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Abstract

Blood plasma separation is a prerequisite in numerous biomedical assays involving low

abundance plasma-borne biomarkers and thus is the fundamental step before many bioana-

lytical steps. High-capacity refrigerated centrifuges, which have the advantage of handling

large volumes of blood samples, are widely utilized, but they are bulky, non-transportable,

and prohibitively expensive for low-resource settings, with prices starting at $1,500. On the

other hand, there are low-cost commercial and open-source micro-centrifuges available, but

they are incapable of handling typical clinical amounts of blood samples (2-10mL). There is

currently no low-cost CE marked centrifuge that can process large volumes of clinical blood

samples on the market. As a solution, we customised the rotor of a commercially available

low-cost micro-centrifuge (~$125) using 3D printing to enable centrifugation of large clinical

blood samples in resource poor-settings. Our custom adaptor ($15) can hold two 9 mL S-

Monovette tubes and achieve the same separation performance (yield, cell count, hemoly-

sis, albumin levels) as the control benchtop refrigerated centrifuge, and even outperformed

the control in platelet separation by at least four times. This low-cost open-source centrifu-

gation system capable of processing clinical blood tubes could be valuable to low-resource

settings where centrifugation is required immediately after blood withdrawal for further

testing.

1. Introduction

A centrifuge is one of the most frequently used instruments in laboratory diagnostic and

molecular biology laboratories, where it is employed to extract particles having different densi-

ties from a variety of mediums, using centrifugal forces. The primary uses of a centrifuge in a

laboratory include the separation of plasma from whole blood for immunoassays or hemato-

crit analysis [1], the separation of pathogens and parasites in biological fluids [2], and DNA

extraction preparation steps [3].
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In particular, blood plasma separation is an essential, and often primary step in numerous

biomedical assays involving low abundance target molecules, such as cell-free nucleic acids.

Conventionally, this separation process is performed using high-capacity refrigerated centri-

fuges which are capable of dealing with a large volume (>5–50 mL) of blood samples. These

laboratory centrifuges are bulky (120 kg), usually work with 20–40 cm diameter rotors holding

20–100 sample vials, thus occupy a sizeable space in the laboratory space. Moreover, these

large capacity centrifuges are expensive, (capital expenditure starts from $1,500) and have high

operational costs [4]. There are commercially available micro-centrifuges that can be cost-

effective whose price starts from $120, however their drawbacks are that firstly they cannot

handle volume blood samples above 1.5 mL and secondly, they cannot handle routinely used

clinical tubes such as S-Monovettes (Sarstedt, Germany) which introduces further preparation

steps before the centrifugation. Many researchers have adopted microfluidic blood plasma sep-

aration to enable low-cost plasma separation; however, these systems still have yield and purity

issues for extremely low abundance biomarker detection, and the low throughput (10 mL/h)

of the developed high-purity ones makes them inadequate for practical high-volume blood

processing applications. In many clinical applications, such as Apolipoprotein E and HLA

detection [5, 6], early cancer detection [7, 8], and liquid biopsy [9, 10], large volumes of plasma

(>4 mL) are required. Hence, there is a clear demand on the market for a centrifugation sys-

tem that will at the same time be safe, low-cost, able to handle large volumes as well as work

with routinely used clinical blood tubes. A system like this might be useful for mobile laborato-

ries or low-resource environments when centrifugation is necessary immediately after blood

collection for additional testing.

