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Esophageal squamous cell carcinoma (ESCC) is one of the most common aggressive
malignancies worldwide, particularly in northern China. The absence of specific early
symptoms and biomarkers leads to late-stage diagnosis, while early diagnosis and risk
stratification are crucial for improving overall prognosis. We performed UPLC-MS/MS on
450 ESCC patients and 588 controls consisting of a discovery group and two validation
groups to identify biomarkers for early detection and prognosis. Bioinformatics and clinical
statistical methods were used for profiling metabolites and evaluating potential
biomarkers. A total of 105 differential metabolites were identified as reliable biomarker
candidates for ESCC with the same tendency in three cohorts, mainly including amino
acids and fatty acyls. A predictive model of 15 metabolites [all-trans-13,14-dihydroretinol,
(±)-myristylcarnitine, (2S,3S)-3-methylphenylalanine, 3-(pyrazol-1-yl)-L-alanine, carnitine
C10:1, carnitine C10:1 isomer1, carnitine C14-OH, carnitine C16:2-OH, carnitine C9:1,
formononetin, hyodeoxycholic acid, indole-3-carboxylic acid, PysoPE 20:3, PysoPE 20:3
(2n isomer1), and resolvin E1] was developed by logistic regression after LASSO and
random forest analysis. This model held high predictive accuracies on distinguishing
ESCC from controls in the discovery and validation groups (accuracies > 89%). In
addition, the levels of four downregulated metabolites [hyodeoxycholic acid, (2S,3S)-3-
methylphenylalanine, carnitine C9:1, and indole-3-carboxylic acid] were significantly
higher in early cancer than advanced cancer. Furthermore, three independent
prognostic markers were identified by multivariate Cox regression analyses with and
without clinical indicators: a high level of MG(20:4)isomer and low levels of 9,12-
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octadecadienoic acid and L-isoleucine correlated with an unfavorable prognosis; the risk
score based on these three metabolites was able to stratify patients into low or high risk.
Moreover, pathway analysis indicated that retinol metabolism and linoleic acid metabolism
were prominent perturbed pathways in ESCC. In conclusion, metabolic profiling revealed
that perturbed amino acids and lipid metabolism were crucial metabolic signatures of
ESCC. Both panels of diagnostic and prognostic markers showed excellent predictive
performances. Targeting retinol and linoleic acid metabolism pathways may be new
promising mechanism-based therapeutic approaches. Thus, this study would provide
novel insights for the early detection and risk stratification for the clinical management of
ESCC and potentially improve the outcomes of ESCC.
Keywords: biomarkers, metabolic profiles, early detection, esophageal carcinoma, prognosis
INTRODUCTION

Esophageal cancer is the eighth most common form of cancer
and the sixth leading cause of cancer death in the world (1).
Esophageal squamous cell carcinoma (ESCC) remains the
predominant histological type globally (accounts for 90%),
especially in northern China (2). Due to occult symptoms in
early stage, 80% of ESCC patients are in the middle or advanced
stage at the time of diagnosis, with a 5-year survival of only 20%
(3). Therefore, identifying phenotypic characteristics and
predictive biomarkers are of great significance for the early
detection and improvement of the prognosis of ESCC.

Metabolomics has emerged as a new high-throughput
“omics” technology for screening low molecular weight
metabolites (<1,000 Da) in biological samples, which can
directly reflect the pathological state after gene mutation and/
or protein variations (4, 5). It has been generally accepted that
cancer is a metabolic disease with metabolic reprogramming (6).
Hitherto, metabolomics has been used to examine global
metabolite profiles and screen biomarkers for early warning
and monitoring of multiple cancers (7–10), as well as to
further gain insight into the potential mechanisms of
tumorigenesis and progression of cancers (11).

In recent years, the exploration of metabolic characteristics
and diagnostic and prognostic markers for esophageal cancer has
attracted much attention. For instance, Wang et al. showed that
16 biomarkers as ESCC-related metabolic signatures could be
used for diagnosis, among which dodecanoic acid, LysoPA
(18:1), and LysoPC (14:0) could be markers of disease
progression (12). Another study constructed an effective
diagnostic model based on eight metabolites consisting of
hypoxanthine, proline betaine, indoleacrylic acid, inosine, 9-
decenoylcarnitine, tetracosahexaenoic acid, LPE (20:4), and
LPC (20:5) and found that indoleacrylic acid, LPC (20:5), and
LPE (20:4) had association with ESCC progression (13). One
research by Chen et al. showed that four circulating metabolites,
kynurenine, 1-myristoyl-glycero-3-phosphocholine [LPC (14:0)
sn-1], 2-piperidinone, and hippuric acid, acted as potential ESCC
prognostic biomarkers (14). However, due to dynamic and
sensitive features of the metabolome, these studies may be
limited by small sample size or lack of validation groups; thus,
2

our understanding of metabolism-related changes in esophageal
cancer remains limited.

We therefore did this multicenter, large-scale cohort study to
determine global alterations of metabolites and screen
biomarkers. We performed a widely targeted metabolome by
UPLC-MS/MS on serum samples of 450 ESCC patients and 588
controls consisting of the discovery group (training set and test
set) and two validation groups to identify biomarkers for early
detection. The relationships between these biomarkers and
tumor s tage were fur ther exp lored . In add i t ion ,
clinicopathological indicators and metabolites were integrated
to identify molecular markers with prognostic value.
Differentially expressed metabolites in tissues provided further
validation of these markers from serum. Biomarkers for early
detection will facilitate and supplement the criteria of high-risk
population of esophageal cancer, improving the efficiency of
non-invasive detection and monitoring. Meanwhile, prognostic
biomarkers potentially shed new light on risk stratification and
management for patients with esophageal cancer. Finally,
pathway analysis based on these findings could contribute to
uncovering pathogenetic mechanism and identifying potential
therapeutic targets.
MATERIALS AND METHODS

Participants and Sample Collection
A total of 1,038 cases (450 ESCC patients and 588 healthy
controls) were recruited from multicenter esophageal and
gastric cardia carcinoma databases (1975–2021) established by
the State Key Laboratory for Esophageal Cancer Prevention &
Treatment and Henan Key Laboratory for Esophageal Cancer
Research of the First Affiliated Hospital of Zhengzhou
University. Detailed clinicopathological data and qualified
blood samples were available for all participants.

