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Abstract: Neutrophils are the most abundant immune cell in the circulation of human and act as
gatekeepers to discard foreign elements that have entered the body. They are essential in initiating
immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to
act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for
eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils
can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen
and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in
both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils,
other immune cells and stromal cells in the microenvironment modulates neutrophil function re-
sulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require
chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is
seen in other neutrophil properties, including differential secretory repertoire and membrane receptor
display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent
on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with
tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to
be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased
metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely
on the interaction between tumor-surface-expressed receptor for advanced glycation end products
(RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are
also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early
inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth
and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported
lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils
in cancer.

Keywords: cancer; Cathepsin G; chemokines; chronic inflammation; metastasis; NETs; neutrophils;
RAGE; reactive oxygen species; TRAIL

1. Introduction
1.1. Neutrophil Differentiation in the Bone Marrow

Neutrophils are short-lived white blood cells of the innate immune system that are
continuously replenished by newly differentiated cells in the bone-marrow. The neutrophils
are differentiated in the bone-marrow from a common myeloid progenitor (CMP) through
a common granulocyte-monocyte progenitor (GMP). This is followed by several stages:
myeloblasts, promyelocytes, myelocytes, metamyelocytes (also called banded neutrophils
or immature neutrophils) and mature neutrophils [1–4]. During this process, the various
granules are formed that store different components, preventing them from interacting
with each other within the cell [2,5].

The primary azurophilic granules are the first granules to be formed, which occurs in
the promyelocyte stage. Then, the secondary specific granules are formed in the myelocyte
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stage, while the tertiary gelatinase granules are formed in the metamyelocyte stage. The
last to be formed is the secretory vesicles, which takes place in the mature segmented
neutrophils [2,3,6]. The secretory vesicles and the three different forms of granules are
important for enabling rapid changes in neutrophil function upon stimuli. Upon exocytosis,
the content is discharged to the surroundings while their membrane components become
expressed on the neutrophil cell surface, thereby, enabling the neutrophils to respond
promptly to additional stimuli in their surroundings.

The sequential release occurs in the opposite direction of their formation, meaning that
the secretory vesicles are the first to be released, then the tertiary granules, the secondary
granules and, at last, the primary granules [3]. The differential release of the various
granules of the neutrophils may contribute to the neutrophil heterogeneity, versatility
and plasticity observed under various pathophysiological conditions [7,8]. This may
also explain why the premature neutrophils released to the circulation exhibit different
properties than the mature neutrophils, and why the neutrophils, during their short lifespan,
exhibit different traits depending on the stimuli perceived and their stage of differentiation.

The short half-life of the circulating neutrophils together with the continuous replen-
ishment of neutrophils from the bone-marrow, leads to constant dynamic changes in the
neutrophil population. In addition, exposure to different combinations of cytokines and
chemokines modulates not only the activation state of the mature neutrophils but also
normal and emergency granulopoiesis [9,10].

1.2. The Neutrophil Life Cycle

Under healthy conditions, most of the immature neutrophils are retained in the
bone-marrow through CXCR4-CXCL12 ligation [11,12]. However, under inflammatory
conditions and in cancer, there is an increase in neutrophil mobilization resulting in the
release of immature neutrophils into circulation. G-CSF mobilizes neutrophils from the
bone-marrow to the circulation by Cathepsin G (CathG)- and Neutrophil elastase (NE)-
mediated cleavage of CXCR4 and its ligand CXCL12 [13]. The release of the neutrophils to
the circulation is accompanied by an upregulation of CXCR2 [11], which responds to the
chemokine CXCL2. CXCL2 is important for neutrophil recruitment both in inflammation
and in cancer [14].

Freshly released neutrophils express high levels of L-Selectin (CD62L) that is pro-
gressively reduced during their lifetime in circulation accompanied by the upregulation
of CXCR4 [15,16]. The circulating neutrophils also show heterogeneity in CD11b/CD18
(Mac-1) expression [17], which is important for interaction with endothelial cells [18,19],
erythrocytes [17], platelets [17] and T cells [20]. Intact Src kinase function was found to
be important for the full activation of the β2 integrins [21] and erythrocyte-neutrophil
interaction [17]. The senescent CXCR4-expressing neutrophils respond to the chemokine
CXCL12, resulting in their egress from the circulation into the bone marrow where they are
eliminated by macrophages [12] with feedback inhibition of neutrophil production through
the IL-17/G-CSF axis [22].

The increase in CXCR4 expression during neutrophil senescence is inhibited by IFNγ,
IFNα, IFNβ, GM-CSF and G-CSF [14,23], resulting in an extended neutrophil longevity
and an increase in the number of senescent neutrophils that have acquired different func-
tions than the newly released mature neutrophils [15,24,25]. The most prominent char-
acteristic of senescent neutrophils is their ability to form neutrophil extracellular traps
(NETs) [24], which is considered a neutrophil suicide mechanism to capture and kill mi-
croorganisms [26]. As will be discussed in Section 4.5, NETs are also involved in capturing
circulating tumor cells and promote their growth and metastatic seeding in a feed-forward
viscous loop.

1.3. General Neutrophil Functions

In general, neutrophils are considered to be immunosurveillance cells whose function
is to eliminate any foreign bodies that have penetrated the circulation and the tissues [7,27].
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Through their whole battery of membrane receptors and secretory molecules they com-
municate with other immune cells to elicit co-operating immune responses for combating
the invaders. In addition, they interact with both endothelial and epithelial cells and the
extracellular matrix that enable their migration into and through the tissues [28–30].

In addition to these functions, neutrophils play a central role in wound healing [31,32]
and in resolving inflammation [33]. Cancer is usually considered as “wounds that do
not heal”, and the tumor microenvironment shares several traits with wound healing
processes [34,35]. Moreover, tumors are characterized by a chronic inflammatory microen-
vironment and the immunosuppressive nature of the surroundings is responsible for tumor
angiogenesis, progression and invasion [36].

Neutrophils have been recognized to play an important role in cancer. However,
different studies have drawn opposite conclusions of the function of neutrophils in tumor
progression and metastasis, and many efforts have been made to understand this contro-
versy [37–49]. This review will discuss different aspects that can catch light on the growing
complexity of neutrophils in cancer. First, the evidence for neutrophil involvement in can-
cer will be discussed followed by neutrophil diversity and plasticity. Next, the mechanisms
regulating the pro- and anti-cancer phenotypes and their modes of action will be described.
Last, the mechanisms of neutrophil recognition of cancer cell will be highlighted with a spe-
cific emphasize on the newly recognized interaction between neutrophil-surface-expressed
Cathepsin G with tumor cell expressed RAGE.

2. Evidence for Neutrophil Involvement in Cancer
2.1. Overview of Tumor Models Showing Pro- versus Anti-Tumor Neutrophil Functions

Some studies claim a pro-tumor function where the neutrophils promote tumor growth
and metastasis formation, while, on the contrary, others have attributed an anti-tumor
function where the neutrophils prevent tumor progression and metastasis. Several of the
conflicting reports seem to lie in the different animal cancer models used, where elimination
of neutrophils in certain cancer models leads to reduced metastatic seeding indicative for a
pro-metastatic role [50–59], while similar elimination of neutrophils in other cancer models
leads to the opposite, namely an increase in metastases, suggesting for an anti-metastatic
activity of neutrophils [60–62] (Tables 1 and 2).

The conclusions of these studies are based on the use of antibodies that eliminate
neutrophils; however, it should be kept in mind that the neutrophils are continuously
replenished from the bone-marrow, and the newly released neutrophils, which have
resisted anti-Ly6-mediated depletion, may still be functional [63]. There is no possibility
to completely remove all neutrophils because this can lead to life-threatening infections.
Nevertheless, reducing the neutrophil number in tumor-bearing mice was sufficient to
alter the ability of the cancer cells to metastasize, whether it is an increase or a decrease in
the metastatic capability. When looking at neutrophils as a discrete cell type, the opposite
effects of neutrophil depletion on tumor growth and metastases can, in part, be explained
by differential activation of neutrophils by tumor cells and other cells in the tumor milieu,
resulting in distinct ratios of pro- versus anti-tumor neutrophils.

There is no simple explanation for these contradictory effects, which are mediated
by a complex crosstalk between neutrophils, other immune cells, tumor cells and stromal
cells in the tumor microenvironment [64]. As will be discussed in Section 3, the neutrophils
in cancer constitute a heterogeneous population of both anti- and pro-tumor neutrophils
as well as granulocyte myeloid-derived suppressor cells (G-MDSCs) [7,48,65–67]. The
ratio and locations of the different neutrophil subpopulations might dictate the net effect
of neutrophils on tumor progression and metastasis. The neutrophils in the metastatic
site might have different characteristics than those in the circulation and those at the
primary tumor site [65,68–70]. In some tumors, neutrophils do not affect the primary tumor
growth [51,60,71], while in others they do [72–74]. For instance, neutrophils isolated from
the primary tumor of 4T1 breast carcinoma barely exhibited anti-tumor activities, while
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those isolated from the lungs of the same animals showed anti-tumor activities to a similar
extent as the circulating neutrophils [68].

It has been suggested that high levels of TGFβ in the primary tumor prevent the
anti-tumor function of neutrophils and promote the appearance of an immunosuppressive
neutrophil population [68,75]. The TGFβ level is anticipated to be much lower in the pre-
metastatic lung, which thus enables the actions of anti-tumor neutrophils [68]. However, in
the MMTV-polyoma middle T antigen (PyMT) mammary tumor mouse model, neutrophil
recruitment to the pre-metastatic lung could specifically support metastatic initiation
through neutrophil-derived leukotrienes that promotes the growth of a subpopulation
of cancer cells [76]. Again, we see that the cancer regulating activities of neutrophils are
complex, full of dualities, which will be further discussed in this review.

Table 1. Examples of tumor models showing pro-tumor neutrophil functions.

Tumor Source Effect of Neutrophil Elimination Reference

UV-light induced cancer 4102-PRO that
has become resistant to cytotoxic T cells

Elimination of the neutrophils with anti-granulocyte antibodies
reduced tumor growth. [50]

RT7-4bs rat hepatocarcinoma cells
Neutrophils facilitate the attachment of the hepatocarcinoma cells to
vascular endothelial cells and increase tumor cell retention in the
lungs.

[52]

QR-32 fibrosarcoma

Neutrophil depletion prevented lung metastasis formation without
affecting the primary tumor.
When conducting the experiment in integrin β2 KO mice that had
impaired infiltration of neutrophils into the tumor, a strong reduction
in lung metastasis was observed.

[51]

66c14 breast carcinoma cells Elimination of neutrophils reduced the number of metastases. [77]

B16F10 melanoma and MCA205
fibrosarcoma cells Depletion of neutrophils inhibited tumor growth. [53]

H-59 Lewis lung carcinoma cells Neutrophil depletion reduced the development of surface liver
metastases. [54]

Chronic colitis-induced colon cancer

Depletion of neutrophils after the last administration of dextran
sulfate sodium (DSS), reduced the number and size of the tumors,
concomitant with decreased expression of CXCL2, Matrix
metalloproteinase 9 and Neutrophil elastase.

[55]

MMTV-PyMT mammary tumor model
Depletion of neutrophils in Rag1-null immune-comprised mice
harboring primary tumors during the pre-metastatic stage, led to
decreased metastatic seeding.

[76]

A model of invasive intestinal
adenocarcinoma (AhCreER; Apcfl/+;
Ptenfl/fl mice).

Depletion of neutrophils suppressed DMBA/TPA-induced skin
tumor growth and colitis-associated intestinal tumorigenesis and
reduced ApcMin/+ adenoma formation.

[78]

A spontaneous breast cancer model
(K14cre; Cdh1F/F;
Trp53F/F; KEP) mice

IL-17 produced by tumor-infiltrating γδ T cells recruits, expands and
activate neutrophils to promote lung metastasis of breast cancer.
Neutrophil depletion resulted in significant reduction in both
pulmonary and lymph node metastasis without affecting the primary
tumor growth.

[71]

LPS-induced lung inflammation model
for metastatic seeding of B16-BL6
melanoma and LLC Lewis lung
carcinoma cells

Recruitment of neutrophils expressing the inflammatory mediators
IL-1β, TNFα, IL-6 and COX2.
Depletion of neutrophils suppressed LLC lung metastases.
Neutrophil elastase and Cathepsin G degrade Thrombospondin 1,
thereby facilitate metastatic seeding in the lung.
Mice transplanted with neutrophils deficient for Neutrophil elastase
and Cathepsin G showed defective lung metastasis of LLC.

[79]

4T1 subclones selected for high
metastasis to the liver, the bone marrow,
or the lung

Depletion of neutrophils reduced the liver metastatic burden, but not
bone or lung metastatic burdens. [80]
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Table 1. Cont.

