaccination in
such settings remains unclear.

There are several reasons why the dynamics of rota-
virus infection may differ in developing countries
compared with developed countries. Many developing
countries are located in the tropics where traditionally
rotavirus activity has been thought to lack seasonality,
leading to high levels of year-round disease transmission
[20]. However, recent country-level assessments of rota-
virus epidemiology conducted in anticipation of
rotavirus vaccination programmes suggest that this pat-
tern may not be as universal as previously thought.
Rotavirus tends to be more common in cooler, drier
months in most settings, but seasonal peaks have
been noted to occur year-round in different countries
[21–23], and can vary over time in the same country
[24]. Attempts to relate these patterns to climatic vari-
ables such as temperature, humidity and rainfall have
led to conflicting results; it is possible the effect of
certain climatic variables is context specific [25–28].

Birth rates have been shown to be an important
driver of the dynamics of rotavirus in the US [13], and
are likely influential in developing countries as well.
Birth rates are often considerably higher in developing
countries compared with developed countries, ranging
as high as 45–50 live births per 1000 persons in parts
of Asia and sub-Saharan Africa, compared with 8–20
per 1000 in developed countries [29]. Crowding and
poor sanitation are also expected to increase rates of
rotavirus transmission [30,31]. While temperature and
humidity tend to exhibit less seasonal variation in
developing countries in the tropics, other factors such
as precipitation, population movements and birth
rates may be more seasonally variable in such settings
[32,33]. Our best-fit model to rotavirus hospitalization
and laboratory data in the USA indicated that small
seasonal changes in the transmission rate (approx. 5%
seasonal amplitude) could explain the highly seasonal
pattern of outbreaks [13]. Natural oscillations resulting
from the replenishment of susceptible individuals
through new births and/or waning of immunity—a
phenomenon known as dynamical resonance—may be
a key factor in explaining the seasonality of rotavirus,
as in other diseases [34,35]. Overall, the environmental
and demographic factors driving seasonality in rota-
virus transmission have yet to be fully elucidated
and quantified.

Here, we used a combination of mathematical models
for rotavirus transmission and empirical data to exam-
ine how seasonal patterns of disease incidence vary
with birth rates and mean transmission rates indepen-
dent of variations in environmental factors. We tested
the hypothesis that dynamic resonance can explain
some or all of the observed geographical variation in
rotavirus seasonality. By fitting our model of rotavirus
transmission to the age distribution of rotavirus-associ-
ated diarrhoea cases from a variety of countries, we
J. R. Soc. Interface (2011)
obtained estimates of mean transmission rates in these
settings and validated predictions of rotavirus season-
ality against observed data. We then explored how
vaccination may impact seasonal patterns of rota-
virus incidence if existing vaccines are introduced in
more countries.
2. METHODS

2.1. Epidemiological data

To obtain estimates of mean rotavirus transmission
rates in different settings, we fit our model to published
age distributions of rotavirus cases less than 5 years of
age (an age range in which approx. 95% of reported
cases occur) from 15 countries representing eight
regions of the world [11,13,36–48]. To identify rotavirus
surveillance studies which included a description of the
seasonal pattern and age distribution of cases, we con-
ducted a literature search using Web of Science. We
limited our analysis to those studies that were published
between 2005 and 2010 and reported the number of
confirmed rotavirus diarrhoea cases by month (or
number of tests and per cent of tests positive for rota-
virus) over a period of at least 2 years, or for which
such data were available from other sources [49–51].
We also required that the studies included data on
either numbers or proportions of rotavirus-positive
cases of acute gastroenteritis by age, with at least six
month age resolution less than 1 year of age and 1
year age resolution up to 5 years of age. We used
DIGITIZEIT software (Bormann; www.digitizeit.de) to
extract data from figures when the data were not avail-
able from tables. The quality and nature of rotavirus
surveillance varies from country to country and across
time; some studies tracked only hospitalized rotavirus
cases, while others sampled both inpatient and outpati-
ent populations. By examining the proportion of cases
in each age class, we can control for differences in
surveillance, provided biases in reporting are not related
to the age of cases.

We obtained birth rate data from the World Popu-
lation Prospects database [29] and assumed the birth
rate in each country was constant over time and equal
to the mean crude birth rate (CBR) for the 5 year
periods prior to and including the study period. The
background mortality rate was assumed to be equal to
the birth rate and independent of age, so that the
total population size remained constant. We ignored
disease-induced mortality, which will not affect our
estimates of the transmission rate provided mortality
does not significantly shorten the infectious period.
2.2. Transmission model

Details of our age-structured model for the transmission
dynamics of rotavirus are presented in the electronic
supplementary material and have been described pre-
viously [13]. In short, we assume that susceptible
individuals are infected, recover and are temporarily
immune, then become susceptible again, with reduced
susceptibility to infection and disease following one or
more previous infections. We assume that only primary

http://www.digitizeit.de


Table 1. Summary of model parameters and seasonal patterns for 15 countries.