Three hundred and seventy-one patients were enrolled from
September 2013 to January 2020, divided into two groups: 225
ESCC patients (November 2019 to February 2020) as the
discovery set and 146 cases (September 2013 to October 2019)
as the verification set 1. All clinicopathological features of
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patients were extracted from medical records, including age,
gender, family history, tumor site, T stage, N stage, and TNM
stage. An independent group of 79 patients as another external
verification set was obtained from high incidence areas of
esophageal cancer in China during clinical epidemiological
investigation. Clinical and pathological data were collected by
questionnaires and hospital information system retrospectively.
For healthy controls, 588 individuals were enrolled after
excluding any upper gastrointestinal tumors via gastroscopic
biopsy between 2012 and 2020, and they were randomly selected
and matched into the discovery group and verification groups
with 363, 165, and 60, respectively.

Fasting blood samples of patients in the discovery set and
verification set 1 were collected before surgery during
hospitalizations, and those of verification set 2 and healthy
controls were taken during si te invest igat ion and
gastrointestinal endoscopy, respectively. All samples of cases
and controls were drawn into blood non-anticoagulant tube,
standing at room temperature for 30 min awaiting natural
coagulation. After centrifugation at 12,000 r/min for 3 min, the
supernatant fraction was collected and divided into equal parts
(0.5 ml) and then stored in a refrigerator at −80°C until
further analysis.

Three pairs of tissues (tumor and adjacent normal samples)
obtained from the same patients in the discovery group were
used for further validation of serum biomarkers. Tissue samples
were collected within 30 min after operation, frozen in liquid
nitrogen, and stored at −80°C. The study design and procedures
are presented in Figure S1.

All patients were confirmed as esophageal cancer by two
pathologists independently. Familial history was considered
positive if the proband had one or more cancer-affected
relatives in three consecutive generations. Regions with ESCC
incidence over 60/10 million were classified as high incidence
areas of esophageal cancer, and low incidence areas otherwise.
TNM staging was performed according to the sixth Union for
International Cancer Control (UICC) TNM classification system
due to the large span of diagnosis. Stages I and IIA were defined
as early cancer, and stages IIB, III, and IV as advanced cancer.
The follow-up for overall survival was via telephone or home
investigation every 3–6 months. Each participant signed the
informed consent form, and ethical approval for this study was
obtained from the Medical Ethics Committee of the First
Affiliated Hospital of Zhengzhou University.

Serum Pretreatment
Serum samples were removed from −80°C and thawed on ice
immediately until thawing completely. After vortexed for 10 s, 50 ml
of each sample was transferred to a centrifuge tube with the
corresponding number, mixed with 300 ml pure methanol, then
whirled for 3 min, and centrifugated at 12,000 r/min at 4°C for 10
min. The supernatant (200 ml) was absorbed to a new centrifuge
tube, followed by standing at −20°C for 30 min. After centrifuged at
12,000 r/min for 3 min at 4°C, 150 ml of the supernatant was taken
to the corresponding injection bottle for metabolomic analysis.
Frontiers in Oncology | www.frontiersin.org 3
Tissue Pretreatment
Tissue was taken out from −80°C and kept on ice throughout the
process. Thawed tissue was minced and 20 mg of sample was
weighed by multi-point sampling then transferred into a
centrifuge tube to homogenize (30 Hz) for 20 s with a steel
ball. After centrifugation at 3,000 r/min, 4°C for 30 s, the pellet
was added into 400 ml of 70% methanol water internal standard
extractant with shaking (1,500 r/min) for 5 min and then kept on
ice for 15 min. The supernatant (200 ml) was recovered after
centrifugation (12,000 r/min, 10 min, 4°C) and then was allowed
to stand at −20°C for 30 min. After centrifugation (12,000 r/min,
4°C) for 3 min, 200 ml of supernatant was collected for analysis.

UPLC-MS/MS Analysis
Metabolomics analysis on serum and tissue was performed using
an LC-ESI-MS/MS system (Ultra Performance Liquid
Chromatography, UPLC, ExionLC AD, https://sciex.com.cn/;
tandem mass spectrometry, MS/MS, QTRAP® System, https://
sciex.com/). The UPLC conditions included chromatographic
column (Waters ACQUITY UPLC HSS T3 C18, 1.8 μm, 2.1 mm
* 100 mm) and mobile phase A (ultrapure water containing 0.1%
formic acid) and B (acetonitrile containing 0.1% formic acid).
The elution gradient was as follows: mobile phase A/B (95:5 V/V)
at 0 min, 10:90 V/V at 10.0 min, 10:90 V/V at 11.0 min, 95:5 V/V
at 11.1 min, and 95:5 V/V at 14.0 min. The injection was 2 ml at a
flow rate of 0.4 ml/min with column temperature of 40°C.

The MS/MS depended on a triple quadrupole linear ion trap
mass spectrometer (QTRAP), QTRAP® LC-MS/MS System, used
to do the linear ion trap (LIT) and triple quadrupole (QQQ) scans.
The parameters of QTRAP® LC-MS/MS System were set as
follows: electrospray ionization (ESI) source temperature, 500°C;
ion spray voltage (IS), −4,500 to 5,500 V; ion source gas I (GSI), 55
psi; GSII, 60 psi; curtain gas (CUR), 25 psi; and collision gas
(CAD), high level. Polypropylene glycol solutions (100 and 10
mmol/L) were used for instrument tuning and mass calibration in
LIT and QQQmodes, respectively. Here, each ion pair was scanned
according to the declustering potential (DP) and collision energy
(CE) through multiple reaction monitoring (MRM).