Tumor Source Effect of Neutrophil Elimination Reference

MMTV-PyVT spontaneous breast cancer
model in Col1a1tm1Jae mice resulting in
collagen-dense tumors

GM-CSF levels were increased in collagen-dense tumors.
Depletion of neutrophils reduced the number of tumors and blocked
metastasis in more than 80% of mice with collagen-dense tumors but
had no effect on tumor growth or metastasis in wild-type mice.

[57]

KrasG12D-driven mouse model of lung
cancer

Depletion of Gr1+ cells reduced lung tumor growth, reverted immune
exclusion and sensitized lesions to anti-PD1 immunotherapy. [81]

Human HCT-116, LoVo and HT29
colon carcinoma cells

Human colorectal cancer liver metastases and murine gastrointestinal
experimental liver metastases are infiltrated by neutrophils.
Depletion of neutrophils in established experimental, murine liver
metastases led to diminished metastatic growth.
Neutrophils contribute to angiogenesis through secretion of FGF2.

[82]

IL-11+ and VEGFD+ subclones of human
MDA-MB-468 breast cancer cells

Depletion of neutrophils prevents lung metastasis without affecting
the primary tumor growth.
The chemoattractants CXCL12, CXCL14 and CXCL1 that promote the
pro-tumor neutrophil phenotype, were found to be secreted by
IL-11-responsive mesenchymal stromal cells in the tumor
microenvironment.

[58]

Chemically induced cutaneous squamous
cell carcinoma (cSCC)

Depletion of neutrophils delayed tumor growth and significantly
increased the frequency of proliferating IFNγ-producing CD8+ T
cells.

[59]

Chronic wound inflammation-induced
melanoma in RasG12V zebrafish larvae

Delaying the development of neutrophils using morpholinos to
G-CSF, reduced the number of premetastatic cells. [56]

2.1.1. The Anti-Tumor Activities of Neutrophils Can Be Masked by the
Immunosuppressive Activities

Tumor rejection is achieved by a combined effect of direct anti-tumor activity of
neutrophils, neutrophil-induced anti-tumor T cell responses and anti-tumor NK cell activi-
ties [83]. Neutrophils might also modulate the anti-tumor function of macrophages [84].
However, the simultaneous presence of G-MDSCs that tune down the activities of both
cytotoxic T and NK cells might overshadow the anti-tumor neutrophil function in various
experimental settings [85,86]. Recently, Li et al. [87] observed that neutrophils have an
inhibitory effect on metastatic colonization of breast cancer cells in NK-deficient mice,
while facilitating metastatic colonization in NK cell competent mice. They argued that, in
both mice, the neutrophils showed anti-tumor activities. However, since the neutrophils
suppress the tumoricidal activity of NK cells, the elimination of neutrophils led to recovery
of the NK cells, which reduced the metastatic seeding. In this study, the input of NK cells
was larger than that of the anti-tumor neutrophils. Thus, the net in vivo effect of neutrophil
depletion on cancer metastasis is affected by the anti-tumor activity of other immune cells.

2.1.2. Tumors Secreting G-CSF/GM-CSF Together with Chemokines Induce a Predominant
Anti-Tumor Phenotype

Tumor models that showed predominant anti-tumor neutrophil function are charac-
terized by relatively high tumor cell production of CXCL2 and other chemokines together
with G-CSF/GM-CSF, resulting in the preferential accumulation of activated neutrophils
on the expense of other immune cells [60,61]. Under these conditions, the neutrophils are
the major players, and thus neutrophil depletion results in increased tumor growth [60,61].

The importance of chemokines in promoting the anti-tumor phenotype is supported
by the finding that PyMT-CXCR2−/− neutrophils exhibit reduced tumor killing activ-
ity with concomitant increased pro-tumor activities compared to PyMT-CXCR2+/+ neu-
trophils [69]. The picture becomes even more complex when we take into account that
the same neutrophil might change its activities during its short lifespan in circulation [67].
The anti-tumor activity is especially attributed to the young mature normal high-density
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neutrophils (HDN), which can convert into senescent low-density neutrophils (sLDN) that
exhibit pro-tumor activity [67]. Thus, factors increasing the longevity of neutrophils might
indirectly increase the pro-tumor function.

Table 2. Examples of tumor models showing anti-tumor neutrophil functions.

Tumor Source Effect of Neutrophil Elimination Reference

Murine ovarian teratocarcinoma
The tumors were rejected in mice treated with Corynebacterium
parvum.
The cytolytic activity was dependent on neutrophils.

[88]

Spontaneous mammary adenocarcinoma
TSA

Neutrophils were involved in the rejection of TSA overexpressing
various cytokines. [89]

SBcl2 primary melanoma cells Depletion of neutrophils enabled the growth and survival of
IL-8-overexpressing melanoma cells. [73]

RM1 mouse prostate cancer cells Neutrophil depletion prevented rejection of tumor cells induced by
adenovirus-mediated IL-12 gene therapy. [90]

TGFβ blockage of AB12 mesothelioma
cells

Depletion of neutrophils in AB12-tumor bearing mice treated with
the TGFβR inhibitor SM16, abolished the inhibition of tumor growth
caused by SM16.

[75]

4T1 breast cancer cells Elimination of neutrophils resulted in increased lung metastases
without affecting the primary tumor growth. [60]

RENCA renal carcinoma

Depletion of neutrophils caused an increased rate of metastatic
colonization without affecting the primary tumor growth.
Human neutrophils displayed a higher cytotoxic activity against
poorly metastatic SN12C RCC cells compared to highly metastatic
cells.
The poorly metastatic SN12C expressed higher levels of CXCL5 and
IL-8 that activate the anti-tumor neutrophil function.

[61]

LLC Lewis lung carcinoma Depletion of neutrophils resulted in enhanced primary tumor
growth. [74]

CXCL5-overexpressing B16F1
melanoma

Overexpression of CXCL5 led to reduced metastasis formation in
comparison to control tumor cells.
Neutrophil depletion in CXCL5-overexpressing tumor-bearing mice
caused increased metastasis formation.

[62]

Prostate cancer cells (C42B, PAIII and
LNCaP) injected into the tibia of SCID
mice

Prostate cancer cells secrete factors that activate neutrophils to kill the
tumor cells.
Neutrophil depletion led to increased tumor growth in the bones.

[91]

E0771 breast cancer cells

In NK cell-deficient mice, G-CSF-expanded neutrophils showed an
inhibitory effect on the metastatic colonization of breast tumor cells
in the lung.
In NK cell-competent mice, neutrophils facilitated metastatic
colonization in the same tumor models.

[87]

2.1.3. Neutrophils May Contribute to Immune Exclusion

In a KrasG12D-driven mouse model of lung cancer, the tumor was found to be mainly
infiltrated by neutrophils, while most of the other immune cells resided outside the tu-
mor mass indicating a state of immune exclusion [81]. Elimination of neutrophils led
to enrichment of FasLlow, MECA-79high endothelial cells in the tumor, which permitted
cytotoxic CD8+ T cell infiltration with concomitant reduction in T regulatory cells [81].
The neutrophils, through modulation of endothelial cells, caused intra-tumoral hypoxia,
and the resulting stabilization of HIF-1α induced Snail expression in the tumor cells [81].
Snail, in turn, led to CXCL5 secretion by the tumors with a concomitant increase in CXCL2
expression in the neutrophils [81]. This crosstalk made the tumor more aggressive [81].
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In a KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre mouse model of pancreatic adenocar-
cinoma, systemic depletion of GR1+ myeloid cells, including neutrophils, increased the
infiltration of effector T cells involved in the inhibition of tumor growth [92,93]. CXCR2
inhibition prevented neutrophil accumulation in the pancreatic tumors and led to a T
cell-dependent suppression of tumor growth [94]. Mehmeti-Ajradini et al. [95] observed
that G-MDSCs isolated from metastatic breast cancer cell patients reduced endothelial
expression of CX3CL1 (fractalkine) and prevented infiltration of myeloid immune cells
into the tumor.

The endothelial-derived CX3CL1 has been shown to be responsible for tuning im-
munologically cold tumor into hot tumor [96]. Its expression is downregulated by the
pro-angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fi-
broblast growth factor (bFGF) [97], which are among others produced by pro-tumor neu-
trophils or released from the extracellular matrix (ECM) by neutrophil-derived enzymes
(see Section 4.4).

2.2. Association of High Neutrophil-to-Lymphocyte Ratio (NLR) and Intra-Tumoral Neutrophil
Infiltration with Cancer Progression

Several studies have focused on the correlation between neutrophil blood count,
neutrophil-to-lymphocyte ratio (NLR) and/or intratumor neutrophil infiltration with the
overall survival, remission and/or disease recurrence in cancer patients. The impact of
these parameters on tumor progression depends on the cancer type and has been exten-
sively reviewed elsewhere [39,41,42,98]. A high neutrophil-to-lymphocyte ratio (NLR ≥ 4)
has often been associated with a poorer overall survival (e.g., ovarian cancer, pancreatic duc-
tal adenocarcinoma, breast cancer, colorectal carcinoma, esophageal cancer, glioblastoma
and head and neck cancer) [99–110].

A prognostic impact of NLR may be due to an association of high NLR with inflam-
mation [98]. A high NLR might also be indicative for a more advanced disease [111,112],
as neutrophil count often increases upon disease progression and, in such, might be a
reason for a shorter overall survival [41]. A high NLR may also be due to a distorted
preferential differentiation of hematopoietic stem cells to the granulocyte lineage and the
repression of T cell proliferation and cytolytic activities by neutrophilia [98]. Studies on
intra-tumoral neutrophils have shown conflicting results concerning their correlation with
tumor progression.

Most studies show an unfavorable outcome of high intra-tumoral neutrophil infiltra-
tion (e.g., gastric cancer, hepatocellular carcinoma, glioblastoma, bronchioloalveolar carci-
noma) [113–116]. However, higher tumor infiltration of myeloperoxidase (MPO)-positive
neutrophils had a favorable prognosis in advanced gastric carcinoma [117], esophageal
squamous cell carcinoma [118] and colorectal cancer [119].

It seems that a favorable prognosis of tumor-infiltrating neutrophils is related to a
concomitant presence of cytotoxic T cells in the tumor tissue [120]. Tumor-infiltrating neu-
trophils can support adaptive immune responses by recruiting T cells to tumor sites via the
secretion of chemokines, such as CCL5, CCL20, CXCL9, CXCL10 and CXCL11 [75,120,121].
Neutrophils can function as antigen-presenting cells and cross-present antigens to activate
cytotoxic T cells [122–124]. Moreover, neutrophils might lead to activation and recruitment
of dendritic cells through secretion of alarmins, such as defensins, cathelicidin, lactoferrin
and HMGB1 [125].

2.3. Chronic Neutrophilic Inflammation Promotes RAGE-Dependent Carcinogenesis

In human, chronic neutrophilic inflammation has been shown to be involved in the
initiation phase of many types of epithelial cancers as well as to contribute to the later
phases of cancer development [47,126,127] (Figure 1). The prolonged exposure of epithelial
cells to reactive oxygen and nitrogen species (ROS/RNS) produced by inflammatory
neutrophils may lead to mutagenesis and the initiation of carcinogenesis [47]. Elevated
levels of ROS cause the oxidation of proteins, lipids and nucleic acids [128].
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cytokines, chemokines and reactive oxygen species (ROS) that leads to a continuous activation of NFκB in neutrophils, 
endothelial and epithelial cells, resulting in the upregulation of RAGE, which, in turn, becomes activated by its many 
ligands present in the inflamed area. Among them, HMGB1, which is released upon tissue injury and NETosis, plays a 
particular role in activating endothelial cells and in inducing proliferation and migration of epithelial cells. HMGB1 also 
modulates neutrophil functions. The activated endothelial cells upregulate the adhesion molecules ICAM-1 and VCAM-1 
that facilitate neutrophil endothelial transmigration. Activation of RAGE in epithelial cells leads to the production of 
chemokines that attract more neutrophils and other immune cells, thereby, aggravating the inflammatory process. Other 
RAGE ligands involved in inflammation-induced carcinogenesis include advanced glycation end products (AGEs) that 
are proteins or lipids that have become glycated after exposure to excess sugars and S100 proteins, such as S100A4 and 
S100A7 produced by tumor cells and S100A8/S100A9 produced by neutrophils. The prolonged exposure of the epithelial 
cells to RAGE ligands, NETs, chemokines, ROS and other stress stimuli, ultimately leads to the initiation of carcinogenesis. 
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Figure 1. Chronic inflammation-induced carcinogenesis. The figure illustrates pathways in chronic neutrophilic
inflammation-induced carcinogenesis that involves the activation of the RAGE signaling pathways in neutrophils (blue
boxes), endothelial cells (green boxes) and epithelial cells (brown boxes). The different circuits and pathways are discussed
in more details in other parts of the review. Briefly, the chronic inflammation is characterized by neutrophil production
of cytokines, chemokines and reactive oxygen species (ROS) that leads to a continuous activation of NFκB in neutrophils,
endothelial and epithelial cells, resulting in the upregulation of RAGE, which, in turn, becomes activated by its many
ligands present in the inflamed area. Among them, HMGB1, which is released upon tissue injury and NETosis, plays a
particular role in activating endothelial cells and in inducing proliferation and migration of epithelial cells. HMGB1 also
modulates neutrophil functions. The activated endothelial cells upregulate the adhesion molecules ICAM-1 and VCAM-1
that facilitate neutrophil endothelial transmigration. Activation of RAGE in epithelial cells leads to the production of
chemokines that attract more neutrophils and other immune cells, thereby, aggravating the inflammatory process. Other
RAGE ligands involved in inflammation-induced carcinogenesis include advanced glycation end products (AGEs) that are
proteins or lipids that have become glycated after exposure to excess sugars and S100 proteins, such as S100A4 and S100A7
produced by tumor cells and S100A8/S100A9 produced by neutrophils. The prolonged exposure of the epithelial cells to
RAGE ligands, NETs, chemokines, ROS and other stress stimuli, ultimately leads to the initiation of carcinogenesis.