To reduce the cost of centrifugation, a number of so-called “frugal” solutions have emerged,

as part of the open-source and open-science movement [11–13]. Centrifuges using hand pow-

ered rotary mechanism such as fidget spinners [14, 15], egg beaters [16], paper toy [17], hand

crank torch lights [18], salad spinners [19], centrifuges involving electric motor such as USB

fans [20, 21], and Dremel tools [22] have been proposed, amongst other solutions. However,

all of these devices are only able to handle low volume samples typically from a few microliters

to 2 mL. Only a few solutions have been proposed to meet the large volume centrifugation

requirement. Patel et al. constructed a portable, low-cost 3D printed microcentrifuge with a

DC motor that can accommodate special 4 mL glass tubes, which necessitates additional blood

handling phases [23]. Sule et al. also designed a 3D printed hand-powered centrifuge for high

volume centrifugation that costs only $27 in total [1]. Because it lacks a protective cover, the

gadget might not suitable for use with biological samples. Plasma separation needs at least 10

minutes of centrifugation, which will be difficult to achieve using a hand-powered microcen-

trifuge. Most crucially, none of the abovementioned low or high-volume systems can be used

with clinical blood collection tubes (such as S-Monovette) straight after blood removal, result-

ing in further sample preparation steps. Fig 1A shows the processing volume of available com-

mercial and open-source academic microcentrifuges against their price. Fig 1B illustrates the

size difference between the blood handling tubes commonly used in microcentrifuges and the

clinical S-Monovette collection tube.

In this work, we propose a novel approach to significantly reduce the cost of S-Monovette

centrifugation by customising the rotor of a commercially available microcentrifuge (SciSpin

MINI Microfuge, model: SQ-6050) using low-cost additive manufacturing (3D printing) (Fig

1C). 3D printing has emerged in recent years as a convenient method for the development of

cost-effective and open-source scientific and diagnostic tools [12, 24–26]. Here we describe the

design and implementation of the 3D-printed rotor adaptor. Using a combination of model-

ling and experimental validation, we report on the effects of different engineering parameters

(size, mass, aerodynamic drag force) and leverage this knowledge to optimise the design and
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speed of the rotor adaptor. We demonstrate that the optimised 3D-printed rotor adaptor

achieved same speeds as the original rotor (7,000 rpm) despite the larger load and using plasma

yield, blood cell counts, cfDNA and albumin levels we provide a full biological characterisation

of the optimised devices.

2. Material and methods

2.1 Theoretical background

Centrifugation is a way to increase the gravitational field magnitude by spinning a sample

around an axis which creates a relative centrifugal force (RCF, also called the “g” force) capable

of pulling cells and other particles to the furthest position from the centre of rotation. The RCF

is proportional to the square of the rotor speed and the radial distance and can be calculated

using the following equation:

RCF ¼ 1:118� 10� 5 � �r � o2 ð1Þ

Where �r is the average radial distance of the sample in the tube (in cm) and ω is the rotor

speed (in Revolutions Per Minute, RPM). The schematics of the tubes and dimensions are

shown in Fig 2A.

Fig 1. (A) Sample processing volume vs price of available commercial and open source academic microcentrifuges,

(B) Illustration of the different sized tubes used with the available microcentrifuges along with S-Monovette tube used

in this project, (C) Adaptor concept: C.i) Commercial SciSpin MINI Microfuge, model: SQ-6050 with its original

rotors C.ii) CAD schematic of the designed three-part rotor adaptor C.iii) Final 3D printed rotor adaptor mounted on

the commercial microcentrifuge base C.iv) Top cover removed from the adaptor, showing inside part of the rotor

adaptor that holds two standard 9mL S-Monovette tubes.

https://doi.org/10.1371/journal.pone.0266769.g001
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Although it seems from Eq (1) that the RCF should increase with an increment in speed

and the distance of the sample from the axis, other parameters must be considered to obtain

the highest RCF. These parameters include the moment of inertia, torque, and aerodynamics