country (reference(s)) study years
CBR (live
births per 1000)

estimated R0

(95% CI)
estimated seasonality,
% (rank)

observed
seasonality, % (rank)

inpatient studies
Australia [43,50,51] 1997–2007 13.4 53.9 (52.2, 55.6) 54 (10) 104 (10)
Taiwan [48] 2005–2007 12.0 23.3 (20.4, 26.2) 140 (14) 102 (9)
USA [13] 1998–2004 14.8 45.3 (44.8, 45.8) 73 (12) 179 (13)
China [40] 2003–2007 13.7 88.1 (83.4, 93.4) 20 (4) 98 (7)
Nepal [46] 2005–2007 27.9 51.3 (43.2, 61.9) 25 (5) 100 (8)
Uzbekistan [41] 2005–2006 21.0 46.7 (42.4, 51.5) 40 (8) 63 (5)
Hong Kong SAR [44] 2001–2003 8.4 52.1 (48.7, 55.4) 145 (15) 132 (11)
Cambodia [45] 2005–2007 25.4 68.5 (62.0, 76.1) 16 (3) 46 (4)
Fiji [42] 2006–2007 22.1 46.2 (36.8, 58.6) 39 (7) 178 (12)
Lao PDR [36] 2005–2007 28.4 34.3 (30.4, 38.8) 49 (9) 241 (15)

outpatient and inpatient studies
England and Wales [11,49] 1999–2009 12.0 54.4 (54.0, 54.8) 61 (11) 182 (14)
Bangladesh [47] 1993–2004 30.9 72.2 (68.4, 76.4) 11 (2) 42 (2)
Malawi [39] 1997–2007 45.1 191 (137, 313) 2 (1) 15 (1)
Nigeria [37] 2002–2004 42.7 37.0 (27.5, 51.9) 26 (6) 46 (3)
Philippines [38] 2005–2006 25.7 27.9 (24.4, 31.6) 110 (13) 94 (6)
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and secondary infections result in severe diarrhoea
which is subsequently reported. After that, we assume
individuals only experience asymptomatic (or mildly
symptomatic) infections that are less infectious and
not reported. After examining the age distributions of
cases from different countries, we modified the model
to more accurately capture the nature of maternal
immunity (and/or limited exposure to rotavirus
during the first 6 months of life due to social/behaviour-
al factors). Maternal immunity appeared to be stronger
than previously assumed, as indicated by a relative
dearth of cases in the zero to five months age group,
particularly in the lowest income countries. Thus, we
split the maternal immunity compartment into six sep-
arate compartments and estimated a common duration
of time spent in each compartment by fitting the model
to the mean age distribution of cases from all countries
combined (see the electronic supplementary material).

The rotavirus transmission rate was assumed to vary
sinusiodally with a period of 1 year as follows: b(t) ¼
b0(1 þ a cos(2p(t 2 w))), where, b0 is the baseline
transmission rate, a is the amplitude of seasonality and
w is a seasonal offset parameter. Mixing was assumed
to be homogeneous, such that b0 was the same for all
age groups. We examined the sensitivity of our results
to this assumption in the electronic supplementary
material. The sinusoidal variation in the transmission
rate is presumably related to environmental factors
that could influence rotavirus transmission, such as the
effect of temperature or humidity on virus survival or
increased population crowding during cold or rainy
months. However, the factors influencing this have yet
to be fully elucidated. We varied the birth rate and base-
line transmission rate while holding the amplitude of
seasonal variation in the transmission rate, a, constant
at 5 per cent, a level similar to that estimated for the
USA. This allowed us to examine seasonality in the inci-
dence of severe rotavirus diarrhoea predicted by the
model independent of environmental factors. Other
dynamic models for rotavirus have estimated the
J. R. Soc. Interface (2011)
amplitude of seasonal variation in the transmission
rate to be similar albeit slightly higher in England and
Wales (a ¼ 9.2%) [11] and Kyrgyzstan (a ¼ 7.9%) [12].
If seasonal variation in the transmission rate is tied to
factors such as temperature and humidity, however, it
might be expected to exhibit lower amplitude in the tro-
pics. We conducted sensitivity analyses with a ¼ 2.5 and
10%, and examined the effect of modelling seasonal vari-
ation in the transmission rate using a step function (see
the electronic supplementary material).

The degree of seasonal fluctuation in incidence (s)
predicted by the model was measured as:

s ¼ xmax � �x
�x

� �
� 100%;

where xmax is the peak number and �x is the mean
number of clinical rotavirus cases per week (in all age
groups) over a 2 year period, to account for the possible
occurrence of biennial epidemics. To quantify the
observed seasonality, we first aggregated the data by
month of the year then compared the mean rotavirus
incidence in the three months surrounding the peak to
the mean incidence for the entire 12 month period to
limit the influence of stochastic variation in the
number of rotavirus cases.

We calculated the basic reproductive number of
primary infections, R0, and used it as a measure of
transmissibility (see the electronic supplementary
material). We first examined the dynamics of rotavirus
epidemics predicted by the model at the observed birth
rate and estimated R0 for each of the 15 countries, then
across CBRs ranging from five to 50 live births per 1000
and R0 ranging from 20 to 100, consistent with most of
the estimated global variation in these parameters
(table 1).

2.3. Impact of vaccination

We then examined the impact of vaccination on pat-
terns of rotavirus disease incidence predicted by the
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Figure 1. Fit of the model to age distributions of cases from 15 countries. The observed proportion of reported cases in the zero to five
month, six to 11 month, 1, 2, 3 and 4 year old age groups are represented by the black bars, while thewhite bars are those predicted by
the model. Developed countries are in the top line, while developing countries are in the bottom two lines. Within these groups,
countries are ordered by distance from the equator (greatest to least); temperate countries are in the shaded region.
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model. Vaccination was assumed to confer protection
comparable to that of primary infection, as in our
previous model [13], resulting in an 80 per cent
reduction in the risk of severe diarrhoea in previou-
sly uninfected infants. Vaccine efficacy was not an
input parameter, but this level of protection is similar
to that estimated during Rotarix trials in Latin
America [5]. Vaccine efficacy estimates in developing
countries of Asia and Africa, however, have been
lower [4,6,10]; this can be considered equivalent to a
lower effective coverage level in our model. We
examined the impact of vaccination at coverage levels
of 50, 70 and 90 per cent on the mean and peak
incidence of severe diarrhoea during a 2 year period
beginning 5 years after the introduction of the
vaccine across the full range of birth rates and
transmission rates.