Usually, the oxidized proteins become degraded by the 20S proteasome; however,
under conditions where the advanced glycation end products (AGEs) are elevated, the
bulky structure of AGEs blocks their entry into the proteasomal core [128]. This leads
to elevated levels of oxidized and damaged proteins, which promotes further protein
modifications [128]. The increased oxidation of lipids and glucose bolsters accelerated
formation of AGEs that usually accumulate during aging and in diabetes [128]. AGEs, in
turn, activate RAGE and other AGE-receptor complexes [128] resulting in cancer initiation
and progression [129,130].

Inflammation triggers the upregulation of RAGE, which is a surface molecule im-
portant for sustaining inflammation and establishment of chronic inflammatory disor-
ders [131–134]. RAGE KO mice are protected from the lethal effects of septic shock, which
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is related to the reduced local inflammation and decreased NFκB activation in the target
organs [135]. Blockage of RAGE quenched delayed-type hypersensitivity and inflammatory
colitis in murine models by arresting the activation of central signaling pathways and the
expression of inflammatory gene mediators [136,137]. RAGE KO mice showed reduced
recruitment of neutrophils to inflamed peritoneum, a process that is partly mediated by the
interaction of endothelial expressed RAGE with the β-integrin Mac-1 on neutrophils [137].

RAGE is upregulated in endothelial cells upon inflammation and the RAGE–Mac-1
interaction acts in concert with ICAM-1–Mac-1 interaction in the recruitment of neu-
trophils [137]. S100A12 (EN-RAGE) increased VCAM-1 and ICAM-1 expression on en-
dothelial cells in a RAGE-dependent manner [137]. Upregulation of RAGE on epithelial
cells may provide outside-in signals that stimulate their proliferation and ultimately cause
cancer development [138–140]. Thus, RAGE expressed on neutrophils, endothelial cells and
epithelial cells is involved in neutrophilic inflammation-induced carcinogenesis. Further
description on the role of RAGE in cancer will be discussed in Section 6.

Neutrophils have been documented to promote chronic colitis-associated carcinogene-
sis in mice [55], which is, in part, mediated by ROS-induced epithelial mutagenesis [141].
In a sustained inflammation model in mice caused by tobacco smoke exposure or nasal
instillation of lipopolysaccharide, neutrophil extracellular traps (NETs) were shown to
awaken dormant cancer [142]. The NET-associated proteases, neutrophil elastase (NE)
and matrix metalloproteinase 9 (MMP-9), cleaved laminin, resulting in the proliferation of
dormant cancer cells by activating integrin signaling [142]. In this respect, it is notably that
components of NETs (e.g., HMGB1) can interact with RAGE, which elicits proliferative
signals in target cells [143].

3. Neutrophil Heterogeneity and Subpopulations in Cancer

Several terminologies have entered the literature describing the opposite features of
neutrophils in cancer, such as “N1” and “N2” polarization [144], granulocyte myeloid-
derived suppressor cells (G-MDSCs) [47,145], neutrophil heterogeneity [65], neutrophil
diversity [66], neutrophil plasticity [1,46,146], tumor-associated neutrophils (TANs) [46],
tumor-entrained neutrophils (TENs) [60], tumor-educated neutrophils (TENs) [147], tumor-
elicited neutrophils (TENs) [148], mature HDNs, immature LDNs (iLDNs) and senescent
LDNs (sLDNs) [67].

The appearance of all these concepts reflects the influence of the tumor microenvi-
ronment on neutrophil function, which undergoes constant dynamic changes in response
to the diverse stimuli provided by the tumor cells and other cells in the surroundings.
Some of these concepts are overlapping with some nuances. The neutrophil plasticity is the
underlying reason for the heterogeneity and diversity, and usually the general neutrophil
population is a composite of various neutrophil subpopulations. The TANs and the dif-
ferent forms of TENs can exhibit quite different phenotypes depending on the cancer cell
type and the influence of other cells and components in the microenvironment.

The multifaceted characteristics of neutrophils are not surprising considering their
nature to be already pre-equipped with a whole battery of substances stored in their many
granules [2,5,8,149] and the surface expression of a multitude of chemokine and cytokine
receptors [9], pattern recognition receptors [150], C-type lectin receptors [150], Fc recep-
tors [150], carcinoembryonic antigen-related cell adhesion molecule (CEACAM)3 [151],
sialic acid-binding immunoglobulin-like lectin (Siglec)-14 [152], leukocyte immunoglobulin-
like receptors [153] and complement receptors of the β-integrin family [154] that enable a
rapid response to almost any encountered stimuli.

3.1. HDN versus LDN

The concepts HDN and LDN come from their different cell buoyancy as defined by a
density sucrose gradient. The mature regular HDN population has a cell density greater
than 1.080 g/mL contributed by their numerous granules, whereas the LDN population has
a density lower than 1.077 g/mL [67,70]. Circulating LDNs are either immature, banded
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neutrophils released from the bone-marrow prior to full maturation or mature activated
neutrophils that have undergone degranulation or senescence. In tumor-bearing mice,
immature LDNs might differentiate into HDN in the circulation, and HDNs might turn
into senescent LDNs upon activation [67].

The major anti-tumor activity is exerted by HDNs, while LDNs has been attributed
a pro-tumor role with immunosuppressive properties [67]. The immature LDNs express
elevated levels of PD-L1 [155] that suppresses the activities of cytotoxic T cells [155] and
NK cells [156]. The IL-6-STAT3 axis was involved in the induction of PD-L1-positive
neutrophils [157]. The PD-L1-positive neutrophils were associated with the resolution
phase of inflammation [155]. The immature LDNs of 4T1 tumor-bearing mice showed
a C/EBPε (CCAAT/enhancer binding protein epsilon) transcriptional signature [158].
C/EBPε is a transcription factor that regulates transition from the promyelocytic stage to
the myelocytic stage of neutrophil development, being indispensable for secondary and
tertiary granule formation [3].

In healthy mice, most of the circulating neutrophils (95%) are segregated in the high-
density fraction, while, in 4T1 breast carcinoma-bearing mice, which are characterized
by neutrophilia, the ratio of LDN-to-HDN increases upon tumor progression reaching
up to 45–55% LDNs [67]. Costanzo-Garvey et al. [15] noticed that neutrophils in the
vicinity of bone metastatic prostate cancer exerted cytotoxic activity against the cancer
cells; however, upon tumor progression, the neutrophils failed to elicit cytotoxic effector
responses. These findings have raised the hypothesis of an “immunosuppressive switch”
where the anti-tumor function of neutrophils is predominant during the early stages of
tumor development, while the pro-tumor function is prevailing at the later stages [146].

Notably, in the 4T1 tumor model, tumor cell killing by HDNs from mice with early-
stage tumors was similar to that of HDNs from late-stage tumors, indicating that the gener-
ation of anti-tumor HDNs still persists despite the dramatic increase in LDNs upon tumor
progression [67]. LDNs that have been spontaneously generated from HDN ex vivo, sup-
pressed CD8+ T cell proliferation [67]. These LDNs might represent senescent neutrophils.

An increase in circulating LDNs was also observed in lung and breast cancer pa-
tients [67,159]. These LDNs showed increased expression of CD66b, which is a marker
of neutrophil activation [67]. Elevated LDN (>10%) correlated with poorer prognosis in
late-stage lung cancer patients [159]. The advanced lung patients showed an increase in
LDNs expressing the CD66b+/CD10low/CXCR4+/PD-L1inter signature [159], suggesting
an increase in the senescent neutrophil population that exhibits tumor-promoting activities.

Costanzo-Garvey et al. [15] observed that the same neutrophil population that was cy-
totoxic towards the tumor cells were also suppressive to T cells. Likewise, Aarts et al. [160]
observed that MDSC activity acquired during neutrophil maturation correlated with the
induction of the cytotoxic effector functions of the circulating mature neutrophils. Sagiv
et al. [67], however, discerned that these two activities are exerted by distinct neutrophil
subpopulations. The regular HDNs were shown to be cytotoxic to tumor cells, while the
LDNs were immunosuppressive [67]. As both functions depend on ROS, it is likely that
there are some overlapping activities between the different subpopulations.

3.2. G-MDSCs

The concept of G-MDSCs was introduced when observing the presence of myeloid-
derived suppressor cells in cancer patients that tuned down the immune system [85,86]. The
G-MDSCs share many traits with immature LDNs that have been released from the bone-
marrow before reaching full maturity [161]. However, not all LDNs are G-MDSCs [158],
and G-MDSCs found in cancer may display heterogeneous morphology, including blast-
like myelocytes, banded neutrophils as well as mature neutrophils [95]. G-MDSCs also
share many pro-tumor features of tumor-associated neutrophils (TANs) [40]. Thus, G-
MDSC cannot be categorized into one neutrophil subpopulation but rather is a concept
describing a specified neutrophil phenotype.
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G-MDSCs promote angiogenesis, produce high levels of MMP9 and augment tumor
growth [162]. G-MDSCs show increased NADPH oxidase (NOX2) activity resulting in
augmented production of reactive oxygen species (ROS), such as superoxide anion (O2

−·),
hydrogen peroxide (H2O2) and peroxynitrite (ONOO−·) [163,164]. In addition, G-MDSCs
show high Arginase 1 (ARG1) activity [163,165] that decomposes L-arginine into urea and
L-ornithine [166], and an upregulation of inducible nitric oxide synthase (iNOS/NOS2)
that catalyzes the reaction leading to the production of the NO· radical [163]. The enhanced
production of ROS together with arginine depletion, nitric oxide radicals, MPO, and
inhibitory cytokines contribute to the immunosuppressive features of G-MDSCs [47,163];
however, at the same time, these molecules have anti-tumor activities [41,60,166–168].

The MDSC phenotype can be induced by G-CSF [77,169–172], GM-CSF [173], IL-1β [174,175],
IL-6 [176], TNFα [177,178], prostaglandin E2 (PGE2) [179], IL-4 [180], S100A9 [181,182], vascular
endothelial growth factor (VEGF) [183], N-formylmethionyl-leucyl-phenylalanine (fMLP) [20],
lipopolysaccharide (LPS) [20], ROS [184] and the chemokines CXCL17 [185] and CCL3/4/5 [186].
The CCL3/4/5 chemokines also directly promote tumor growth and angiogenesis [187]. TNFα
induced the expression of both S100A8/S100A9 and Receptor for advanced glycation end products
(RAGE) on MDSCs, which contributes to their accumulation [178]. The induction of S100A9 is
regulated by the STAT3 signaling pathway [182].

Interaction of S100A9 with RAGE led to p38 MAPK-mediated chemotaxis of MDSCs,
while its interaction with Toll-like receptor 4 (TLR4) induced NFκB-mediated activation of
MDSCs [181]. Mice lacking S100A9 mounted potent anti-tumor immune responses due to
lack of MDSC induction [182]. Targeted ablation of RAGE in Pdx1-Cre:KrasG12D/+ mice
limited the development of pancreatic intraepithelial neoplasia lesions with consequent
reduced accumulation of MDSCs [188].

3.3. “N1” versus “N2” Neutrophils

The concept “N1” was introduced to describe the anti-tumor neutrophil population
and “N2” for the pro-tumor neutrophil population [144] in analogy to the anti-tumor “M1”
and pro-tumor “M2” macrophages [189]. It should be noted that this nomenclature is a
concept made according to a specific function, and thus each neutrophil category might
be versatile. The “N1” population can be converted to “N2”, e.g., by TGFβ [75] or after
prolonged exposure to G-CSF [190]. Vice versa, the “N2” population can be converted to
“N1”, e.g., by IFNβ [53,191]. The G-MDSCs might be considered a subgroup of the “N2”
neutrophil population [192].