Sample extract mixtures as quality controls (QCs) were
inserted into every 10 testing samples to monitor the
repeatability of the analysis process.

Data Processing, Quality Control, and
Statistical Analyses
After MS data were analyzed with software Analyst 1.6.3 (AB
SCIEX, Ontario, Canada), qualitative analysis of metabolites was
done according to retention time (RT), ion pair, and second spectra,
based onMetWare database (http://www.metware.cn/) and publicly
available metabolite databases, such as HMDB (http://hmdb.ca/)
and MassBank (http://www.massbank.jp/). The quantitative
analysis steps were as follows: first, screening the characteristic
ions of each substance by triple quadrupole, we obtained the signal
strength of characteristic ions in the detector. Then through
integrating and correcting chromatographic peaks by the software
MultiQuant, we obtained the relative content of the corresponding
January 2022 | Volume 12 | Article 790933
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substance represented by the area of each chromatographic peak.
Metabolite annotation was performed based on the KEGG
compound database (http://www.kegg.jp/kegg/compound/).

Data quality was assessed using principal component analysis
(PCA, princomp function in R) and coefficient of variation value
(CV: ratio of standard deviation to mean, Microsoft Excel 2016
and ggplot2 in R). These results supported the reliability of data
—that QC samples clustered together clearly in the PCA plots of
the three groups and more than 85% metabolites with CV values
were less than 15% (Figure S2).

Multivariate statistical investigations were performed
including PCA and orthogonal partial least squares-
discriminant analysis (OPLS-DA, ropls package in R). Model
quality of OPLS-DA was estimated by R2Y and Q2 values.
Volcano plots were generated based on log2 fold changes and
−log10 (p-values) by R. Heatmaps were performed and visualized
with pheatmap package. Statistically significant metabolites were
selected by p <0.05 (Student’s t-test or Wilcoxon test), and
variable importance in the projection (VIP) generated from the
OPLS-DA model was referenced as supplement.

Least absolute shrinkage and selection operator (LASSO)
regression model and random forest were performed to screen
potential biomarkers for diagnosing ESCC (glmnet package and
randomforest package). The logistic regression model was
trained using the function glm in R. Receiver operating
characteristic curves (ROC) were plotted to evaluate the
predictive accuracy of the diagnostic model based on
metabolites with GraphPad software. Violin plots produced
with ggviolin package were used to visualize differences in
metabolites between early and advanced cancer patients based
on the Wilcoxon test.

Kaplan–Meier survival curves and log-rank test were used to
calculate survival rate and compared survival curves between
groups, respectively (survival and survminer package). Cox
proportional hazards regression test was carried out to analyze
prognostic factors for overall survival and compute hazard ratio
(HR) and 95% confidence interval (CI) of multivariate survival
analysis (survival package). Moreover, forest plots were
generated with the forestplot package based on the results of
Cox regression analyses. Correlations between serum and tissue
metabolites were assessed by Pearson’s correlation coefficients
using R function cor, and the network diagram was visualized in
Cytoscape (version 3.8.0). Pathway analysis was undertaken with
MetaboAnalyst 5.0 online software using the KEGG
pathway database.

Statistical analyses were conducted using R software (version
4.0.4) and Prism8 (GraphPad) software, and p <0.05 was
considered statistically significant.
RESULTS

Clinical Characteristics and Metabolomic
Study of ESCC
To explore the metabolomic profiles and biomarker candidates
for ESCC, 1,038 participants (450 patients and 588 normal
Frontiers in Oncology | www.frontiersin.org 4
individuals) were enrolled: the discovery cohort consisted of
588 (225 patients and 363 controls), while the two validation
groups consisted of 311 and 139 (146 patients and 165 controls
and 79 patients and 60 controls, respectively). Their clinical
characteristics are shown in Table S1.

We performed UPLC-MS/MS analysis in serum samples of all
subjects to profile the entire metabolome of esophageal cancer.
Qualitative and quantitative analyses of metabolite levels were
performed based on metabolic databases. A total of 963
metabolites were finally annotated (Table S2). In the discovery
set, 524 compounds (155 upregulated and 369 downregulated
metabolites) were with significant difference between ESCC and
controls (p < 0.05) (Table S3). PCA and OPLS-DA were applied
to characterize the metabolic patterns of ESCC, exhibiting a clear
separation between ESCC and normal (Figures 1A, B). The
OPLS-DA model had R2Y at 0.949 and Q2 at 0.918. These
differential metabolites were further validated in two
independent groups. Similarly, PCA and OPLS-DA of the two
validation sets also showed clear clusters of patients and controls
(Figures 1D, E, G, H). The models developed by OPLS-DA had
high fitness and prediction values (R2Y = 0.976 and Q2 = 0.973,
R2Y = 0.968 and Q2 = 0.942, respectively). Among these
metabolites, 382 metabolites were validated with statistically
significant difference (p < 0.05) between ESCC and controls in
validation set 1 and 248 in validation set 2 (Tables S4, S5).
Volcano plots showed the distributions of both downregulated
and upregulated metabolites for ESCC (Figures 1C, F, I).

Ultimately, a total of 105 differential metabolites (21
upregulated and 84 downregulated metabolites) were validated
as reliable biomarker candidates maintaining the same
tendency as the discovery set (Figures 2A, B and Table S6).
Twenty-one upregulated metabolites mainly included four
glycerophospholipids, three sugar alcohols, three benzene and
substituted derivatives, two aldehydes, two oxidized lipids, and
two nucleotides and its metabolites. Meanwhile, the major
categories of 84 downregulated metabolites were fatty acyls,
amino acids, indoles, bile acids, organic acids, oxidized lipids,
and glycerophospholipids. We noted that almost all serum
amino acid-related (alanine, histidine, glycine, serine,
phenylalanine, cysteine, isoleucine) and lipid-related
metabolites (acylcarnitine, fatty acids) were decreased,
lysophosphatidylcholine (LPC) was upregulated, and
lysophosphatidylethanolamine (LPE) was downregulated, while
benzene and substituted derivatives as external environmental
factors were upregulated. Metabolomic data were also visualized
using heatmaps with metabolites arranged by major classes
(Figure 2C). In summary, the global alterations of the
metabolic profile for ESCC were significantly different
compared with normal groups.