(Fig 2B). As the original rotor is going to be replaced by the customised one, to meet this addi-

tional load demand, the torque of the motor will increase, which will force the speed to go

down because of the inverse relationship between the torque and speed. As the RCF increases

with the square of the rotor speed, halving the speed will result in a 4-fold decrement in RCF

which will result in poor separation efficiency. The additional mass and larger size of the rotor

adaptor to accommodate the S-Monovette tubes lead to a decrease in the speed because of the

larger moment of inertia and higher aerodynamic drag force. Therefore, although the incre-

ment of radial distance increases the RCF, it can also decrease the rotational speed because of

the increased moment of inertia and aerodynamic drag force. In this trade-off between speed

and radial distance, the speed has been given priority because of its squared relationship with

the RCF and every effort has been made to keep the design as small and light as possible. In

addition to these discussed parameters, the rotational angle also plays a vital role in the separa-

tion process where most compact pellet after the separation usually forms with a higher rota-

tional angle and therefore 45˚ fixed angled rotors are most in commercial centrifuges that uses

fixed-angle rotors. It should be noted that, among the two types of rotors, fixed-angle and

swing-bucket rotors, the former one has many advantages like lower exposure to stress, higher

RCF and not having any moving hanging parts; hence, adopted in our project. The effect of

different angled rotors has been studied in different designs which will be discussed in the next

sections.

Fig 2. (A) Schematic illustration of the tubes on a fixed-angle adaptor and the radial dimensions (B) The influential

parameters on the applied RCF on the sample in the tube mounted on the adaptor.

https://doi.org/10.1371/journal.pone.0266769.g002
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2.2 Centrifuge hardware

The commercial microcentrifuge (SciSpin MINI Microfuge, model: SQ-6050) used in this

project is widely available on mainstream purchasing platforms. To the best of our knowledge,

this is the lowest CE-marked cost microcentrifuge on the market at the time of writing. It also

has a higher rotational speed (7000 RPM), is lightweight and is more compact compared to

other available devices. The full technical specifications of the microcentrifuge are provided in

(S1 Table in S1 File). A commercial benchtop refrigerated centrifuge (Allegra X-12R, Beckman

Coulter) with a swinging bucket, (Modular Disk Adapters for Tubes (SX4750)) was used as the

benchmark. The benchmark centrifuge was always run with an RCF of 3273×g (3750 RPM).

The RCF for the benchmark was chosen as the maximum speed allowed on a swinging bucket

configuration and close to the average first spin values used in cfDNA studies [27]. The maxi-

mum speed for the commercial Allegra centrifuge is respectively 3750 and 10,200 RPM for

swinging bucket and fixed angle, (equivalent RCF respectively 3720 and 11,400 ×g) The second

spin protocol applied in plasma quality measurements was 12,000×g RCF for 10 minutes with

a commercial high-speed microcentrifuge (5417 R, Eppendorf), also based on cfDNA studies

[27].

2.3 3D printed adaptor fabrication

All 3D printed rotor adaptors presented here were designed using 3D modelling CAD (Solid-

Works, 2018) and fabricated using Fused Deposition Modelling (FDM) technology. The Any-

cubic i3 Mega (Anycubic, Shenzhen, China) 3D printer was employed for printing. Polylactic

Acid (PLA) (Verbatim 1.75mm clear PLA, brand) was used to print the rotor. The technical

characteristic of the printer is provided in (S2 Table in S1 File). The objects were sliced with

Ultimaker Cura 4.4 [28] using the standard settings summarized in (S3 Table in S1 File). All

the design files are provided in.stl format in the online repository FigShare (https://doi.org/10.

6084/m9.figshare.16762444.v2).

2.4 Simulation of critical speed

Any rotating system tends to vibrate in the absence of a driving force at certain frequencies

called natural frequencies. When the frequency of the rotational speed matches with the natu-

ral frequencies of the system, there will be a resonance and the system will vibrate at that fre-

quency. This natural frequency matching speed is commonly known as the critical speed of

the system. The vibrations of the rotating system can impose high shear stress on the blood

cells and could potentially damage the cells, leading to hemolysis, the destruction of red blood

cells, and erroneous analytical results [29]. Therefore, it is important to minimize the critical

speed to ensure the minimum shear stress on blood cells. Industrial centrifuge systems operate