Finally, we examined model predictions regarding
the proportion of infants infected prior to four months
of age across the full range of birth rates and trans-
mission rates and how this was impacted by
vaccination. One possible explanation for the reduced
efficacy of rotavirus vaccination in recent trials con-
ducted in developing countries is the high rate of
exposure to circulating virus in the placebo group
prior to enrolment combined with limited immuno-
genicity of the vaccine in previously infected infants
[6]. If vaccination mimics natural infection but does
not provide any added benefit beyond the immunity
generated by a primary rotavirus infection, or if
recent infection interferes with vaccine-induced immu-
nity, then it is possible that the observed vaccine
effectiveness may be reduced in relation to the
J. R. Soc. Interface (2011)
proportion of infants infected prior to the age of vaccine
administration.
3. RESULTS

Fitting of the model to age distributions of cases from
15 countries yielded estimates of R0 ranging from 23.3
to 191 (table 1). Estimates of R0 were typically lower
for more developed countries than they were for devel-
oping countries, where a high proportion of cases
occurred in infants less than 1 year of age (figure 1).
The degree of seasonal fluctuation in incidence observed
was similar to that predicted by the model, although
the magnitude of seasonal fluctuation was greater in
the observed data than in the model predictions
(table 1); this is not unexpected given that the stochas-
ticity in the data will clearly affect this measure. If we
increased the amplitude of seasonal forcing in the
model to 10 per cent, we could better capture the
observed magnitude of seasonal variation in most cases
(see the electronic supplementary material, figure S3).
Regardless of the amplitude of seasonal forcing, the
observed and predicted seasonality ranks were signifi-
cantly correlated (Spearman’s correlation: r ¼ 0.65,
p , 0.05; table 1).

The degree of seasonal fluctuation in the incidence of
severe rotavirus diarrhoea predicted by the model
varied substantially depending on both the birth rate
and transmission rate (figure 2 contour map). Seasonal-
ity, independent of the degree of seasonal forcing,
was greatest for combinations of low-to-intermediate
birth rates and low-to-intermediate transmission rates.
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A region of strong seasonality was also noted when both
birth rates and transmission rates were very low
(CBR , 10 live births per 1000 and R0 , 30); further
exploration revealed that epidemics occurred biennially
in this parameter region. When birth rates and trans-
mission rates were high (e.g. CBR . 30 live births per
1000 and R0 . 50), the degree of seasonal fluctuation
in incidence was predicted to be low (less than 25%).
The parameter regions of strong seasonality varied
only slightly with the strength of seasonal forcing (a)
and were not sensitive to the functional form (sinusoi-
dal or step), while the degree of seasonal fluctuation
in incidence varied proportionally with a, as expected
(see the electronic supplementary material).

Since vaccination roughly equates to a decline in the
birth rate by reducing the recruitment of fully suscep-
tible individuals and a reduction in the transmission
rate by preventing the most infectious primary cases,
we might predict from figure 2 that vaccination could
increase the seasonality of epidemics under certain cir-
cumstances. Vaccination led to a decrease in the
average annual incidence of severe diarrhoea predicted
by the model that was comparable across all birth
rates and transmission rates we explored. Under most
circumstances, vaccination was also expected to
decrease the peak incidence of severe diarrhoea in a
typical post-vaccination year (figure 3). However, for
certain combinations of birth rates and transmission
rates, vaccination could indeed lead to an increase in
the peak incidence of severe diarrhoea occurring at cer-
tain times of the year as the dynamics transitioned to a
pattern of more seasonal epidemic disease or biennial
epidemics. This is illustrated for the case of a country
with an intermediate birth rate (CBR ¼ 20 live births
per 1000) and transmission rate (R0 ¼ 35) with a vaccine
coverage of 50 per cent (figure 3b). As vaccine coverage
increased, the relative peak incidence tended to decrease
across all combinations of birth rates and transmission
rates, but countries with higher birth rates and/or trans-
mission rates became more at risk for increased peak
J. R. Soc. Interface (2011)
seasonal incidence (figure 3a). Furthermore, there may
be a transition period soon after vaccine introduction
in which seasonal incidence is more pronounced.

Those countries most at risk for increased peak
incidence following the introduction of rotavirus vacci-
nation are ones with intermediate birth rates and
transmission rates. Given our estimates of R0 for the
representative countries with published age distribu-
tions, this may include countries such as Uzbekistan.
Countries such as Cambodia and Nepal with slightly
higher birth rates and transmission rates could experi-
ence similar phenomena as vaccine coverage levels
reach 90 per cent or more, with a vaccine efficacy of
80 per cent. However, it may be difficult to achieve
this level of effective coverage if the vaccine is less
efficacious in such settings.