Metabolite Diagnostic Biomarkers
for ESCC
LASSO regression and random forest were performed in the
discovery groups to further identify metabolite biomarkers for
distinguishing ESCC patients from the healthy population. All
quantitative data of metabolites were analyzed after normalization
January 2022 | Volume 12 | Article 790933
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and logarithm transformed. Individuals including ESCC patients
and healthy controls in the discovery group were divided
randomly into training set (150 patients and 242 controls) and
test set (75 patients and 121 controls) at a ratio of 2:1. A 10-fold
cross-validation was used to estimate the optimal parameter
(lambda) of the model and select the optimal combination of
variables. Fifteen metabolites were selected as the most important
predictors by combinations of two methods, including all-trans-
13,14-dihydroretinol (upregulation) and (±)-myristylcarnitine,
(2S,3S)-3-methylphenylalanine, 3-(pyrazol-1-yl)-L-alanine,
carnitine C10:1, carnitine C10:1 isomer1, carnitine C14-OH,
carnitine C16:2-OH, carnit ine C9:1, formononetin,
hyodeoxycholic acid, indole-3-carboxylic acid, PysoPE 20:3,
PysoPE 20:3(2n isomer 1), and resolvin E1 (downregulation)
(Table S7). We constructed and trained this metabolite-based
Frontiers in Oncology | www.frontiersin.org 5
model using logistic regression analysis showing high diagnostic
performance for ESCC: an accuracy of 94.9% in the training set,
92.57% in the test set, and 94.22% in the entire discovery group,
with area under the ROC curves (AUC) greater than 0.98
(Figures 3A–C and Table 1). To test the generalizability of this
panel, we did same analyses in the two independent validation
cohorts. Fortunately, we got similar results as the discovery set
(Figures 3D, E). Additionally, the levels of four downregulated
metabolites [hyodeoxycholic acid, (2S,3S)-3-methylphenylalanine,
carnitine C9:1, and indole-3-carboxylic acid] were significantly
higher in I–IIA stage (early cancer) than in IIB–IV stage (advanced
cancer) (p < 0.05, Wilcoxon test) (Figures 4A–D). In conclusion,
this combination of 15 serum metabolites could be used in
different populations as reliable potential biomarkers for the
early detection of esophageal cancer.
A B C

D E F

G H I

FIGURE 1 | Analysis of serum metabolomics of patients with esophageal squamous cell carcinoma (ESCC) and controls. (A, D, G) Principal component analysis
(PCA) of metabolomic data from ESCC (red) and normal (blue) samples in the discovery group (A) and validation groups 1 (D) and 2 (G). (B, E, H) Orthogonal partial
least squares-discriminant analysis (OPLS-DA) score plot of all detected metabolites [(B) discovery group, R2X = 0.295, R2Y = 0.949, Q2 = 0.918; (E) validation
group 1, R2X = 0.323, R2Y = 0.976, Q2 = 0.973; (H) validation group 2, R2X = 0.279, R2Y = 0.968, Q2 = 0.942] in ESCC (red) and normal (blue) groups. (C, F, I)
Volcano plot [−log10(p-value) and log2(fold-change)] depicting upregulated (red) and downregulated (blue) metabolites in ESCC with p <0.05 in the discovery group
(C) and validation groups 1 (F) and 2 (I). See also Tables S3–S5.
January 2022 | Volume 12 | Article 790933
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Prognostic Metabolic Biomarkers
for ESCC
We performed Kaplan–Meier log-rank tests and univariate and
multivariate Cox regression analyses on all patients in the three
groups to identify prognostic factors. Results revealed that 19
metabolites had statistical significance in both survival analysis
by a median-split (p < 0.05) and univariate Cox regression
analyses (p < 0.2) (Table S8). After excluding four metabolites
Frontiers in Oncology | www.frontiersin.org 6
that affected the survival rate with time through proportional
hazards assumption (PH), each metabolite was further subjected
to multivariate Cox regression analysis adjusted for clinical
covariates (age, TNM stage, N stage, family history, and high
or low incidence areas) separately. These observations
demonstrated that 10 metabolites were significantly associated
with overall survival. Then multivariate stepwise Cox regression
analyses with backward elimination were conducted for 10
A B

D E

C

FIGURE 3 | Diagnostic capacity of the combined 15 selected metabolite biomarkers in discrimination of ESCC and controls assessed by receiving operator
characteristic (ROC) curves. (A) Training set, 150 tumors and 242 normal samples; (B) test set, 75 tumors and 121 normal samples; (C) the discovery group
(training set + test set), 225 tumors and 363 normal samples; (D) validation group 1, 146 tumors and 165 normal samples; and (E) validation group 2, 79 tumors
and 60 normal samples. Abbreviations: AUC, area under the curve in the ROC curves; 95% CI, 95% confidence interval. See also Table S7.
A B C

FIGURE 2 | Metabolomic profiles of patients with ESCC compared with controls. (A, B) Venn diagram of differential metabolites overlaps from the discovery and
validation groups: 21 upregulated (A) and 84 downregulated (B) differential metabolites validated as reliable biomarker candidates with the same trend. (C) Heatmap
summarizing differential metabolites in ESCC patients versus normal controls based on metabolite classes. Color bars at the right from top to down indicate samples
from patients (purple) and controls (green), metabolites classes, and relative abundance of upregulated (red) and downregulated (blue) metabolites, respectively. Each
column represents an individual subject, and each row a metabolite. See also Table S6.
January 2022 | Volume 12 | Article 790933
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metabolites with and without clinical indicators to further assess
the prognostic value of metabolites. Finally, three metabolites
remained independent prognostic factors of overall survival. The
correlations between the three metabolites and survival were
similar in the combination model with or without clinical factors
(Figure 5A). As we observed, a high level of MG(20:4)isomer
(HR = 1.62) and low levels of 9,12-octadecadienoic acid (HR =
0.67) and L-isoleucine (HR = 0.56) correlated with poor overall
survival in the single biomarker model.