Usually, “N1” neutrophils appear with hypersegmented nuclei with HDN characteris-
tics, whereas “N2” neutrophils often show banded or ring-like nuclei with LDN traits [75]
or might be senescent mature neutrophils [67] (Table 3). The “N1” phenotype showed a
quite different gene signature than the “N2” phenotype [158,193–195]. The anti-tumor “N1”
phenotype exhibited increased tumor cytotoxicity, elevated expression of CXCL13, CCL3,
CCL6, CXCL10, TNFα and ICAM-1 and low ARG1 content, while the pro-tumor “N2”
neutrophils expressed high levels of ARG1, MMP9, VEGF and several cytokines, including
CCL2, CCL5, CCL17 and CXCL4 [75,193,194].

3.4. Neutrophils at Distinct Stages during Their Lifespan in Circulation Respond Differentially
to Stimuli

The heterogeneity of the general circulating neutrophil population seems to be a
continuum of distinct activation stages of the neutrophils during their short lifespan as a
result of exposure to multiple signals from the microenvironment that act in synergism or
antagonism. Only a certain fraction of the circulating neutrophils responds to a stimulus
at a given time point, suggesting that they are receptive for a stimulus only at a certain
time point during their lifespan in the circulation. Similarly, only a fraction (4–10%) of the
HDN population interacts with tumor cells and shows anti-tumor activities at a given time
point [196,197].

Adrover et al. [25] studied this phenomenon by using Arntl∆N neutrophils that do
not become senescent and remain in the phenotype of “constitutively fresh neutrophils”
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and Cxcr4∆N neutrophils that are not reabsorbed back to the bone-marrow and, in such,
display a predominant phenotype of “constitutively aged neutrophils”. This research
group found that diurnal aging dictates how and when neutrophils migrate into tissues.
The freshly released neutrophils responded to the chemokine CXCL2 and migrated into
inflamed tissue, while the accumulation of aged neutrophils led to vascular injury and
enhanced anti-microbial responses [25].

Other data suggest that subpopulations of neutrophils are activated and differentiated
to gain specific functions [27]. For instance, there is a subpopulation of tumor-associated
neutrophils whose origin is from CD11b+CD15hiCD10−CD16low immature progenitors
that can cross-present antigens, and trigger and augment anti-tumor T cell responses [198].
This subpopulation of neutrophils is triggered by a combined effect of IFNγ and GM-CSF
within the tumor [198].

Puga et al. [199] observed that neutrophils in the spleen support B cell maturation and
antibody production, while Casanova-Acebes et al. [15] found that bone marrow-infiltrating
aged (CD62LlowCXCR4high) neutrophils inhibit hematopoietic niches and trigger the re-
lease of hematopoietic progenitor cells into the blood stream. Thus, different neutrophil
populations might exert specific functions.

4. The Delicate Balance between Anti- and Pro-Tumor Neutrophils
4.1. Regulation of Anti-Tumor Neutrophils

Factors that can promote the anti-tumor neutrophil phenotype include chemokines
(e.g., CXCL2, CXCL5, CXCL8, CCL2, CCL3, CCL5, CXCL12 (SDF-1), CXCL16 and IL-8)
alone or together with G-CSF/GM-CSF [60–62,200,201], TNFα [200], IFNβ [53], IFNγ [202],
IFNγ together with TNFα [203], Resolvin D1 [84], hepatocyte growth factor (HGF) [168]
and IL-17 [118] (Table 3). TNFα, CXCL8 and IFNγ could mobilize the extrinsic apoptosis-
promoting TRAIL from intracellular stores to the neutrophil cell surface, which is involved
in the killing of cancer cells [200,202]. TRAIL might also inhibit tumor growth by preventing
the angiogenesis required for their proper growth [204,205]. IFNγ and TNFα reduced the
expression of Bv8 and MMP9, while resuming the expression of Rab27a and TRAIL [203].
Rab27a is required for the exocytosis of tertiary and specific granules in neutrophils [206].

Table 3. Characteristics of anti- and pro-tumor neutrophils. The table emphasizes some specific traits that have been
attributed to the activation and function of anti- versus pro-tumor neutrophils. Concerning the heterogeneous “N2”
population, some of the traits are related to the immature LDNs (labeled with *) or the senescent mature neutrophils (labeled
with **). Most studies on “N2” neutrophils have not discerned between the different “N2” subpopulations, and thus the
general concept is provided. The section number in which the subject is discussed is mentioned in parentheses.

Anti-Tumor Neutrophils
(“N1”)

Pro-Tumor Neutrophils
(“N2”) References

Neutrophil subpopulation
(Section 3)

Mainly mature HDN with
hypersegmented nuclei

LDN; G-MDSC; immature
neutrophils with banded or ring-like
nuclei; senescent neutrophils

[46,47,60,67,144,145]

Induction of the
phenotype
(Sections 4.1 and 4.2)

CXCL2 + GM-CSF/G-CSF
Diverse cytokines (e.g., CCL2,
CCL3, CCL5, CXCL5, CXCL12
(SDF-1) and CXCL16)
IFNβ
IFNγ + TNFα
IL-17
Resolvin D1

CXCL5, CXCL8, CXCL17, CCL3/4/5
fMLP, TNFα or LPS
G-CSF, GM-CSF
IL-1β, IL-4, IL-6, IL-11, IL-35
IL-6 + GM-CSF
IL-17 + G-CSF
PGE2, S100A8/S100A9, VEGF
TGFβ
Hyaluronan fragments
MIF
Oxysterol
Cancer-specific peptide of
Vacuolar-ATPase a2 isoform (a2NTD)

[9,14,20,53,58,60–
62,68,71,75,77,84,116,118,
159,168–175,177–
186,194,200–203,207–218]
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Table 3. Cont.

Anti-Tumor Neutrophils
(“N1”)

Pro-Tumor Neutrophils
(“N2”) References

Characteristics of the
subpopulations
(Sections 3, 4.3 and 4.4)

Increased Mac-1 and ICAM-1
expression.
CD62LhighCXCR4low

Produce H2O2, O2
−·, OCl−,

FasL and TRAIL, which are
cytotoxic to tumor cells
Secrete CXCL13, CCL3, CCL6,
CXCL10, TNFα

CD62LhighCXCR4low *
CD62LlowCXCR4highTLR4high **
Increased Mac-1 and ICAM-1
expression **
Increased PD-L1 expression *
Produce H2O2, O2

−·, OCl−, NO·,
ONOO−·, ARG1, IDO
Secrete MMP8/9, NE, CathG, VEGF,
Bv8, FGF2
HGF, CCL2, CCL5, CCL17, CXCL4
LOX-1, FATP2, COX2, iNOS
IL-1β, TNFα, IL-6, Oncostatin M,
Transferrin
NET production **
Represses the cytotoxic activity of T
and NK cells *

[15,24,47,53,59–
61,75,77,114,116,118,155,
167,168,172,202,219–237]

Recognition of tumor cells
(Section 5)

Cathepsin G-RAGE
interaction

Mac-1–ICAM-1 interaction
L-selectin-sialomucin interaction
PR3-RAGE interaction

[54,227,238–244]

Activated intracellular
signaling pathways of the
subpopulations
(Sections 3, 4.1 and 4.2)

PI3K and p38 MAPK
signaling pathways
Src kinase
Upregulation of Rab27a

STAT3 activation
JAK/STAT5β
Immature LDNs possess a C/EBPε
transcriptional signature

[21,53,157,158,203,245,
246]

In addition, IFNγ and TNFα led to an upregulation of NK-activating ligands, such
as RAE-1, MULT-1 and H60, that enhanced the cytotoxic activity of NK cells [203]. The
binding of tumor-derived HGF to MET+ neutrophils induced the release of nitric oxide
(NO·), which is cytotoxic to cancer cells [168]. IL-17 was found to potentiate the anti-tumor
activity of neutrophils by enhancing the production of cytotoxic molecules, including ROS,
MPO, TRAIL and IFNγ [118]. IL-17 also stimulates esophageal squamous cell carcinoma
to secrete chemokines CXCL2 and CXCL3, which recruit neutrophils [118]. Resolvin D1,
which is involved in the resolution of inflammation, was found to stimulate both the anti-
tumor activities of neutrophils and the neutrophil-dependent recruitment of anti-tumor
macrophages, thus, enhancing the anti-tumor action [84].

STAT3KO neutrophils from naïve and B16 tumor-bearing mice showed enhanced
anti-tumor function towards P815 mouse mastocytoma in comparison to wild-type neu-
trophils [246]. FasL was increased in STAT3KO neutrophils [246] and contributes to neu-
trophil cytotoxicity [219]. IFNβ repressed STAT3 activity in tumor-infiltrating IFNβKO

neutrophils resulting in anti-angiogenic and anti-tumor effects [53]. Tumor growth was
accelerated in IFNβKO mice [53]. IFNβ has also a direct effect on cancer cells. It antago-
nizes the pro-tumor effects of oncostatin M on triple-negative breast cancer stem cells [220].
While oncostatin M induces SMAD3-dependent upregulation of Snail and dedifferentiation
of cancer stem cells, IFNβ prevents Snail expression and suppresses tumor growth [220].

4.2. Regulation of Pro-Tumor Neutrophils

Factors that promote the pro-tumor neutrophil phenotype include TGFβ [75], VEGF [209,210],
IL-11 with FOS-induced growth factor (FIGF/VEGFD) [58], IL-17 [71], IL-35 [211], IL-6 together
with G-CSF [211,212], the chemokines CXCL12, CXCL14, CXCL5 and CXCL1 [58], oxysterol [213],
hyaluronan fragments [214], GM-CSF [215] and macrophage migration inhibitory factor (MIF) [216]
(Table 3). Co-stimulation of neutrophils with IL-6 and G-CSF increased phospho-STAT3 levels,
resulting in the upregulation of the pro-angiogenic MMP9 and Bv8 and downregulation of
TRAIL [211,212].
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G-CSF may also stimulate VEGF release from neutrophils [247], thereby, promoting
angiogenesis. Increased serum levels of G-CSF and IL-6 have been associated with a poor
prognosis in different type of cancer [248–254]. Priming pro-tumor neutrophils with IFNγ
and TNFα could convert them to tumor-suppressing cells even in the presence of G-CSF
and IL-6 by restoring the PI3K and p38 MAPK signaling pathways [203]. Hyaluronan was
found to activate the TLR4/PI3K/Akt pathway, boost the production of inflammatory
cytokines and increase the Mcl-1 levels in the neutrophils resulting in long-lived neutrophils
that has lost the ability to kill tumor cells [214]. Long-lived pro-tumor neutrophils were also
observed when exposed to IL-6 produced by cancer-derived mesenchymal stem cells [255].

Advanced cancer frequently shows upregulated chemokine expression [187,256],
which may contribute to altered neutrophil function in cancer [9,217]. The chemokines
are not only important for tumor cell and immune cell trafficking but also have tumor-
sustaining activities [217,218,256] and may induce angiogenesis and lymphangiogene-
sis [218]. The neutrophils themselves are a major source for chemokines [121], such that
the initial exposure of neutrophils to tumor-derived chemokines leads to the induction
of further chemokine secretion by the neutrophils resulting in a feed-forward regulatory
loop [9,41]. The complexity of the chemokine network provides an explanation on how
neutrophils encountering a tumor may exert both anti-tumor and pro-tumor properties
(Figure 2).
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and ECM modulating enzymes. Thus, the tumor-attracted neutrophil can both exert anti-tumor and pro-tumor actions.

Another example of neutrophil–tumor cell crosstalk is the finding that GM-CSF
secreted by human breast cancer cells increases CD11b/CD18 (Mac-1) expression on
neutrophils, which interacts with ICAM-1 expressed on the tumor cells, resulting in
subsequent neutrophil-mediated transendothelial migration of the tumor cells [257,258].
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Sprouse et al. [259] observed that G-MDSCs enhanced the metastatic properties of circulat-
ing tumor cells (CTCs) in a positive feedback loop. The CTCs induce ROS production in
G-MDSCs through a paracrine Nodal signaling pathway. ROS, in turn, upregulates Notch1
receptor expression in CTCs through the ROS-NRF2-ARE axis, which is then activated by
its ligand Jagged1 expressed on G-MDSCs [259].