The proportion of infants infected prior to four
months of age also showed a strong dependence on
both the birth rate and the transmission rate (figure 4).
At high birth rates and transmission rates, up to 12 per
cent of infants may be infected with rotavirus prior to
four months of age, which is the recommended age at
which the second dose of rotavirus vaccine is adminis-
tered in most developed countries (figure 4a). Thus,
vaccination may not have as great an impact initially
in such settings if vaccination is not as effective in
previously infected infants. However, vaccination is
expected to lead to a decrease in the force of infection
(i.e. incidence rate per susceptible individual) and thus
a delay in the time to infection, such that the proportion
of infants infected prior to 4 months of age decreased sub-
stantially at high levels of vaccine coverage (figure 4b).
This could lead to an increase in vaccine impact over
time under these assumptions.
4. DISCUSSION

Much of the promise of rotavirus vaccines lies in their
ability to reduce the incidence of severe disease in
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developing countries, where diarrhoea is still a major
cause of both morbidity and mortality [1,2]. Determin-
ing how the potential impact of vaccination may vary
between developed versus developing countries requires
an understanding of how the transmission dynamics
of rotavirus differ in these settings. Birth rates have
been shown to be an important determinant of the
J. R. Soc. Interface (2011)
spatio-temporal pattern of rotavirus epidemics in the
USA [13], and may also help explain why rotavirus
tends to be less seasonal in developing countries,
which often exhibit high birth rates and high trans-
mission rates. Using a mathematical model fitted to
epidemiological data from 15 countries, we show that
geographical differences in birth and transmission
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rates can partially explain the observed variation in
rotavirus seasonality. Our model also suggests that
vaccination could have the unexpected consequence
of increasing the seasonality of rotavirus disease in
countries with intermediate-to-high birth rates and/or
transmission rates while still reducing the mean
annual incidence of disease.

While the combination of birth rates and trans-
mission rates are likely important determinants of the
magnitude of seasonal variation and can affect small
differences in the timing of epidemics, these factors do
not explain why rotavirus tends to occur more fre-
quently during the cool, dry season in both temperate
and tropical regions [20,22,23]. Environmental factors
such as temperature and/or humidity probably play a
role in organizing the peak of rotavirus transmission
to times when conditions are most favourable to virus
survivability and transmission [25–28]. However, even
small seasonal differences in the transmission rate can
resonate with the epidemic clockwork to produce large
seasonal epidemics evident in some countries. It should
be noted that these large seasonal epidemics are not
confined to temperate regions of the world, as previou-
sly thought [20]. Pronounced seasonality has been
observed in subtropical and tropical countries, such as
Hong Kong and Taiwan (since 2005) [44,48], as well as
regions of Venezuela and Brazil [52,53]. By contrast,
temperate countries such as Uzbekistan exhibit only
weak seasonal variation in rotavirus incidence [41]. The
combination of lower birth rates and/or lower trans-
mission rates may help in explaining why rotavirus
tends to be moderately to strongly seasonal in countries
such as Hong Kong and the Lao PDR, but is only
weakly seasonal in neighbouring Cambodia (table 1
and electronic supplementary material, figure S1)
[36,44,45]. Our results also indicate that infection tends
to occur at an earlier age when birth rates and trans-
mission rates are high. Thus, the observed association
between year-round circulation of rotavirus and a
lower average age of cases may be confounded by the
common causes of high birth rates and/or transmission
rates rather than being indicative of a causal relationship
between seasonality and age of infection [53,54].

The effect of vaccination is dynamically similar to a
reduction in the birth rate since the number of fully sus-
ceptible infants entering the population is decreased
and a reduction in the transmission rate since it pre-
vents the most infectious primary cases [13]. This
helps explain why epidemics occurred later and with
lower amplitude following the introduction of rotavirus
vaccination in countries such as the USA and Mexico
[18,19,55], since vaccination led to a delay in the
build-up of a sufficient number of susceptible infants
and highly infectious primary cases to set off an epi-
demic. Our model suggests vaccination may alter the
dynamics of rotavirus in countries with intermediate
birth rates and transmission rates, leading to a pattern
of more seasonal epidemic disease. While the overall
annual incidence of rotavirus diarrhoea is expected to
decrease, peak seasonal incidence of rotavirus could
actually increase in such settings. It is important to
anticipate these changes in the dynamics, particularly
if hospitals are not equipped to handle the increased
J. R. Soc. Interface (2011)
number of diarrhoea admissions at the peak of the
epidemic. This could also impact cost-effectiveness ana-
lyses, since the cost of hospitalization may increase, for
example, if there is a shortage of beds. Finally, it will be
important to evaluate the success of rotavirus vacci-
nation in terms of the reduction in annual morbidity
and mortality measures rather than comparing monthly
indicators to their pre-vaccination levels. The occur-
rence of epidemics following the introduction of
rotavirus vaccination to a country should not be con-
sidered indicative of vaccine failure. To avoid such
effects, countries with intermediate birth rates and
transmission rates most at risk for increased seasonal
incidence may want to ensure that high levels of vaccine
coverage are reached as quickly as possible after vaccine
introduction.