We then calculated the risk scores for all patients using
coefficient values of the three metabolites in the single
biomarker model. Each patient was stratified into low- and
high-risk groups by median of risk scores. As expected,
patients in the high-risk group had worse survival than in the
low-risk group as shown in Figure 5B. Furthermore, there was a
trend that more deaths, a higher level of MG(20:4)isomer, and
lower levels of 9,12-octadecadienoic acid and L-isoleucine were
Frontiers in Oncology | www.frontiersin.org 7
in the high-risk group compared with the low-risk
group (Figure 5C).

Retinol Metabolism and Linoleic Acid
Metabolism as the Most Perturbed
Metabolic Pathways
Differential metabolites were mapped to KEGG pathways using
pathway analysis module of MetaboAnalyst 5.0. Pathway
analysis of commonly altered 105 metabolites from patients
versus controls revealed 23 tumor-related metabolic pathways
including metabolism of cofactors and vitamins, amino acid
metabolism, nucleotide metabolism, lipid metabolism, and
carbohydrate metabolism. Among them, retinol metabolism
was the most perturbed pathway (p < 0.05, Figure 6A) with
upregulat ion of a l l - trans-13,14-dihydroret inol and
downregulation of 11-cis-retinol and 4-hydroxyretinoic acid in
the ESCC groups. Further pathway analysis of 18 biomarkers for
A B

DC

FIGURE 4 | Distributions of five metabolites between early cancer and advanced cancer. Violin plots depicting the levels of hyodeoxycholic acid (A), indole-3-
carboxylic acid (B), carnitine C9:1 (C), and (2S,3S)-3-methylphenylalanine (D). All of them were significantly higher in early cancer (I–IIA stage) (green) than in
advanced cancer (IIB–IV stage) (orange) patients with ESCC (p < 0.05, Wilcoxon test). Internal box plots represent median and interquartile range of metabolites
across patients.
TABLE 1 | Performance for ESCC diagnosis of metabolite biomarkers on the training set and validation sets.

Study and model No. of subjects Sensitivity (%) Specificity (%) Accuracy (%) AUC 95% CI

ECSS Healthy controls Total

Discovery group: training set 150 242 392 94.00 95.45 94.90 0.989 0.982–0.966
Discovery group: test set 75 121 196 97.33 90.08 92.57 0.983 0.969–0.997
Discovery group: training set + test set 225 363 588 93.33 94.77 94.22 0.987 0.980–0.993
Validation set 1 146 165 311 100.00 99.39 99.68 0.999 0.999–1.000
Validation set 2 79 60 139 86.08 93.33 89.21 0.958 0.929–0.986
Ja
nuary 2022 | Volu
me 12 | A
AUC, area under the ROC curve; 95% CI, 95% confidence interval.
rticle 790933

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Metabolic Features for ESCC
early detection and prognosis revealed that linoleic acid
metabolism was the most significant pathway (p < 0.05,
Figure 6B) mapped by 9,12-octadecadienoic acid.

Correlation Analysis of Serum and
Tissue Metabolites
Compared with adjacent normal tissues, 18 differential metabolites
were identified (p < 0.05 and VIP > 1.5) in cancer tissues,
consisting of 16 upregulated metabolites [glucosamine, punicic
acid, 13-HOTrE, DL-stachydrine, N-acetylmannosamine, N-
acetyl-D-glucosamine, 2-ethylhexyl phthalate, caprate (10:0),
thiamine triphosphate, pantetheine, bis(1-inositol)-3,1′-
Frontiers in Oncology | www.frontiersin.org 8
phosphate 1-phosphate, N-acetylcadaverine, phosphocholine,
2,2,2-trichloroethanol, nonadecylic acid, and carnitine C7:1
isomer1] and 2 downregulated metabolites (indole-3-acetamide
and oxaloacetic acid). We next performed Pearson’s correlation
analysis to investigate the association between the 18 serum
biomarkers and the tissue differential metabolites (Figure 7).
This analysis showed strong positive correlations between the
two groups of metabolites (p < 0.05 and r > 0.99). Specifically,
P y s o P E 2 0 : 3 a n d P y s o P E 2 0 : 3 ( 2 n i s om e r 1 )
(glycerophospholipids) were positively related to N-
acetylmannosamine and N-acetyl-D-glucosamine (sugar and its
derivatives). (2S,3S)-3-Methylphenylalanine (amino acids) was
A

B C

FIGURE 5 | Prognostic value of the metabolite-based model from various multivariate Cox regression analyses on all patients. (A) Forest plot for multivariate Cox
regression model of biomarkers with and without clinical factors associated with overall survival (OS) of patients (n = 394). Hazard ratio (HR) is depicted on the x-axis
and each prognostic variable on the y-axis. HR >1 indicates poor prognosis. Black dots indicate point estimates, the horizontal lines represent the 95% CIs, and the
vertical dashed line represents the reference line for an HR of 1. (B) Kaplan–Meier plots displaying the significant difference of overall survival in two patient groups
(p < 0.001). The risk score of the Cox regression model stratified patients into low-risk (blue) and high-risk (red) groups according to median. Numbers of survivors at
different time points stratified by risk group are shown in the table below. (C) Risk score analysis consisting of three parts: up part, risk score distribution of the low-
risk (blue) and high-risk (red) groups (up); middle part, scatter plots representing the survival status and duration of ESCC cases; down part, heatmap of the relative
expression levels of MG(20:4)isomer, 9,12-octadecadienoic acid, and L-isoleucine. See also Table S8.
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positively associated with DL-stachydrine (organic acid and its
derivatives), phosphocholine (nucleotide and its metabolites), bis
(1-inositol)-3,1′-phosphate 1-phosphate (alcohols), and 2,2,2-
trichloroethanol (alcohols). We also identified a positive
correlation between (±)-myristylcarnitine (fatty acyls) and 13-
HOTrE (oxidized lipids) and between hyodeoxycholic acid (bile
acids) and N-acetylcadaverine (polyamines).
DISCUSSION