Engblom et al. [260] observed that lung adenocarcinoma cells release sRAGE into the
circulation that activates osteocalcin-expressing osteoblasts in the bone marrow to promote
the generation of a specific subset of pro-tumorigenic neutrophils. These neutrophils
expressed high levels of sialic acid-binding immunoglobulin-like lectin F (SiglecF), which is
not expressed on neutrophils of healthy animals [260]. The SiglecFhi neutrophils expressed
higher levels of genes involved in angiogenesis (VEGFA, HIF1a and Sema4d), myeloid cell
differentiation and recruitment (CSF1/M-CSF, CCL3 and MIF), T cell suppression (PD-L1
and FCGR2b) and ECM remodeling (ADAM17 and various cathepsins) [260]. The SiglecFhi

neutrophils showed increased ROS production compared to SiglecFlow neutrophils [260].
The SiglecFhi neutrophils accumulate in lung carcinoma where they can survive for several
days [261].

4.3. The Anti-Tumor Actions of Neutrophils

To exert direct anti-tumor function, the neutrophils need to be attracted to the tumor
cells, interact with the tumor cell and become activated to produce cytotoxic molecules
that provide the lethal hit, and the tumor cells need to be susceptible to the cytotoxic
molecules. The attraction of neutrophils towards the tumor cells is mediated by chemokines
produced by the tumor cells or other cells infiltrating the tumor microenvironment. The
chemoattracted neutrophils become activated to produce additional chemokines, thereby,
attracting additional neutrophils and other immune cells to the microenvironment in a
feed-forward mechanism [41].

The activated neutrophils kill the tumor cells by a combined effect of reactive oxy-
gen and nitrogen species, such as hydrogen peroxide (H2O2), superoxide anion (O2

−·),
hypochlorous acid (HOCl) and nitric oxide radical (NO·), together with FasL and TRAIL
[53,60,75,118,167,168,202,219,221–225] (Figure 3). Recently, human neutrophil elastase was
found to kill tumor cells by proteolytically liberating the CD95 death domain, which
interacts with histone H1 isoforms [262]. Neutrophils might also kill tumor cells by
antibody-dependent cellular cytotoxicity (ADCC) [263]. The killing of antibody-opsonized
cancer cells by neutrophils was shown to occur by trogocytosis, where the neutrophils
retrieve membranes from the tumor cells resulting in the disruption of the cancer cell
plasma membrane [264].

Since both the anti-tumor neutrophils and the pro-tumor neutrophils produce ROS
while only the former has the propensity to kill tumor cells, it seems that ROS alone is
not sufficient to induce tumor cell killing but rather requires additional signals, such as
the simultaneous expression of TRAIL [53,200,202]. TRAIL expression is upregulated
by IFNβ that converts “N2” neutrophils into “N1” neutrophils [53] and down-regulated
when neutrophils are converted into “N2” neutrophils by IL-6 in combination with G-
CSF [211,212]. Increased production of ROS can regulate TRAIL signaling in cancer cells
by ROS-ERK-CHOP-mediated up-regulation of the TRAIL receptors DR4 and DR5 expres-
sion [265]. Furthermore, ROS-induced phosphorylation of Bax at threonine-167, could
sensitize melanoma cells to TRAIL-mediated apoptosis [266]. Thus, ROS may increase the
susceptibility of cancer cells to TRAIL.

While ROS is crucial for the anti-tumor function of neutrophils [60], ROS can also
promote tumor growth by activating the NFκB and PI3K/Akt/mTOR survival signal trans-
duction pathways in the tumor cells [267] and by inducing angiogenesis [268]. In addition,
ROS production may contribute to the T cell suppressive activities of MDSCs [20,269],
repress NK cell activity [87] and promote carcinogenesis by inducing genotoxic muta-
tions [268,270].
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Figure 3. The intricate anti- and pro-tumor functions of neutrophils. The activities of neutrophils can be modulated by
a wide range of factors produced by tumor cells, stromal cells, neutrophils and other immune cells. Chemokines and
certain cytokine combinations in the presence of interferons can activate the neutrophils to an anti-tumor “N1” phenotype.
These neutrophils are important for tumor cell rejection either by a direct tumor cell killing caused by a combination of the
cytotoxic molecules H2O2, O2

−·, OCl−, NO·, TRAIL and FasL, or indirectly by recruiting cytotoxic T lymphocytes (CTL)
and NK cells that eliminate the tumor cells. Other cytokine/chemokine combinations can lead to an alternative activation of
the neutrophils to acquire a pro-tumor “N2” phenotype that promotes tumor cell proliferation and migration by secreting
tumor promoting growth factors and by remodeling the extracellular matrix (ECM). In addition, the “N2” neutrophils
promote angiogenesis, which is important for tumor cell expansion, and repress CTL and NK anti-tumor functions. The
“N2” population is heterogeneous, composed of immature LDNs, G-MDSCs and senescent neutrophils.

ROS production is also important for emergency granulopoiesis [271] and neutrophil
extracellular trap (NET) formation [223,272–274]. During inflammation, there is an increase
in ROS levels in the bone marrow. ROS leads to oxidation and deactivation of phos-
phatase and tensin homolog (PTEN) resulting in the upregulation of phosphatidylinositol-
3,4,5-triphosphate (PtdIns(3,4,5)P3) survival signaling pathways in bone marrow myeloid
cells [271]. The production of ROS and nitric oxide might be harmful for healthy tissue and
contribute to tissue injury and local microvascular leakage [275]. Thus, neutrophil ROS
production might exert both anti- and pro-tumor effects (Figure 4).
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Cancer cells are usually more susceptible to neutrophil-mediated killing than normal
healthy cells, and neutrophils from cancer patients show, in general, a higher anti-tumor
activity than neutrophils from healthy individuals [41,60,225]. Overexpressing of an acti-
vated form of the rat sarcoma viral oncogene homolog (Ras) and teratocarcinoma oncogene
21 (TC21) in immortalized mammary epithelial cells was sufficient to sensitize the cells to
neutrophil killing [225].

Pretreatment of 4T1 breast cancer cells with TGFβ increased their susceptibility to
neutrophil-mediated cytotoxicity [68], which might be explained by the more apoptosis-
prone mesenchymal phenotype of TGFβ-treated tumor cells [276]. Thus, TGFβ might,
on the one hand, prevent the anti-tumor function of neutrophils [75], but might, on the
other hand, increase the susceptibility of the tumor cells to the cytotoxic hits. The higher
susceptibility of the mesenchymal cells to neutrophils in comparison to epithelial cells of
the same tumor [68] is intriguing considering their increased metastatic potential [277,278].

4.4. The Pro-Tumor Actions of Neutrophils

Tumor-associated neutrophils may directly or indirectly affect tumor growth and in-
vasion by multiple mechanisms. There is also a complex crosstalk between the neutrophils
and tumor cells that fuels tumor cell growth, migration and metastasis. Many of the
pro-tumor functions of the neutrophils are related to their wound healing activities [279].
Neutrophils can indirectly affect tumor growth by stimulating angiogenesis [280] and
altering the phenotype of endothelial cells [81].

The neutrophils secrete several inflammatory, immunoregulatory and angiogenic fac-
tors, including NE [226], PR3 [227], CathG [228,229], MMPs [114,230,231], VEGF
[53,232–234], Bv8 (prokineticin 2) [77,172,235], oncostatin M [236], IL-1β [231], TGFβ2 [237],
BMP2 [237] and HGF [116], that modulate the tumor microenvironment and affect tumor
growth (Figure 3). The protumor function of neutrophils is also associated with the appear-
ance of MDSCs that suppress T cell functions [47].

The suppression of essential anti-tumor T cell functions is, among others, mediated
by the production of ROS, peroxynitrite, ARG1, proteases, indoleamine-2,3-dioxygenase
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(IDO) and NETs as well as the surface expression of PD-L1 and FasL on MDSCs [47,59].
In addition, circulating neutrophils can trap circulating tumor cells at metastatic sites,
facilitating their metastatic seeding [54,240].

The secretion of ECM-remodeling enzymes, such as MMP9 (gelatinase B or type IV
collagenase), MMP8 (Neutrophil collagenase or Collagenase 2), CathG and NE, paves the
way for cancer cell migration and angiogenesis. MMP9 has a direct angiogenic activity,
which is inhibited by tissue inhibitor of metalloproteinases (TIMP) [230]. TIMP is degraded
by NE resulting in increased MMP9 activity [281]. The remodeling of ECM by neutrophil
proteases releases ECM-embedded growth factors, such as bFGF and VEGF that stimulates
angiogenesis [267,280,282–284]. bFGF also promotes leukocyte recruitment to inflamma-
tion by enhancing endothelial adhesion molecule expression [285,286]. Neutrophils can
directly induce proliferation of cancer cells through the secretion of NE [287], S100A4 [115],
S100A8/A9 [288], FGF2 [82], HGF [116,289], BMP2 [237], TGFβ2 [237] and transferrin [245].

4.5. Pro-Tumor Role of Neutrophil Extracellular Traps (NETs)
4.5.1. Regulation of NET Formation

Neutrophil extracellular traps (NETs) are formed when activated neutrophils release
their intracellular contents, including DNA, histones and granule components, into the
surrounding tissue or circulation [290]. NET formation is dependent on autophagy and is
mediated by citrullination of histones to allow for the unwinding and subsequent expulsion
of DNA [291]. NET production occurs mainly in activated senescent neutrophils [24]. NET
formation is activated by platelet activating factor (PAF) [291] and requires ROS production,
NE, CathG and MPO [24,272,292].

NETosis occurs in response to tumor-derived factors, such as G-CSF and IL-8 [292–295].
Upon neutrophil activation, NE translocates from azurophilic granules to the nucleus,
where it degrades specific histones, promoting chromatin decondensation [272]. MPO
synergizes with NE in driving chromatin decondensation [272]. NET formation frequently
occurs in cancer where it promotes tumor growth, metastasis and cancer-associated throm-
bosis [290,292,294,296–299]. The production of NETs might also lead to the release of
factors that can encourage tumor growth and even metastasis [300].

4.5.2. Trapping of Circulating Tumor Cells by NETs

Microvascular NET deposition can trap tumor cells in the circulation and promote
their extravasation to metastatic sites [301–303]. The NETs can enwrap and coat the tumor
cells, thereby, shielding them from T cell and NK cell cytotoxicity [304]. The prevention
of NET formation by DNase I-mediated degradation of NET-DNA, using a NE inhibitor
or peptidylarginine deiminase 4 (PAD4)-deficient mice that show defective NETosis, sig-
nificantly reduced liver metastases of breast and lung carcinoma cells [301]. In addition
to trapping the tumor cells, NETs might act as a chemotactic factor that attracts cancer
cells [305]. In addition, NETs may increase the vascular permeability at the metastatic site,
thereby, facilitating the extravasation of circulating tumor cells [306].

4.5.3. The NET-RAGE Vicious Loop

NETs were found to stimulate the proliferation of pancreatic stellate cells in a RAGE-
dependent manner [299]. The RAGE-mediated signals were especially important for the
earliest stages of pancreatic cancer development [307,308]. High-mobility group box 1
(HMGB1) associated with NETs interacts with RAGE on the tumor cells, resulting in the
activation of NFκB signaling pathways [309]. The activation of RAGE induces IL-8 secretion
from the tumor cells, further encouraging the attraction of additional neutrophils [309].

Vice versa, RAGE KO neutrophils from tumor bearing animals had a diminished
propensity to form NETs [291], suggesting a role for neutrophil RAGE in NET production.
Thus, RAGE on neutrophils is important for the pro-tumor phenotype, and RAGE on
the tumor cells transmits the pro-survival signals delivered by NETs and other RAGE
ligands. HMGB1 binding to RAGE caused an upregulation of both RAGE and TLR4
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in bone-marrow-derived macrophages [310]. This research group found a feed-forward
regulatory mechanism where HMGB1 induces RAGE-mediated activation of MAPK, which,
in turn, promotes TLR4 translocation to the cell surface. Then, signaling through TLR4
caused increased transcription and translation of RAGE [310].

Tian et al. [311] observed that HMGB1-DNA complexes promoted the association of
RAGE and TLR9, resulting in augmented cytokine release. A recent study by Wang et al. [312]
showed that tumor-derived HMGB1 acts on TLR2 to induce CD62Ldim neutrophils with a
strong ability to produce NETs, which is involved in the lung metastasis of triple-negative
breast cancer.