In developing countries with high birth rates and
transmission rates, achieving high coverage with a fully
effective vaccine may not be as feasible. In recent clinical
trials, the efficacy of rotavirus vaccination was lower in
some developing country settings [4,6,10]. There are a
number of possible explanations for this reduced efficacy
related to host and environmental factors, including
higher rates of breastfeeding and higher levels of
transplacental maternal antibodies, co-administration
of oral polio vaccine, interference by other diarrhoeal
pathogens, micronutrient malnutrition and greater
diversity of rotavirus strains in developing countries
[56]. Furthermore, the high transmission rate and year-
round circulation of rotavirus in such settings may lead
to infection prior to enrolment in vaccine trials and/or
the administration of all vaccine doses, as we show here.
This could contribute to lower efficacy estimates if the
effect of vaccination is reduced in previously infected
individuals, although it is unlikely to explain all of the
observed effect. Nevertheless, even moderately effica-
cious vaccines can prevent considerable numbers of
hospitalizations and deaths due to rotavirus in these
high burden settings [4,6,10]. If vaccination is introduced
in such countries at appreciable coverage levels, it is poss-
ible that the observed vaccine effectiveness may actually
increase over time as the force of infection is reduced,
thereby leading to a delay in the time to first infection;
this is an important consequence of the ‘herd immunity’
generated by vaccination. Furthermore, if mothers in
developing countries tend to have higher maternal anti-
body titres as a result of continual boosting by exposure
to rotavirus, then this reduction in the force of infection
may also decrease the neutralizing effect these maternal
antibodies could be having on the vaccine when adminis-
tered to infants.

The fit of our model to the age distribution of cases
in different countries reveals an element of added com-
plexity in the nature of maternal immunity and
protection against rotavirus. The strength and duration
of maternal immunity appear to be greater than pre-
viously assumed in models of rotavirus transmission
[11,13,16]. This is particularly evident in the age distri-
butions of cases from developing countries, where the
greatest proportion of cases occurs in the six to 11
months age group, but the zero to five months age
group is comparatively underrepresented. It is possible
that maternal immunity tends to be long-lasting in
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developing countries compared with developed countries
because of the combination of higher rates and longer dur-
ation of breastfeeding, and possible immune boosting in
mothers resulting from more recent re-infection (and/or
recent infection with a greater diversity of strains).
Further exploration of these differences is warranted as
it could help explain the reduced efficacy of vaccination
in developing countries.

Surveillance studies conducted in anticipation of
rotavirus vaccination have yielded descriptions of the
age distribution and seasonal pattern of rotavirus-
associated diarrhoea in children less than 5 years of age
from a variety of different countries. We used these age
distributions to estimate the transmission rate of rota-
virus in these settings given the birth rate is known; our
estimates range between R0 ¼ 28 and R0 ¼ 191. These
estimates should not be over-interpreted and will prob-
ably be biased in some instances. Other factors are
likely to affect the reported age distribution of rotavirus
cases from which these estimates were derived, such as
differences in treatment-seeking behaviour, the preva-
lence of co-infections which may affect rotavirus testing
rates, mortality patterns and other population demo-
graphics, infant care practices, population mixing, etc.
Furthermore, surveillance methods differed from study
to study. While some studies only tested patients
admitted to the hospital or clinic, others tested both
inpatients and outpatients; there may be differences in
the age distribution and reporting rate of severe rotavirus
cases compared with those with more moderate diar-
rhoea. Greater representation of moderate diarrhoea
cases in older age individuals could lead to underestima-
tion of R0 in studies that included outpatients. The
duration of surveillance also differed among studies,
and the age distribution and seasonality of rotavirus
diarrhoea in a given year may not be indicative of
long-term patterns.

Our modelling assumptions will also affect our esti-
mates of the transmission rate. For example, we
assumed mixing is homogeneous, but other population
mixing assumptions may lead to lower estimates of R0

(see the electronic supplementary material). Also, we
assumed that birth rates and transmission rates were
constant over time when in fact they are likely to have
changed. Our model is in part based on estimates of
natural immunity from infection derived from a
cohort study conducted in Mexico [57]. While other
studies have demonstrated similar findings [58,59], the
strength of natural immunity from previous rotavirus
infections may not be the same in all settings, and in
particular may be weaker in some developing countries.
Furthermore, we assumed that disease severity is
related to the number of previous infections rather
than the age of infected individuals; it is very difficult
to disentangle these two highly correlated effects. If
rotavirus infections tend to be less severe in older chil-
dren independent of the number of previous infections,
then we may be overestimating the transmission rate
in some settings, as well as underestimating the
impact of vaccination [13].

Nevertheless, the estimates of the transmission rate
which we derive are useful in that they allow us to com-
pare patterns of rotavirus seasonality predicted by the
J. R. Soc. Interface (2011)
model for different settings using very limited data.
More reliable estimates of the transmission rate, as
well as estimates of seasonal variation in the trans-
mission rate and underreporting factors, can and
should be obtained by fitting models to age-stratified
time series of rotavirus cases from specific settings.
Anticipating the country-specific impact of vaccination
requires an understanding of how vaccine effectiveness
and the transmission dynamics of rotavirus may vary
among settings and over time.