We conducted a multicenter, large-scale metabonomic study of
esophageal cancer through UPLC-MS/MS. Our analysis revealed
that patients with esophageal cancer exhibited distinctive
metabolic characteristics compared with healthy controls by
verification in different cohorts. Such metabolic alterations
Frontiers in Oncology | www.frontiersin.org 9
were likely attributed to dysregulation of multiple metabolic
pathways. Significantly, we identified robust serum biomarkers
for early detection and prognosis of esophageal cancer, offering
an opportunity for the targeted screening of high-risk groups and
individualized management.

We identified 105 serum metabolites as reliable metabolic
profiles for patients with ESCC in the discovery and two
validation cohorts, mainly relating to changes of amino acids
and fatty acyls (acylcarnitines and glycerophospholipids). First,
almost all amino acid-related metabolites were reduced,
including glycine, serine, leucine, isoleucine, phenylalanine,
tryptophan, glutamic acid, aspartic acid, alanine, arginine,
histidine, and cysteine, except methionine metabolites. Similar
findings have been observed in previous studies on both ESCC
and EAC (esophageal adenocarcinoma) (15, 16). Amino acids
are the most frequently reported alteredmetabolites in cancer (17),
A B

FIGURE 6 | Retinol metabolism and linoleic acid metabolism are common features of ESCC patients. (A) Pathway analysis of commonly altered 105 metabolites
from patients versus controls revealed that retinol metabolism was the most perturbed pathway. (B) Pathway analysis of 18 biomarkers displayed that the most
significant pathway was linoleic acid metabolism. Pathway analysis module of MetaboAnalyst 5.0 was used to perform the pathway enrichment analysis (y-axis,
enrichment p-values) and the pathway topology analysis (x-axis, pathway impact values indicating centrality and enrichment of a pathway). Circle color represents
enrichment significance with darker color indicating a higher level of significance, and circle size correlates with pathway impact value of the pathway.
FIGURE 7 | Correlations of serum and tissue metabolites. Pearson’s correlation between 18 serum biomarkers and 18 tissue differential metabolites. The nodes
represent metabolites (serum metabolites are green and tissue metabolites are red). The line between two nodes indicates correlation scores (only correlation scores
of >0.6 are kept) and thicker lines indicate stronger correlations.
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which relate to increased oxidative metabolism, gluconeogenesis,
and energy production in cancer patients (18). Specifically,
methionine cycle flux specifically influences the epigenetic state
of cancer cells and drives tumor initiation (19), and the cross-talk
between glucose and methionine regulates life span (20). Serine
metabolism supports the methionine cycle and DNA/RNA
methylation through de-novo ATP synthesis in cancer cells (21).
Serine/glycine biosynthesis affects cellular antioxidative capacity,
thus supporting tumor homeostasis (22). Altered branched-chain
amino acid (BCAAs: valine, leucine, and isoleucine) metabolism
has been implicated in cancer progression and the key proteins in
the BCAA metabolic pathway serve as possible prognostic and
diagnostic biomarkers in human cancers (23). Aromatic amino
acids tyrosine, phenylalanine, and tryptophan represent potential
biomarkers and relate to gastroesophageal cancer (24).
Tryptophan metabolism through the kynurenine pathway (KP)
is involved in the regulation of immunity, neuronal function, and
intestinal homeostasis (25). Our observations that disorders of
amino acid metabolism were common alterations in ESCC have
important implications for further investigation into the
relationship between metabolic alterations and carcinogenesis.
Another major class of disordered metabolites was acylcarnitines
in our study: that medium- to long-chain acylcarnitines
(octanoylcarnitine, nonanoylcarnitine, decanoylcarnitine,
undecanoylcarnitine, dodecylcarnitine, tetradecanoylcarnitine,
hexadecadienoylcarnitine, stearidonyl carnitine) in ESCC
patients were significantly decreased compared with controls. A
previous study by Xu et al. also reported the downregulation of
acylcarnitines (octanoylcarnitine, nonanoylcarnitine,
decanoylcarnitine, and undecanoylcarnitine) in ESCC patients
(26). Given that these acylcarnitines as the main substrates of
mitochondrial lipid oxidation regulate energy balance through
promoting ketogenesis and reducing protein consumption (27),
the low levels can reflect alterations of the tricarboxylic acid cycle
(TCA cycle) activity and b‐oxidation in patients with ESCC in the
present study. We also observed alterations in the two groups of
glycerophospholipids metabolites, LPE and LPC. Previous data
demonstrated that significant alterations of LPE and LPC were in
the serum of patients with esophageal squamous cell carcinoma,
pancreatic ductal adenocarcinoma, liver cancer, and ovarian
cancer (13, 28–31). These findings substantiated the diagnostic
value of LPE and LPC. Of interest, benzene derivatives (xylene,
ethylbenzene, and o-xylene) were elevated relatively in the serum
of patients with ESCC in our study. Benzene overexposure
strongly elevates the incidence of cancer and risks of mortality,
through increasing oxidative damage and cytogenetic changes (32,
33). While understanding of the carcinogenicity of benzene
derivatives in ESCC is limited, this finding resulted likely from
the interaction between environmental and genetic factors.