5. Neutrophil Recognition of Tumor Cells

A common denominator for many of the pro- and anti-tumor functions of neutrophils
is a close cell-cell interaction between neutrophils and tumor cells. Only a few studies have
aimed to characterize the molecular mechanisms involved in the neutrophil recognition
of tumor cells (Figure 5). The best documented interactions include the Mac-1–ICAM-1,
L-Selectin-Sialomucin, PR3–RAGE and CathG–RAGE couples. The consequences of NET
adherence to tumor cells have already been described in Section 4.5. Other interactions
have also been observed, such as Notch1 on CTCs with its ligand Jagged1 expressed on
G-MDSCs [259], that might contribute to the neutrophil–tumor cell synapse required for
the intime interaction between the two cell types.
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Figure 5. Characterized neutrophil–tumor cell recognition mechanisms. (A). Mac-1 (CD11b/CD18)
on neutrophils can interact with ICAM-1 on certain tumor cells and endothelial cells. In addition,
Mac-1 can interact with RAGE on endothelial cells. The neutrophils form a bridge between the tumor
cells and endothelial cells, thus facilitating metastatic seeding. (B). L-Selectin on neutrophils can
interact with sialomucin on certain tumor cells and CD34 on endothelial cells. Here, the capture
of tumor cells by neutrophils that simultaneously interact with endothelial cells enables metastatic
seeding. (C). CathG on neutrophils can interact with RAGE on tumor cells. This interaction has
been shown to be important for executing the killing of RAGE-proficient tumor cells. (D). Proteinase
3 (PR3), which is expressed on the neutrophils, can interact with RAGE on tumor cells and induce
proliferation of the tumor cells.
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5.1. The Neutrophil Mac-1 Interaction with Tumor ICAM-1

There are some studies that have shown an interaction between neutrophil Mac-1
(CD11b/CD18; Complement Receptor 3) and ICAM-1 (CD54) on certain tumor cells, which
facilitated the metastatic seeding of the tumor cells in the liver and the lungs [54,239,240].
Neutrophil interaction with ICAM-1 on the human breast cancer cell MDA-MB-468 en-
hanced the migratory activity of the tumor cells [313]. Our study using neutrophils from
tumor-bearing CD11b KO mice and CD18dim mice, excluded a role for Mac-1 in the anti-
tumor function of the neutrophils towards several tumor cell lines.

Both CD11b KO and CD18dim neutrophils killed the tumor cells tested (LLC lung
carcinoma, AT3 breast cancer, 4T1 breast cancer and B16-F10 melanoma cells) as efficiently
as wild-type neutrophils (unpublished data). The Mac-1-ICAM-1 interaction is well-known
to play an important role in neutrophil rolling and transendothelial migration [314,315],
such that mice lacking CD11b or CD18 are expected to show defective neutrophil infiltration
of the tumor. Indeed, neutralizing antibodies to CD11b reduced myeloid cell filtration
into squamous cell carcinoma and enhanced their response to irradiation [316]. Moreover,
using the ApcMin/+ spontaneous intestinal tumor model, CD11b deficiency suppressed
intestinal tumor growth by reducing myeloid cell recruitment [317].

β-integrin-mediated neutrophil adherence to endothelial cells was shown to suppress
ROS production through inhibition of Rac2 guanosine 5′-triphosphatase, an essential
regulatory component of NADPH oxidase [318,319]. The suppression of ROS production
by β-integrin engagement is proposed to be essential for preventing inappropriate tissue
damage during transendothelial migration. Since ROS production is crucial for neutrophil
tumor cytotoxicity, β-integrin engagement might transiently antagonize the anti-tumor
function of neutrophils.

5.2. The Neutrophil L-Selectin Interaction with Tumor Sialomucin and Non-Mucin Ligands

Another molecule that has been shown to be involved in neutrophil interactions with
tumor cells is L-Selectin. This molecule is abundantly expressed with ~100,000 copies per
neutrophil [320], and it interacts with the vascular sialomucin CD34 [321] and sialomucins
on carcinoma cells through its C-type lectin at the amino terminus [241,242]. L-Selectin
on leukocytes have been shown to promote metastasis by interacting with both mucin
and non-mucin ligands on tumor cells [243,244]. Expression of the L-Selectin ligands
sialofucosylated glycans on cancer cells has been linked with poor prognosis and higher
rate of metastasis [322].

We excluded a role for L-selectin in the anti-tumor function of neutrophils by using
soluble L-Selectin containing the extracellular part of the receptor that acts as a decoy
molecule and neutralizing antibodies to L-selectin [238]. Soluble TLR4 decoy receptors
comprising the extracellular part of TLR4 did not interfere with the neutrophil tumor
cytotoxicity. Neutrophils isolated from TLR2 KO and MyD88 KO mice showed even
slightly higher cytotoxicity than the wild-type neutrophils (unpublished data).

5.3. The Neutrophil Cathepsin G Interaction with Tumor RAGE

Further studies showed that soluble RAGE expressing the extracellular part of RAGE
and neutralizing antibodies to RAGE interfered with the anti-tumor function of neutrophils
toward several tumor cell lines (e.g., AT3 breast cancer, E0771 breast cancer, LLC lung
carcinoma and B16-F10 melanoma), suggesting a role for RAGE in the interaction between
the tumor cells and neutrophils [238]. Surprisingly, RAGE KO neutrophils killed the tumor
cells to a similar extent as wild-type neutrophils, excluding a role for neutrophil-expressed
RAGE in this interaction [238].

On the other hand, knocking down or knocking out RAGE in mouse breast and lung
carcinoma cells rendered them less susceptible to neutrophil-mediated killing, suggesting
that tumor RAGE is the molecule recognized by neutrophils [238]. We and others have
demonstrated that human breast cancer and other solid tumors also express elevated levels
of RAGE ([140,323–326] and Figure 6A,B). Using neutralizing antibodies to human RAGE,
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this molecule was found to be a recognition molecule in the anti-tumor activity of human
neutrophils toward human breast cancer cells (Figure 6C).
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Figure 6. RAGE expression in various human cancer cells and its involvement in neutrophil-mediated cytotoxicity. (A). PCR
analysis of mRNA levels as determined by using primer pairs for the indicated RAGE exons and primer pairs for β-
actin. (B). Western blot analysis of protein expression levels as determined by using antibodies to the N-terminal part of
RAGE (A-9, Santa Cruz, sc-365154), the C-terminal part of RAGE (Abcam, ab3611) or α-Tubulin (Sigma, clone DM1A).
(C). Neutralizing antibodies to human RAGE (R&D) (AF1145; 0.5 µg/mL) inhibited neutrophil-induced tumor cell killing
toward MCF-7 breast cancer cells and to a lesser extent toward MDA-MB-231 and BT474 breast cancer cells. n = 3 * p < 0.05,
** p < 0.01. (D). AT3 breast cancer cells do not form metastasis in mice, which have been transplanted with Cathepsin G KO
bone marrow cells. One hundred thousand GFP-expressing AT3 breast cancer cells were injected intravenously into mice
that had been transplanted with either wild-type (WT) or CathG KO bone marrow. The number of GFP-positive metastatic
foci in the lungs were counted 8 days later. n = 4 for control and n = 3 for CathG KO. ** p < 0.01. BMT—bone marrow
transplanted. These experiments were performed in the laboratory of Prof. Zvi Granot according to the ethics of the Hebrew
University’s Institutional Committees.

Taking into account that RAGE is upregulated during early carcinogenesis (See
Sections 2.3 and 6) and contributes to tumor survival and proliferation, the recognition of
tumor RAGE by neutrophils and the consequent tumor cell killing might be considered as
an essential tumor immune surveillance mechanism.

When searching for the molecule on neutrophils interacting with tumor RAGE, we
discovered CathG as the neutrophil counterreceptor [238]. We further observed that CathG
KO neutrophils showed defective cytotoxicity toward RAGE-proficient tumor cells [238],
emphasizing the important role of CathG in recognizing RAGE expressed on the tumor
cells. This observation was quite surprising in light of the fact that CathG is known to
be stored in neutrophil granules [2,5,327,328]. However, it appears that CathG is also
expressed on the neutrophil surface [238,329,330].
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Campbell et al. [330] observed that chondroitin sulfate- and heparan sulfate-containing
proteoglycans in the neutrophil plasma membrane are the binding sites for both NE and
CathG. Intriguingly, the LDN population expresses even higher levels of CathG on their
surfaces than the HDN population [238], suggesting that both HDN and LDN can interact
with tumor cells using the same recognition mechanism. The involvement of CathG in
neutrophil-mediated tumor cytotoxicity was independent of its proteolytic activity [238].
CathG has previously been shown to be involved in the adhesion of the leukocytes to
arterial endothelium in a model of atherosclerosis [331]. This function of CathG was also
independent of its proteolytic activity [331]. It would be interesting in this setting to study
whether the counterreceptor on the endothelial cells is RAGE.

5.4. The Neutrophil PR3 Interaction with Tumor RAGE

Proteinase 3 (PR3) is another neutrophil protease that has been shown to bind to
RAGE [227]. In addition to being secreted by the neutrophils, PR3 is allocated on the
neutrophil surface [332]. The binding of PR3 to RAGE on prostate cancer caused and
outside-in signaling activating the ERK1/2 and JNK1 signaling pathways in the cancer
cells resulting in increased cell motility [227]. These signals were induced because of the
binding of PR3 to RAGE, without any involvement of its enzymatic activity [227]. RAGE
on the prostate cancer cells mediates their homing to the bone marrow, which is rich in
PR3-expressing cells [227].

6. Pro-Tumor Function of RAGE
6.1. General Aspects of RAGE

RAGE is an MHC class III encoded protein belonging to the immunoglobulin (Ig)
superfamily that was initially recognized as a receptor for advanced glycation end prod-
ucts (AGEs); however, it rapidly became revealed that this receptor has a multitude of
ligands, including S100 proteins such as S100B, S100A4, S100A7, S100A8/A9, S100A11,
S100A12, HMGB1, amyloid β peptide, prothrombin, chondroitin sulfate E, heparan sulfate,
heparin and the complement C1q and C3a components [140,333–338]. Additional RAGE
ligands include the neutrophil cationic antimicrobial protein CAP37 and the neutrophil
proteases: CathG, NE and PR3 [227,238,339]. RAGE is expressed on several cell types,
including immune cells, endothelial cells, fibroblasts, lung epithelial cells, neuronal cells
and keratinocytes [128].

6.2. Involvement of RAGE in Inflammation-Induced Carcinogenesis

RAGE has been repeatedly shown to be essential for inflammation-induced carcinogene-
sis, and it is frequently upregulated in cancer [127,129,138–140,308,323,324,326,333,340–348].
Tumorigenesis is retarded in RAGE KO mice [333,342,345,349,350], and RAGE-knocked-down
tumor cells showed defective metastatic properties [238,345,351,352].

6.3. RAGE-Induced Signal Transduction Pathways

RAGE is a target gene of the NFκB signaling pathway and signaling through RAGE
activates NFκB, thereby, fueling up a feed-forward activation loop [140]. In addition
to activation of NFκB, interaction of RAGE with its many ligands, stimulates several
pro-survival signal transduction pathways, including Ras-ERK1/2, CDC42/Rac, p38
MAPK, AKT/mTOR and JAK1/2-STAT [128,129,133,138–140,353]. S100A14 overexpressed
in breast cancer cells promotes metastasis by activating the RAGE-NFκB signaling pathway
resulting in the upregulation of CCL2 and CXCL5 expression in the tumor cells [354].

6.4. RAGE Ligands with Pro-Tumor Actions

In addition to the direct pro-survival signals delivered by RAGE in cancer cells,
RAGE propagates and sustains pro-tumor host inflammatory responses [342]. HMGA1
and HMGB1 binding to RAGE promotes migration, invasion and metastasis of cancer
cells [127,355–358]. The interaction of RAGE with its ligand HMGB1 induces epithelial-
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mesenchymal transition (EMT) of cancer cells [359,360]. The RAGE ligand S100A7 has
been shown to induce EMT in cancer cells [361].

6.4.1. HMGB1

HMGB1 (Amphoterin) is a nuclear non-histone protein that is released from the cell
in response to damage or stress stimuli. It is a strong pro-inflammatory protein and
tumor promoter that acts on RAGE to activate NFκB and MAP kinase signaling path-
ways [127,356,358]. The activation of the RAGE-NFκB signaling pathway by HMGB1
induces IL-8 production important for neutrophil recruitment [309]. HMGB1 induces
cytokine release from neutrophils and increases the interaction of neutrophils with endothe-
lial cells in a Mac-1 and RAGE-dependent manner, which is required for their subsequent
transmigration into inflamed tissue [362].

HMGB1 primes vascular cells to upregulate TNFα production and the expression
of ICAM-1 and VCAM-1 that strengthen the adhesion of inflammatory cells [363]. The
interaction of HMGB1 with tumor RAGE was found to be important for both tumor prolif-
eration and metastasis formation of rat C6 glioma cells and mouse Lewis lung carcinoma
cells [356]. Moreover, gastric cancer cell-derived exosomes that contain HMGB1, acti-
vate the TLR4/NFκB pathway in the neutrophils, resulting in increased autophagy and
induction of the pro-tumor activity [364].