Determining how and why seasonal patterns of rota-
virus-associated diarrhoea differ between developed and
developing countries is an important element in evalu-
ating how the impact of vaccination observed
presently in the Americas, Australia and Europe may
translate to the context of developing countries [3].
The relationship we describe between birth rates, trans-
mission rates and the degree of seasonal fluctuation in
rotavirus incidence predicted by our model helps to
broaden this understanding. However, other factors
remain unexplained, such as what are the environ-
mental and other sources of seasonal forcing that lead
to rotavirus being more common in the cool, dry
season in most parts of the world? Additionally, why
is a greater diversity of rotavirus strains observed in
developing countries compared with developed
countries, and how will this impact vaccine effective-
ness? Mathematical modelling of the transmission
dynamics of rotavirus may help to address some of
these questions, but further epidemiological and exper-
imental studies are essential in improving our
understanding of these issues and will help to inform
future models for rotavirus dynamics.
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setas, A. & Gomáriz, M. 2000 Incidence, seasonality and
serotypes of rotavirus in Gipuzkoa (Basque Country),
Spain. A 14-year study. Epidemiol. Infect. 125, 677–
683. (doi:10.1017/S0950268800004842)

25 Atchison, C. J., Tam, C. C., Hajat, S., van Pelt, W.,
Cowden, J. M. & Lopman, B. A. 2009 Temperature-depen-
dent transmission of rotavirus in Great Britain and The
Netherlands. Proc. R. Soc. B 277, 933–942. (doi:10.
1098/rspb.2009.1755)

26 D’Souza, R. M., Hall, G. & Becker, N. G. 2008 Climatic
factors associated with hospitalizations for rotavirus diar-
rhoea in children under 5 years of age. Epidemiol. Infect.
136, 56–64. (doi:10.1017/S0950268807008229)

27 Hashizume, M., Armstrong, B., Wagatsuma, Y., Faruque,
A. S., Hayashi, T. & Sack, D. A. 2008 Rotavirus infections
and climate variability in Dhaka, Bangladesh: a time-
series analysis. Epidemiol. Infect. 136, 1281–1289.
(doi:10.1017/S0950268807009776)

28 Purohit, S. G., Kelkar, S. D. & Simha, V. 1998 Time series
analysis of patients with rotavirus diarrhoea in Pune,
India. J. Diarrhoeal. Dis. Res. 16, 74–83.

29 United Nations Population Division. 2009 World Popula-
tion Prospects: the 2008 Revision Population Database.
See http://esa.un.org/unpp/index.asp?panel=2 (accessed
21 June 2010).

30 Hunter, P. R., Zmirou-Navier, D. & Hartemann, P. 2009
Estimating the impact on health of poor reliability of
drinking water interventions in developing countries. Sci.
Total Environ. 407, 2621–2624. (doi:10.1016/j.scitotenv.
2009.01.018)

31 Sethi, D., Cumberland, P., Hudson, M. J., Rodrigues,
L. C., Wheeler, J. G., Roberts, J. A., Tompkins, D. S.,
Cowden, J. M. & Roderick, P. J. 2001 A study of infectious
intestinal disease in England: risk factors associated with
group A rotavirus in children. Epidemiol. Infect. 126,
63–70. (doi:10.1017/S0950268801005088)

32 Brewis, A., Laycock, J. & Huntsman, J. 1996 Birth non-
seasonality on the Pacific equator. Curr. Anthropol. 37,
842–851. (doi:10.1086/204567)

33 Ferrari, M. J., Grais, R. F., Bharti, N., Conlan, A. J.,
Bjornstad, O. N., Wolfson, L. J., Guerin, P. J., Djibo, A. &
Grenfell, B. T. 2008 The dynamics of measles in sub-
Saharan Africa. Nature 451, 679–684. (doi:10.1038/
nature06509)

34 Dushoff, J., Plotkin, J. B., Levin, S. A. & Earn, D. J. 2004
Dynamical resonance can account for seasonality of
influenza epidemics. Proc. Natl Acad. Sci. USA 101,
16 915–16 916. (doi:10.1073/pnas.0407293101)

35 Earn, D. J., Rohani, P., Bolker, B. M. & Grenfell, B. T.
2000 A simple model for complex dynamical transitions
in epidemics. Science 287, 667–670. (doi:10.1126/
science.287.5453.667)

36 Aloun, D. S. et al. 2009 Rotavirus diarrhoea among chil-
dren aged less than 5 years at Mahosot Hospital,
Vientiane, Lao PDR. Vaccine 27(Suppl. 5), F85–F88.
(doi:10.1016/j.vaccine.2009.08.100)

37 Aminu, M., Ahmad, A. A., Umoh, J. U., Dewar, J., Esona,
M. D. & Steele, A. D. 2008 Epidemiology of rotavirus
infection in north-western Nigeria. J. Trop. Pediatr. 54,
340–342. (doi:10.1093/tropej/fmn021)

http://dx.doi.org/10.1016/S0140-6736(08)60524-3
http://dx.doi.org/10.1056/NEJMoa0904797
http://dx.doi.org/10.1056/NEJMoa052434
http://dx.doi.org/10.1056/NEJMoa052434
http://dx.doi.org/10.1016/S0140-6736(07)61744-9
http://dx.doi.org/10.1016/S0140-6736(07)61744-9
http://dx.doi.org/10.1056/NEJMoa052664
http://dx.doi.org/10.1016/S0140-6736(10)60755-6
http://dx.doi.org/10.1016/j.vaccine.2010.02.060
http://dx.doi.org/10.1016/j.vaccine.2010.09.070
http://dx.doi.org/10.1126/science.1172330
http://dx.doi.org/10.1126/science.1172330
http://dx.doi.org/10.1007/s00285-006-0023-0
http://dx.doi.org/10.1007/s00285-006-0023-0
http://dx.doi.org/10.1016/j.vaccine.2009.04.030
http://dx.doi.org/10.1016/j.vaccine.2009.04.030
http://dx.doi.org/10.1017/S0950268809991245
http://dx.doi.org/10.1542/peds.2008-3528
http://dx.doi.org/10.1590/S1020-49892004001200002
http://dx.doi.org/10.1093/ije/dyn260
http://dx.doi.org/10.1017/S0950268800004842
http://dx.doi.org/10.1098/rspb.2009.1755
http://dx.doi.org/10.1098/rspb.2009.1755
http://dx.doi.org/10.1017/S0950268807008229
http://dx.doi.org/10.1017/S0950268807009776
http://esa.un.org/unpp/index.asp?panel=2
http://esa.un.org/unpp/index.asp?panel=2
http://dx.doi.org/10.1016/j.scitotenv.2009.01.018
http://dx.doi.org/10.1016/j.scitotenv.2009.01.018
http://dx.doi.org/10.1017/S0950268801005088
http://dx.doi.org/10.1086/204567
http://dx.doi.org/10.1038/nature06509
http://dx.doi.org/10.1038/nature06509
http://dx.doi.org/10.1073/pnas.0407293101
http://dx.doi.org/10.1126/science.287.5453.667
http://dx.doi.org/10.1126/science.287.5453.667
http://dx.doi.org/10.1016/j.vaccine.2009.08.100
http://dx.doi.org/10.1093/tropej/fmn021