One of our overarching goals was to identify metabolite-based
biomarkers for early detection. Here, we trained diagnostic
models using logistic regression after LASSO and random
forests. A set of 15 metabolites was screened as novel
diagnostic markers, including all-trans-13,14-dihydroretinol,
(±)-myristylcarnitine, (2S,3S)-3-methylphenylalanine, 3-
(pyrazol-1-yl)-L-alanine, carnitine C10:1, carnitine C10:1
Frontiers in Oncology | www.frontiersin.org 10
isomer1, carnitine C14-OH, carnitine C16:2-OH, carnitine
C9:1, formononetin, hyodeoxycholic acid, indole-3-carboxylic
acid, PysoPE 20:3, PysoPE 20:3(2n isomer1), and resolvin E1.
Importantly, our diagnostic biomarker panel performed
excellently in the training and validation groups (test set, the
entire discovery group, two independent validation cohorts) with
accuracies more than 90%, which would be a very meaningful
subject of our further study. Intriguingly, almost all of these have
been previously associated with cancers. For instance, increased
levels of all-trans-13,14-dihydroretinol, metabolites of vitamin A
(all-trans-retinol) produced by retinol saturase (RetSat) (34, 35),
result in an accelerated apoptosis induction through reduction of
all-trans-retinoic acid (atRA) (36). Acylcarnitine, generated by
mitochondrial metabolism of amino acids and fatty acids, has
been implicated in mitochondria-mediated inflammation and
cellular stress promotion (37). Medium-chain acylcarnitines
(C6–C12) are positively associated with the risk of prostate
cancer progression, while long-chain acylcarnitines (C14–C18)
are inversely associated with advanced stages (38, 39). Past
research found that octanoylcarnitine and decanoylcarnitine
were closely correlated with the treatment effect of ESCC (26).
(2S,3S)-3-Methylphenylalanine can prevent mitochondrial
damage and reduce apoptosis of cells (40). The level of 3-
(pyrazol-1-yl)-L-alanine is closely related to gastric cancers
(41). Indole-3-carboxylic acid, a microbial tryptophan
metabolite, can enhance tumor malignancy and suppress
antitumor immunity by activating aryl hydrocarbon receptor
(AHR) (42, 43). Formononetin (FMNT), a isoflavonoid,
possesses anti-inflammatory, antioxidant, and antitumoral
properties (44–46), and supplementation of isoflavonoids can
reduce the incidence and mortality of cancers (47, 48).
Hyodeoxycholic acid (HDCA) can suppress intestinal epithelial
cell proliferation through the FXR–PI3K/AKT pathway (49). The
reduced levels of lysophosphatidylethanolamine (LPEs), key
components of cellular membranes, can explain the rapid
cellular proliferation of malignancies (50). Resolvin E1 inhibits
oxidative stress, autophagy, and apoptosis by targeting Akt/
mTOR signals (51), suppresses tumor growth, and enhances
cancer therapy (52). Furthermore, we detected higher levels of
four downregulated metabolites [hyodeoxycholic acid, (2S,3S)-3-
methylphenylalanine, carnitine C9:1, and indole-3-carboxylic
acid] in I–IIA stage (early cancer) than in IIB–IV stage
(advanced cancer), which could serve as predictive biomarkers
of early cancer, in which decreasing levels were associated with
increased tumor burden. In summary, this metabolite-based
diagnostic panel would be effective tools for early screening
and diagnosing ESCC patients from high-risk populations
in China.

Here, potential prognostic predictors were explored by
Kaplan–Meier log-rank tests and univariate and multivariate
Cox regression analyses. Our findings indicated that MG(20:4)
isomer, 9,12-octadecadienoic acid, and L-isoleucine remained
prognostic biomarkers of overall survival for ESCC with similar
results regardless of whether prognostic clinical factors were
incorporated or not. It suggested that this model based on three
indicators, which did not involve the clinicopathologic
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information of patients, could be easily used in clinical practice.
MG(20:4)isomer was upregulated and correlated with poor
prognosis in ESCC patients, while 9,12-octadecadienoic acid
and L-isoleucine did the opposite. When patients were
stratified into low- and high-risk groups based on this model,
patients in the high-risk group tended to have lower rates of
survival and more deaths. Similarly, previous studies have also
reported associations of three metabolites with different
malignancies. MG(20:4)isomer, namely, eicosanoic acid
monoglyceride, an arachidonic acid derivative and canonical
endocannabinoid, is an isomer of 2-arachidonoylglycerol (2-
AG) and 1-arachidonoylglycerol (1-AG). Canonical
endocannabinoids have anti-inflammatory and anticancer
properties by activating cannabinoid receptors CB1 and CB2.
One study reported that both 2-AG and the activity of 2-AG
decomposing enzymes [catabolic enzyme monoacylglycerol
lipase (MAGL)] were elevated in lung squamous cell
carcinoma tissue compared with normal adjacent lung tissue
(53). Another study suggested that treatment with mixed CB1/
CB2 agonist WIN-55,212–2 resulted in inhibition of skin tumor
growth (54). A study showed that 9,12-octadecadienoic acid,
belonging to linoleic acid metabolism, was significantly increased
in preoperative lung cancer patients compared with healthy
volunteers and postoperative lung cancer patients (55).
Significant alterations of linoleic acid metabolism have been
observed in many other cancer types associated with
inflammatory-mediated damage, immune response, and cell
proliferation (colorectal cancer, bladder cancer, and renal cell
carcinoma) (56, 57). Linoleic acid has also been reported as one
of the biomarkers for the diagnosis (12, 13, 58) and therapeutic
efficacy (59) of patients with ESCC. Interestingly, the model
constructed by linoleic acid and other 11 differentiating
metabolites showed good predictive values for distinguishing
EAC, high-risk (BE and HGD), and control groups (16). L-
Isoleucine affects cancer cell state as well as systemic metabolism
in individuals with malignancy (60). The deficiency of L-
isoleucine is one metabolic characteristic for patients with
gastric cancer after chemotherapy, and the correction of this
metabolic deficiency improves the life quality of patients (61).
Together, our findings have potential important implications for
therapeutic decision-making and risk stratification for the
management of patients with ESCC.