6.4.2. Advanced Glycation End Products (AGEs)

Advanced glycation end products (AGEs) have been found to be expressed in several
types of cancer [129] and promote growth, invasion and migration of prostate and breast
cancer [365]. The AGE-RAGE interaction leads to increased NADPH oxidase activity,
resulting in elevated ROS production [365]. ROS activates NFκB, which upregulates the
transcription of iNOS, which produces the nitrogen oxide radical (NO·). Superoxide and
nitric oxide radicals interact to form peroxynitrite (ONOO−·), which inactivates functional
proteins [128]. Thus, activation of RAGE under inflammatory conditions triggers a vicious
signal transduction feedback loop.

6.4.3. S100 Proteins

The S100 proteins are other ligands for RAGE that have been associated with cancer
progression [366,367]. Especially, S100A4 has been shown to be overexpressed in various
cancer, including breast and pancreatic cancer leading to its nickname “Metastatin” [366].
A strong correlation between S100A4 expression levels and the prognosis of patients with
esophageal squamous cell carcinoma, non-small cell lung, melanoma, prostate adenocar-
cinoma, bladder cancer and gastric cancers has been observed [366]. S100A7, which is
frequently overexpressed in ERα− breast cancer, stimulates tumor growth by recruiting
MMP9-positive pro-tumor macrophages [345].

The S100A8/S100A9 heterodimer highly expressed in neutrophils is involved in
inflammatory responses [368]. Low concentration of S100A8/S100A9 promotes tumor
growth via a RAGE-dependent mechanism that involves the activation of MAPK and NFκB
signaling pathways [369–371]. Although S100A9 is pro-apoptotic at high concentration, it
is required for colitis-associated cancer development [370]. S100A9 KO mice showed fewer
incidences of inflammation-induced colon cancer [370].

S100A9 is highly expressed during the acute phase of colitis; however, it is down-
regulated by colonic chitinase-3-like 1 (CHI3L1), a pseudo-chitinase that is upregulated
during the chronic phase of colitis [372]. CHI3L1 interacts with RAGE to promote intestinal
epithelial cell proliferation [372]. These authors proposed that the CHI3L1high, S100A9low

colonic environment is important for the progression of colitis-induced colon cancer [372].
S100A9 might also interact with Toll-like receptor 4 (TLR4) expressed on tumor cells where
it promotes tumor growth [373]. In addition, S100A9 might indirectly promote tumor
growth by promoting MDSC-mediated immune suppression [181].
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7. Pro-Tumor Role of Cathepsin G and Neutrophil Elastase

CathG and NE are two of the four major neutrophil serine proteases that display
proteolytic enzymatic activity against extracellular matrix components, such as elastin,
fibronectin, laminin, type IV collagen and vitronectin [328] and activates metallopro-
teases [374], thereby paving the way for neutrophil and tumor cell migration.

CathG and NE are involved in many physiological and pathophysiological processes
and possesses both pro-inflammatory and anti-inflammatory properties depending on
the pathophysiological conditions [228,229]. CathG-and NE-mediated proteolysis can
either strengthen or suppress the inflammatory responses [228,229,375]. CathG and NE can
deactivate receptors and cytokines involved in host defense and inflammation, including
the LPS co-receptor CD14 [376], various protease-activated receptors (PARs) [377,378],
thrombin receptor [379], TNFα [380] and cytokine receptors [381].

In addition, CathG can degrade NKp46 expressed on NK cells and, in such, impair
the NKp46-mediated responses of NK cells [382]. On the other hand, CathG can amplify
inflammatory responses by processing cytokines. CathG is a chemoattractant for mono-
cytes, osteoclasts, neutrophils and T cells, suggesting that it is important for the transition
of inflammatory exudate from neutrophils to mononuclear cells [383,384]. The CathG-
induced chemotaxis of monocytes was found to be mediated by proteolytic activation of
protease-activated receptor-1 (PAR-1) [384].

CathG has also been shown to induce chemotactic activity by interacting with formyl
peptide receptor that leads to calcium ion influx, MAPK activation and PKCζ translocation
to the cell membrane [385]. CathG plays a role in processing and maturation of chemerin, a
chemoattractant that attracts antigen-presenting cells, such as macrophages and dendritic
cells [386] and for the proteolytic processing of CXCL5 and CCL15 into more potent
chemotactic factors [387–389]. CathG facilitated neutrophil infiltration into the pancreas
during acute pancreatitis [390].

The CathG/NE KO mice were resistant to endotoxic shock responses, despite TNFα
was released to the circulation [391]. This research group found an essential role for the
two proteases in the vascular leakage and pulmonary tissue destruction acting down-
stream to TNFα [391]. CathG has angiotensin-converting properties resulting in a local
increase in the Angiotensin II levels in inflamed tissues [392] that leads to destruction
of the epithelium barrier [393]. The conversion of Angiotensin I to Angiotensin II by
the neutrophil membrane-bound CathG could not be inhibited by the protease inhibitor
α1-antichymotrypsin [392].

Angiotensin can also be produced by the CathG-mediated activation of prorenin [394].
Angiotensin II is a major regulator of blood pressure and cardiovascular homeostasis, but
accumulating data suggest that it also affects cell proliferation, angiogenesis, inflammation
and cancer metastasis [395]. Interestingly, El Rayes et al. [79] observed that knocking out
CathG and NE in neutrophils or depleting the wild-type neutrophils, prevented pulmonary
metastatic seeding of LLC Lewis lung carcinoma cells in an LPS-induced inflammatory
lung model.

The involvement of CathG and NE in the pulmonary metastatic seeding was credited
the proteolytic destruction of the anti-tumorigenic factor thrombospondin-1 by the neu-
trophil proteases [79]. Moreover, CathG has been implicated in the IL-1β processing and
secretion from neutrophils, especially under conditions where NFκB is inhibited [396]. The
secreted IL-1β encouraged the proliferation of lung cancer cells [396].

8. Reconciling the Duality of RAGE and Cathepsin G in Cancer Biology

The involvement of the neutrophil CathG–tumor RAGE interaction in achieving the
anti-tumor activity (Section 5.3) is quite intriguing, since tumor RAGE is important for
tumor progression and metastasis (Section 6), and there is evidence that CathG is also
required for metastasis (Section 7). So how can we reconcile that the two molecules
required for metastasis are precisely the same molecules involved in the neutrophil–tumor
cell interaction leading to the elimination of the tumor cells?
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As we have discussed above (Sections 6 and 7), both RAGE and CathG have been
attributed a central role in cancer progression. Ligation of RAGE induces proliferative
signals and may assist in metastatic seeding and survival. Knocking out RAGE prevents
carcinogenesis and the formation of metastasis. CathG, in virtue of its ability to promote
ECM remodeling, facilitates the migration of both tumor cells and immune cells.

Knocking out CathG and NE in neutrophils prevented pulmonary metastatic seeding
of Lewis lung carcinoma cells in an LPS-induced inflammatory lung model [79]. We also
observed that both tumor RAGE and neutrophil CathG are required for metastasis. RAGE
KO breast cancer cells showed impaired metastatic seeding capacities [238], and, in a
metastatic seeding model where GFP-expressing AT3 breast cancer cells were injected
intravenously into mice that have been transplanted with bone marrow (BMT) from either
wild-type or CathG KO mice [238], the AT3 cells formed metastases in the lung of wild-type
BMT mice, while no metastatic seeding of AT3 was observed in the CathG KO BMT mice
(Figure 6D).

Since neutrophils play an important role in the metastatic seeding of cancer cells in the
lung [79], it is likely that the RAGE–CathG interaction is involved in capturing tumor cells
at the metastatic site similarly to its involvement in creating the immunological synapse
necessary for neutrophil cytotoxicity towards the tumor cells. Whether the neutrophils will
promote tumor cell extravasation into the metastatic site or will eliminate the tumor cells
will depend on the activation status of the interacting neutrophils and the susceptibility of
the tumor cell to the cytotoxic hit at the moment encountering the neutrophils (Figure 7).

The ability of neutrophils to produce ROS is transient since prolonged exposure of
the neutrophils to their own ROS production leads to NET production [223], such that
the “N1” phenotype will turn into a “N2” phenotype. Although catalase abrogates the
tumor cell killing of cancer cells indicative for a central role of hydrogen peroxide in this
process [60,225], the pro-tumor neutrophils also produce ROS, suggesting that additional
signals are required for anti-tumor activity, such as TRAIL and FasL [53,200,202,203,219].
CathG, NE and ROS were found to act in concert in order to achieve the anti-microbial
effect of neutrophils [228,391,397], an observation that raises the question of whether a
similar co-operation between CathG and ROS takes place in neutrophil tumor cytotoxicity.

Another question is whether the CathG–RAGE interaction contributes to the cytotoxic
hit or if it only strengthens the immunological synapse. CathG has been shown to induce
apoptosis of epithelial cells [393] and cardiomyocytes [398]. The apoptosis of epithelial cells
was caused by CathG-mediated production of angiotensin II [393]. Cardiomyocytes ex-
posed to CathG showed initial activation of ERK, p38 MAPK and AKT, with the subsequent
activation of Caspase 3, cleavage of FAK and AKT, cell detachment and apoptosis [398].

Another possibility is that the interaction of CathG with RAGE interferes with the
binding of other ligands to tumor RAGE, thereby, altering RAGE-mediated survival signals.
Stock et al. [339] observed that CathG could compete with amyloid β1-42 for the same
binding site on RAGE. Further studies are required to understand how CathG promotes
the anti-tumor action of neutrophils toward RAGE-proficient tumor cells.
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as H2O2, TRAIL, FasL and OCl− produced from H2O2 by MPO. However, when the tumor cell-interacting neutrophil is 
alternatively activated to the “N2” phenotype that does not kill the tumor cells, the interaction of neutrophil-expressed 
CathG with RAGE on tumor cells strengthens the immunological synapse together with other neutrophil–tumor cell 
interactions (confer Figure 5). Simultaneous interaction of the neutrophils with endothelial cells facilitates the metastatic 
seeding of the tumor cell into the distant organ. Endothelial RAGE and ICAM-1 interact with Mac-1 (CD11b/CD18) on 
neutrophils, and endothelial VCAM-1 interacts with α4β1 (VLA-4) on neutrophils. It is still unknown whether CathG on 
neutrophils can interact with RAGE on endothelial cells. CathG = Cathepsin G, NE = Neutrophil elastase, and GFs = 
Growth factors. 
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There are accumulating data indicating that the anti-tumor neutrophils are largely 
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TRAIL, FasL and OCl− produced from H2O2 by MPO. However, when the tumor cell-interacting neutrophil is alternatively
activated to the “N2” phenotype that does not kill the tumor cells, the interaction of neutrophil-expressed CathG with
RAGE on tumor cells strengthens the immunological synapse together with other neutrophil–tumor cell interactions
(confer Figure 5). Simultaneous interaction of the neutrophils with endothelial cells facilitates the metastatic seeding of the
tumor cell into the distant organ. Endothelial RAGE and ICAM-1 interact with Mac-1 (CD11b/CD18) on neutrophils, and
endothelial VCAM-1 interacts with α4β1 (VLA-4) on neutrophils. It is still unknown whether CathG on neutrophils can
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9. Therapeutic Strategies for Targeting Neutrophils to Strengthen the Anti-Tumor Function

To utilize neutrophils in the combat against cancer, therapeutic strategies should
be focused on promoting the anti-tumor function of neutrophils on the expense of the
pro-tumor activities. This task is not easy, as these two activities undergo dynamic changes
during the lifetime of the neutrophils, and some of the anti-tumor activities are also
involved in T cell and NK cell suppression resulting in antagonistic effects on tumor
growth (Sections 2.1.1 and 3.1).

There are accumulating data indicating that the anti-tumor neutrophils are largely found
in the mature HDN population that have just been released from the bone-marrow, while,
upon neutrophil senescence, the tumor-promoting activities are predominant (Section 3.1). This
suggests that it would be preferable to maintain a short lifespan of the neutrophils avoiding
its overactivation to form NETs that are involved in both promotion of tumor cell growth and
neutrophil-mediated metastasis (Section 4.5).

Cytokines that activate neutrophils to an anti-tumor function will ultimately also
prolong the longevity of the neutrophils and increase the fraction of pro-tumor neutrophils
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(Sections 4.1 and 4.2). The classical example is the 4T1 breast cancer cells that secrete high
levels of G-CSF/GM-CSF and CXCL2 that induce the production of both anti-tumor and
pro-tumor neutrophils [67]. Future aims should focus on finding a middle way.