Rotavirus seasonality V. E. Pitzer et al. 1593
38 Carlos, C. C., Inobaya, M. T., Bresee, J. S., Lagrada, M. L.,
Olorosa, A. M., Kirkwood, C. D. & Widdowson, M. A. 2009
The burden of hospitalizations and clinic visits for rotavirus
disease in children aged ,5 years in the Philippines.
J. Infect. Dis. 200(Suppl. 1), S174–S181. (doi:10.1086/
605044)

39 Cunliffe, N. A., Ngwira, B. M., Dove, W., Thindwa, B. D.,
Turner, A. M., Broadhead, R. L., Molyneux, M. E. &
Hart, C. A. 2010 Epidemiology of rotavirus infection in
children in Blantyre, Malawi, 1997–2007. J. Infect. Dis.
Suppl. 202, S168–S174. (doi:10.1086/653577)

40 Duan, Z. J. et al. 2009 Hospital-based surveillance of rota-
virus diarrhea in the People’s Republic of China, August
2003–July 2007. J. Infect. Dis. 200(Suppl. 1), S167–
S173. (doi:10.1086/605039)

41 Flem, E. T., Musabaev, E., Juraev, R., Kerin, T., Gentsch,
J., Glass, R. I. & Bresee, J. S. 2009 Rotavirus gastroenter-
itis in Uzbekistan: implications for vaccine policy in
central Asia. J. Infect. Dis. 200(Suppl. 1), S154–S159.
(doi:10.1086/605032)

42 Jenney, A., Tikoduadua, L., Buadromo, E., Barnes, G.,
Kirkwood, C. D., Boniface, K., Bines, J., Mulholland, K. &
Russell, F. 2009 The burden of hospitalised rotavirus infec-
tions in Fiji. Vaccine 27(Suppl. 5), F108–F111. (doi:10.
1016/j.vaccine.2009.08.071)

43 Kirkwood, C. D., Boniface, K., Bogdanovic-Sakran, N.,
Masendycz, P., Barnes, G. L. & Bishop, R. F. 2009 Rota-
virus strain surveillance—an Australian perspective of
strains causing disease in hospitalised children from 1997
to 2007. Vaccine 27(Suppl. 5), F102–F107. (doi:10.
1016/j.vaccine.2009.08.070)

44 Nelson,E.A. et al. 2005Estimates of rotavirusdisease burden
in Hong Kong: hospital-based surveillance. J. Infect. Dis.
192(Suppl. 1), S71–S79. (doi:10.1086/431492)

45 Nyambat, B., Meng, C. Y., Vansith, K., Vuthy, U.,
Rin, E., Kirkwood, C., Bogdanovic-Sakran, N. & Kilgore,
P. E. 2009 Hospital-based surveillance for rotavirus diar-
rhoea in Phnom Penh, Cambodia, March 2005 through
February 2007. Vaccine 27(Suppl. 5), F81–F84. (doi:10.
1016/j.vaccine.2009.08.085)

46 Sherchand, J. B., Nakagomi, O., Dove, W., Nakagomi, T.,
Yokoo, M., Pandey, B. D., Cuevas, L. E., Hart, C. A. &
Cunliffe, N. A. 2009 Molecular epidemiology of rota-
virus diarrhea among children aged ,5 years in Nepal:
predominance of emergent G12 strains during 2 years.
J. Infect. Dis. 200(Suppl. 1), S182–S187. (doi:10.1086/
605046)

47 Tanaka, G., Faruque, A. S. G., Luby, S. P., Malek, M. A.,
Glass, R. I. & Parashar, U. D. 2007 Deaths from rotavirus
disease in Bangladeshi children: estimates from hospital-
based surveillance. Pediatr. Infect. Dis. J. 26, 1014–
1018. (doi:10.1097/INF.0b013e318125721c)

48 Wu, F. T. et al. 2009 Hospital-based surveillance and
molecular epidemiology of rotavirus infection in Taiwan,
J. R. Soc. Interface (2011)
2005–2007. Vaccine 27(Suppl. 5), F50–F54. (doi:10.
1016/j.vaccine.2009.08.090)

49 Health Protection Agency. 2010 Rotavirus laboratory
reports of all identifications by month England & Wales,
1992–2010. See http://www.hpa.org.uk/Topics/Infectious-
Diseases/InfectionsAZ/Rotavirus/EpidemiologicalData/
rota_ DataEwMonth/ (accessed 31 March 2010).