The pathway analysis of 105 metabolites from patients versus
controls also confirmed that dysregulation of amino acid
metabolism, lipid metabolism, vitamin metabolism, nucleotide
metabolism, and carbohydrate metabolism was related to ESCC.
We identified retinol metabolism as the most perturbed pathway
with elevation of all-trans-13,14-dihydroretinol and reduction of
11-cis-retinol and 4-hydroxyretinoic acid in cancer. Under
normal circumstances, atRA is the most biologically active
retinol metabolite binding to retinoic acid receptor a (RARa)
playing important roles in cell differentiation, proliferation, and
apoptosis (62). Normal RetSat catalyzes all-trans-retinol to atRA,
otherwise to all-trans-13,14-dihydroretinol. Deficiency of atRA
has proven to contribute to colon carcinogenesis, while returning
to normal level reduces the risk of cancer (36). In addition, atRA
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not only inhibits angiogenesis and metastasis of ESCC though
angiopoietin receptor Tie2 (63) but also induces apoptosis of
metaplastic Barrett’s cells via p38 and caspase pathways (64). In
the research of Barrett’s esophagus organotypic model, atRA
alters the squamous cytokeratin profile of EPC2 toward a more
columnar expression pattern (65). This suggests that RetSat in
retinol metabolism pathway is emerging as a promising
therapeutic target for ESCC, and atRA has a potential role in
therapy and chemoprevention of patients with ESCC and
Barrett’s esophagus. Importantly, linoleic acid metabolism was
also identified as the most significant pathway in the pathway
analysis of 18 biomarkers, which validated a similar observation
from previous smaller studies of patients with ESCC (12, 13, 58)
and EAC (16). Linoleic acid metabolism is mediated by
cytochrome P450 (CYP1A2, CYP2C, CYP2J, CYP2E1, and
CYP3A4) to proinflammatory and proangiogenic oxylipins
resulting in tumor growth or metastasis (66). Previous studies
suggested that 12,13-epoxyoctadecenoic acid (EpOME) as a
metabolite of linoleic acid produced by CYP monooxygenase
increased cytokine production and JNK phosphorylation in vitro
and exacerbated AOM/DSS-induced colon tumorigenesis in
vivo, which revealed CYP2C enzymes being a novel therapeutic
target for patients with colon cancer (67). Together with a
previous work, it is therefore speculated that cytochrome P450
will be a novel therapeutic target for ESCC and deserves
further investigation.

Correlation analysis of serum and tissue metabolites in different
samples from the same patient demonstrated that these molecules
mainly belonged to amino acid and lipid metabolism. Although
differences were observed, there were significant positive
correlations between serum biomarkers and tissue differential
metabolites. The decreases of PysoPE 20:3 and PysoPE 20:3(2n
isomer 1) in serum were mainly due to the increasing consumption
of LPEs for constituting cell membranes, which were consistent with
the increases of N-acetyl-D-glucosamine and N-acetyl-D-
glucosamine in tissue caused by high activity of nucleotide
synthesis and cellular proliferation. (2S,3S)-3-Methylphenylalanine
reacts with 2-oxoglutarate into L-glutamate and (3S)-2-oxo-3-
phenylbutanoate by 2-oxoglutarate aminotransferase in the
process of glutamate providing 2-oxoglutarate for TCA cycle (68).
For its correlated tissue metabolites, for instance, DL-stachydrine, as
a derivative of proline, can not only be degraded to but also
synthesized from glutamate (69, 70). Increased transport of
choline into cancer cells results in a high level of phosphocholine
in tissues (a substance converted from choline via phosphorylation
by choline kinase) thereby promoting cell growth and proliferation
(71). Bis(1-inositol)-3,1′-phosphate 1-phosphate and CMP convert
into CDP-1L-myo-inositol and inositol 3-phosphate in inositol
phosphate metabolism providing second messengers in cellular
signal transduction (72). Elevation of 2,2,2-trichloroethanol in
tissue may be related to hyperactive metabolism of xenobiotics by
cytochrome P450. Both the high level of 13-HOTrE in tissue and
the low level of (±)-myristylcarnitine in serum were the result of
dysregulation of lipid metabolism in cancer. In conclusion, although
serum and tissue metabolites were quite different, they maintained
strong metabolite correlations from tumor-derived metabolic
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disorders. It further suggested that these serum metabolites could
serve as non-invasive biomarkers for patients.

The representativeness of the study population was ensured by
multicenter, large-scale data for ESCC patients and normal controls.
Detailed clinicopathological information and long-term follow-up
minimized the influence of confounding factors on screening
biomarkers. Validation in two independent cohorts could support
further extension and application of these diagnostic biomarkers.
Different combinations in multivariate Cox regression analyses
confirmed the reliability and clinical utility of prognostic
biomarkers. Nevertheless, some limitations should also be
acknowledged. Targeted metabolomics analysis is necessary to
further verify these serum metabolite biomarkers, and prospective
larger cohorts are needed to validate prognostic biomarkers given
the retrospective design and non-uniform follow-up.

Altogether, we revealed serum metabolic profiles for patients
with ESCC using UPLC-MS/MS-based metabolomics
technology. Novel serum metabolic diagnostic biomarkers
could effectively distinguish esophageal cancer patients from
healthy controls, offering an opportunity for the early detection
and diagnosis of esophageal cancer patients in asymptomatic
population. Moreover, prognostic biomarkers would provide a
new direction for the risk-stratified management and
individualized therapeutic decision-making for both patients
and doctors. Significant metabolic pathways provide
mechanistic insight into future targeted therapies.
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