9.1. Shifting the Neutrophil Activities to an Anti-Tumor Phenotype

Some attempts have been made to shift the balance between anti- and pro-tumor
neutrophils in favor of the former. Examples include the inhibition of the signal trans-
duction pathways induced by the immunosuppressive TGFβ and the administration of
the immunomodulator IFNβ. In the AB12 mesothelioma cell model, blocking the TGFβ
signaling pathway using the type I TGFβ receptor kinase inhibitor SM16 led to an influx of
hypersegmented cytotoxic neutrophils that expressed higher levels of pro-inflammatory
cytokines [75]. Treatment with SM16 also increased the cytotoxic activity of intra-tumoral
T cells resulting in a reduced primary tumor mass [75].

In another study, B16F10 melanoma and MCA205 fibrosarcoma cells developed faster-
growing tumors with better developed blood vessels in IFNβ-deficient mice compared
with syngeneic control mice [53]. The tumors growing in IFNβ-deficient mice showed
enhanced infiltration of pro-tumor neutrophils expressing the pro-angiogenic factors VEGF
and MMP9 and the homing receptor CXCR4 that is usually upregulated in senescent neu-
trophils [53]. Treatment of these neutrophils in vitro with IFNβ prevented the expression
of the “N2” markers VEGF, MMP9 and CXCR4 [53].

Low-dose IFNβ treatment of tumor-bearing mice led to neutrophil polarization to-
wards the anti-tumor N1 phenotype showing elevated Fas and TNFα expression and
increased anti-tumor cytotoxicity [191]. Similar changes in neutrophil activation could
be observed in melanoma patients undergoing type I IFN therapy [191]. These studies
understate the important role of IFNβ in regulating neutrophil function and suggests that
IFNβ treatment might have beneficial effects during the early stages of cancer development.
In addition to modulating neutrophil function, IFNβ affects other immune cells and has
direct anti-tumor activities [399]. The problem of IFNβ therapy is the development of
resistance and undesired tumor promoting effects can occur [399].

9.2. Targeting the IL-6-STAT3 Axis That Promotes the Pro-Tumor Neutrophil Phenotype

Since STAT3 is involved in the polarization of neutrophils to a “N2” phenotype
[53,157,211,212,246], small drugs targeting this pathway are expected to have a beneficial
anti-tumor effect. One of the mediators that trigger the STAT3 signaling pathway is IL-6,
which plays a role in inflammation-associated cancer [400]. Inhibition of the STAT3-ERK1/2
axis using WP1066, prevented the IL-6-induced pro-migratory and pro-angiogenic prop-
erties of neutrophils [255]. WP1066 effectively delayed the progression and invasiveness
of bladder cancer in a N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse tumor
model [401].

Bladder cancer could be sensitized to anti-PD-L1 immune therapy by either using
anti-IL-6 antibodies or inhibiting the STAT3 pathway with WP1066 [401]. Since soluble
IL-6 is shed, among others, from neutrophils by ADAM10- and ADAM17-mediated pro-
teolysis [402,403], inhibition of these proteolytic enzymes is expected to have a beneficial
outcome in cancer [404]. Colon cancer formation was impaired in mice lacking ADAM17 or
IL-6 [405]. Since ADAM10 and ADAM17 mediate the cell surface cleavage of a large reper-
toire of substrates that can promote tumor growth [406,407], inhibition of their activities is
expected to have general tumor inhibitory activities.

9.3. Activation of the Anti-Tumor Neutrophil Function

The pioneering studies performed three to four decades ago used chemokine and
cytokine-overexpressing tumor cells to induce tumor rejection that was associated with
increased neutrophil infiltration [89,408–412]. The rejection of these tumors was caused by
both direct anti-tumor activities of neutrophils and indirectly through neutrophil-induced
anti-tumor T cell responses [89,409–412].
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A similar approach was recently used by Forsthuber et al. [62], where CXCL5-overexpressing
melanoma cells were hindered by neutrophils to form metastases. However, the primary growth
of these tumor cells was unaffected by neutrophils. The use of chemokines in the treatment of
cancer is not feasible due to multiple and often antagonistic effects of these mediators on tumor
progression [413] as well as neutrophil functions [9]. Thus, other strategies should be considered.

The activation of the immune system with BCG (Bacille Calmette-Guérin) has been
shown to be beneficial for turning on the immune system in bladder cancer when installed
intravesically [414]. This treatment led to the appearance of neutrophils that express
membrane-bound TRAIL and secrete large quantities of TRAIL important for the anti-
tumor action [415]. These neutrophils also secreted chemokines that attract other immune
cells that act in concert to fight cancer [415].

9.4. Prevention of NETosis

Another strategy that has been tested is the prevention of NETosis using a peptidyl
arginine deiminase 4 (PDA4) inhibitor [303] or disrupting NETs by DNase treatment
[292,298,299,301]. Both methods have been shown to reduce metastasis formation and
tumor growth [292,299,301,303], emphasizing the importance of NETs in these processes.
In a mouse model of Kras-driven pancreatic adenocarcinoma, DNase treatment diminished
tumor growth [299].

DNase I treatment of MMTV-PyMT tumor-bearing mice, led to a significant reduction
in the number of neutrophil-platelet complexes in the kidneys and an improvement of
the kidney vasculature [416]. This study demonstrates that neutrophils impair vascular
function in the kidneys of tumor-bearing mice by forming NETs [416]. Thus, DNase
treatment might be beneficial in reducing not only tumor growth and metastasis but also
the vascular toxicities of NETs.

9.5. Inhibition of Leukotriene Production

Wculek et al. [76] raised the idea of preventing leukotriene production as a strategy to
retard tumor progression. They observed that pharmacological inhibition (e.g., Zileuton)
of the leukotriene-generating enzyme arachidonate 5-lipoxygenase (Alox5) in a MMTV-
PyMT mammary mouse model, abrogated neutrophil pro-metastatic activity and reduced
lung metastasis formation. This therapy relies on tumor dependency on leukotrienes.
Indeed, leukotrienes have repeatedly been shown to be involved in tumor-associated
inflammation [417].

Zileuton prevented polyp formation in the APC∆468 mice by reducing the tumor-
associated and systemic inflammation [418]. Tang et al. [419] developed a neutrophil-based
nanomedicine based on the natural tropism of neutrophils to inflammatory sites, including
tumors. Bis-5-hydroxytryptamine (Bis-5HT) was equipped on nanoparticles loaded with
Zileuton to obtain MPO and neutrophil targeting nanoparticles. Bis-5HT oligomerizes
and crosslinks with surrounding biological substrates catalyzed by the neutrophil MPO in
inflamed tissues. This system was used to show the inhibition of neutrophil-mediated lung
metastasis via the sustained release of Zileuton [419].

10. Conclusions

Neutrophils can be activated by cancer cells and other cells in the microenvironment
to exert pro- and anti-tumor activities. Usually, the two neutrophil phenotypes coexist in
cancer together with immunosuppressive G-MDSCs at various ratios that often change
during tumor progression from a prominent anti-tumor phenotype to a predominant pro-
tumor phenotype. Neutrophils that have acquired anti-tumor activities can later become
senescent neutrophils with pro-tumor properties, and immature immunosuppressive
neutrophils can turn into anti-tumor neutrophils, indicating that neutrophils show high
plasticity. The activation of neutrophils to an anti-tumor phenotype will result in increased
neutrophil viability, which, in turn, will lead to a simultaneous expansion of the senescent
neutrophil population.
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This continuum of neutrophil activities discourages the use of the “N1” and “N2”
terminology that defines two quite different subpopulations. It seems that each neutrophil
function can be accomplished within a certain time window during the different maturation
stages of the neutrophils after exposure to a stimulus, resulting in a timely neutrophil
function within a spectrum of potential activities. It is likely that this scenario is required
for the proper resolution of an acute inflammatory response; however, in contrast to
wound healing, the inflammatory condition persists in cancer, distorting the normal path
of neutrophil function, differentiation and maturation.

There is a great deal of crosstalk between the neutrophils, other immune cells, tumor
cells and stromal cells that dictates how the dialog between these cells will restrict or fuel
the tumor growth, invasion and metastasis. Tumor cells secrete a range of factors that
directly or indirectly affect neutrophil function, and, vice versa, the neutrophils interact
with and produce factors that affect the viability and survival of the tumor cells. Sometimes
these interactions act in a synergistic feed-forward feedback loop but sometimes in an
antagonistic manner. Chemokines can activate the anti-tumor neutrophil function but
simultaneously also induce their pro-tumor activities.

In addition, the chemokines can directly act as growth factors for tumor cells. ROS
production is a prerequisite for the anti-tumor function; however, both ROS and RNS
can also elicit pro-survival signals and cause mutagenesis that promotes the initiation of
carcinogenesis. Excessive ROS and RNS production together with elevated MPO activity
result in the suppression of anti-tumor T and NK cells and can lead to local tissue injury.
ROS also drives neutrophil senescence resulting in pro-tumor activities accompanied
with NETosis.

The rapid dynamic changes occurring during the lifespan of the neutrophils together
with the ever-changing polarization create a high diversity of neutrophil subpopulations,
the composition of which will determine the outcome on cancer progression. Anti-tumor
neutrophils are characterized by high ROS production together with TRAIL, while pro-
tumor neutrophils produce ROS together with nitric oxide radicals, ARG1 and IDO.

Thus far, ECM remodeling enzymes, such as MMP9, CathG, PR3 and NE, have been
considered as pro-tumor factors in virtue of their ability to modify the ECM structure,
facilitate tumor cell metastasis and release growth factors sequestered to components of the
ECM that can further fuel the tumor growth. In addition, MMP9 can promote angiogenesis
along with VEGF and Bv8. However, a new function has recently been attributed to CathG
and PR3 expressed on the neutrophil surface. Namely, these two enzymes can serve as
ligands for RAGE on tumor cells, a function not requiring their proteolytic activity.

Both HDN and LDN express CathG and PR3 on their surfaces, enabling both pop-
ulations to use these recognition mechanisms. The CathG–RAGE interaction was found
to be important for the neutrophil-mediated killing of RAGE-expressing tumor cells, and
paradoxically the same molecules are required for the metastatic seeding of tumor cells.
The PR3–RAGE interaction was found to be involved in sequestering circulating RAGE-
positive tumor cells to facilitate their infiltration into metastatic sites. Neutrophils can also
recognize other molecules on the surface of the tumor cells, such as the Mac-1–ICAM-1,
L-selectin–sialomucin and Jagged1–Notch1 interactions that have been shown to facilitate
metastatic seedings.

The interaction between neutrophils and tumor cells is required for both sequestering
metastatic cancer cells and for exerting a lethal hit. Thus, the outcome of neutrophil–
tumor cell interaction depends on the activation status of the attached neutrophils and the
sensitivity of the interacting tumor cells to the lethal hit. Thus, the neutrophils stand as
policemen at the crossroad to dictate which tumor cells will die and which will be allowed
to enter the metastatic niche (Figure 7).
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Abbreviations

ADCC Antibody-dependent cellular cytotoxicity
AGE Advanced glycation end products
ARG1 Arginase 1
BMP7 Bone morphogenetic protein 7
BMT Bone-marrow transplanted
CathG Cathepsin G
CCL-2 C–C motif chemokine ligand 2
CXCL2 C-X-C motif chemokine ligand 2
EMT Epithelial-mesenchymal transition
FATP2 Fatty acid transport protein 2
fMLP Formyl-methionyl-leucyl-phenylalanine
fMLP-R formyl peptide receptors
G-CSF Granulocyte colony-stimulating factor
GM-CSF Granulocyte-macrophage colony-stimulating factor
HDN High-density neutrophils
HGF Hepatocyte growth factor
HMGB1 High-mobility group box 1
ICAM-1 Intercellular Adhesion Molecule 1
IFNβ Interferon-beta
IL-8 Interleukin-8
iNOS Inducible nitric oxide synthase
KO Knockout
LDN Low-density neutrophils
LOX-1 Lectin-type oxidized LDL receptor 1
MDSC Myeloid-derived suppressor cell
MET Mesenchymal-epithelial transition
MMP8/9 Matrix metalloproteinase 8/9
MPO Myeloperoxidase
NE Neutrophil elastase
NK Natural killer
NLR Neutrophil-to-lymphocyte ratio
PR3 Proteinase 3
RAGE Receptor for advanced glycation end products (RAGE)
ROS Reactive oxygen species
STAT3 Signal transducer and activator of transcription 3
TAN Tumor-associated neutrophil
TEN Tumor-entrained neutrophil, Tumor-educated neutrophil, Tumor-elicited neutrophil
TGFβ Transforming growth factor-beta
TIMP Tissue inhibitor of metalloproteinases
TLR2 Toll-like receptor 2
TNFα Tumor necrosis factor-alpha
TRAIL Tumor-necrosis factor related apoptosis-inducing ligand
VCAM-1 Vascular cell adhesion molecule 1
VEGF Vascular endothelial growth factor
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