50 Masendycz, P., Bogdanovic-Sakran, N., Kirkwood, C.,
Bishop, R. & Barnes, G. 2001 Report of the Australian
Rotavirus Surveillance Program, 2000/2001. Commun.
Dis. Intell. 25, 143–146.

51 Masendycz, P., Bogdanovic-Sakran, N., Palombo, E.,
Bishop, R. & Barnes, G. 2000 Annual report of the Rota-
virus Surveillance Programme, 1999/2000. Commun. Dis.
Intell. 24, 195–198.

52 Munford, V. et al. 2009 Rotavirus gastroenteritis in
children in 4 regions in Brazil: a hospital-based surveil-
lance study. J. Infect. Dis. 200(Suppl. 1), S106–S113.
(doi:10.1086/605037)

53 Perez-Schael, I., Gonzalez, R. & Salinas, B. 2009 Severity
and age of rotavirus diarrhea, but not socioeconomic con-
ditions, are associated with rotavirus seasonality in
Venezuela. J. Med. Virol. 81, 562–567. (doi:10.1002/
jmv.21420)

54 Bresee, J. S., Glass, R. I., Ivanoff, B. & Gentsch, J. R. 1999
Current status and future priorities for rotavirus vaccine
development, evaluation and implementation in develop-
ing countries. Vaccine 17, 2207–2222. (doi:10.1016/
S0264-410X(98)00376-4)

55 Richardson, V., Hernandez-Pichardo, J., Quintanar-
Solares, M., Esparza-Aguilar, M., Johnson, B.,
Gomez-Altamirano, C. M., Parashar, U. & Patel, M.
2010 Effect of rotavirus vaccination on death from
childhood diarrhea in Mexico. N. Engl. J. Med. 362,
299–305. (doi:10.1056/NEJMoa0905211)

56 Patel, M., Shane, A. L., Parashar, U. D., Jiang, B.,
Gentsch, J. R. & Glass, R. I. 2009 Oral rotavirus vaccines:
how well will they work where they are needed most?
J. Infect. Dis. 200(Suppl. 1), S39–S48. (doi:10.1086/
605035)

57 Velazquez, F. R. et al. 1996 Rotavirus infections in infants
as protection against subsequent infections. N. Engl. J.
Med. 335, 1022–1028. (doi:10.1056/NEJM19961003
3351404)

58 Fischer, T. K., Valentiner-Branth, P., Steinsland, H.,
Perch, M., Santos, G., Aaby, P., Molbak, K. &
Sommerfelt, H. 2002 Protective immunity after natural
rotavirus infection: a community cohort study of newborn
children in Guinea-Bissau, west Africa. J. Infect. Dis. 186,
593–597. (doi:10.1086/342294)

59 Grinstein, S., Gomez, J. A., Bercovich, J. A. & Biscotti,
E. L. 1989 Epidemiology of rotavirus infection and gastro-
enteritis in prospectively monitored Argentine families
with young children. Am. J. Epidemiol. 130, 300–308.

http://dx.doi.org/10.1086/605044
http://dx.doi.org/10.1086/605044
http://dx.doi.org/10.1086/653577
http://dx.doi.org/10.1086/605039
http://dx.doi.org/10.1086/605032
http://dx.doi.org/10.1016/j.vaccine.2009.08.071
http://dx.doi.org/10.1016/j.vaccine.2009.08.071
http://dx.doi.org/10.1016/j.vaccine.2009.08.070
http://dx.doi.org/10.1016/j.vaccine.2009.08.070
http://dx.doi.org/10.1086/431492
http://dx.doi.org/10.1016/j.vaccine.2009.08.085
http://dx.doi.org/10.1016/j.vaccine.2009.08.085
http://dx.doi.org/10.1086/605046
http://dx.doi.org/10.1086/605046
http://dx.doi.org/10.1097/INF.0b013e318125721c
http://dx.doi.org/10.1016/j.vaccine.2009.08.090
http://dx.doi.org/10.1016/j.vaccine.2009.08.090
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Rotavirus/EpidemiologicalData/rota_DataEwMonth/
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Rotavirus/EpidemiologicalData/rota_DataEwMonth/
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Rotavirus/EpidemiologicalData/rota_DataEwMonth/
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Rotavirus/EpidemiologicalData/rota_DataEwMonth/
http://dx.doi.org/10.1086/605037
http://dx.doi.org/10.1002/jmv.21420
http://dx.doi.org/10.1002/jmv.21420
http://dx.doi.org/10.1016/S0264-410X(98)00376-4
http://dx.doi.org/10.1016/S0264-410X(98)00376-4
http://dx.doi.org/10.1056/NEJMoa0905211
http://dx.doi.org/10.1086/605035
http://dx.doi.org/10.1086/605035
http://dx.doi.org/10.1056/NEJM199610033351404
http://dx.doi.org/10.1056/NEJM199610033351404
http://dx.doi.org/10.1086/342294

	Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence
	Introduction
	Methods
	Epidemiological data
	Transmission model
	Impact of vaccination

	Results
	Discussion
	This work was supported by the National Institutes of Health (R01 GM083983-01), the Bill and Melinda Gates Foundation, and the RAPIDD programme of the Science and Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health (V.E.P and B.G.). The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention (CDC).
	REFERENCES