below and above critical speeds and the critical speeds are controlled via damping in rotor

shaft connection [30]. In this project, the critical speed of different designs was predicted in-

silico using Ansys workbench modelling (2021 R1, student edition) with the purpose of mini-

mising the model critical speed. During the simulation, modal analysis has been selected from

the available analysis systems. The designed 3D model was then imported into the analysis

using the geometry tab. The remaining configuration was then completed in the analysis’

model tab. PLA material was assigned in this step and the threads present in the original design

were removed to facilitate the meshing. Fine meshing was chosen which was the highest possi-

ble meshing setting available with the Ansys version used in this study. Later the connection

point between the designed rotor and the centrifuge base was selected as a fixed support. To

run the modal analysis under loaded condition (rotational velocity) and calculate the critical

speed using Campbell diagram, the Coriolis effect, the Campbell diagram and the damped
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condition were turned on, and the number of points was set to 15, allowing us to do the modal

analysis for fifteen different speeds. Finally, from the environment tab, a rotating velocity was

added to the analysis, and fifteen rotational speeds were employed, ranging from 0–7000 RPM

with 500 RPM intervals. Following the computation, a Campbell diagram was created under

the solution, displaying the design’s critical speeds, with the one lower than 7000 RPM chosen

as the model critical speed for the further analysis.

2.5 Deflection measurement

The deflections of each 3D printed adaptor were measured from video recordings using a code

written in the Python OpenCV module. Three video recordings of each adaptor were taken,

with a duration of 4 minutes (At 0 sec, Motor mains and video start; at 2 minutes, Motor

mains stop; at 4 minutes, video stop). To reach their respective maximum speed, all of the

designs take 30–50 seconds, depending on their angular acceleration. The motor mains were

switched off at 2 minutes to guarantee the designs ran for at least 1 minute at their maximum

speed. Finally, the designs reach zero speed around 50 seconds to 1.5 minutes, depending on

the load torque. Therefore, the video was cut off after 4 minutes. Prior to the deflection mea-

surement, sizes of the video files were reduced using an online video converter (https://ezgif.

com/). In the first module of the python code, the edge position of the adaptor was detected

and transformed in pixel units for each frame of the video. Then these detected positions were

compared with the initial reference and deflections in the pixel unit were incorporated into a

final deflection matrix. Finally, the values of the deflection matrix were saved to an MS Excel

file along with their corresponding pixel numbers. The code saved the screenshot of the pro-

cessed video images from which a pixel per mm value was calculated from a known distance.

This calculated pixel per mm value was then compared to the saved deflections values in the

MS Excel file which provided the absolute deflection in mm for each design. The Python code

is provided as S1 Code, along with an example video of Design C in S1 Video. Video record-

ings of all devices are available from the FigShare repository https://doi.org/10.6084/m9.

figshare.16762444.v2

2.6 Sample material

Human blood samples were obtained under local ethical approval from the Scottish National

Blood Transfusion Service (contract #18~06) and according to the Declaration of Helsinki.

Samples were kept refrigerated (2–8˚ degrees) before their use. Blood samples were ordered

from the same group (O positive) and pooled. Upon arrival, they were mixed gently to save

Red Blood cells (RBCs) from getting damaged via excessive shear stress. Prior to each experi-

ment, 9 mL blood samples (from the same pool) were poured into 9 mL S-Monovette opened

syringes using S1 Pipet Filler (Thermo Scientific) which enabled fatigue-free pipetting. The

larger diameter of the pipette tip (~0.9 mm) ensured lower stress exerted during blood

aspiration.

2.7 ImageJ analysis on yield calculation

Prior to the experiments, all the S-Monovette tubes were marked to indicate the area required

for a 1 mL volume of plasma. After each experiment, photographs of the tubes in a fixed cus-

tom set-up were captured with a mobile camera (Samsung Galaxy Note9). Thereafter, the cap-

tured images were processed using ImageJ software to measure the yield of the separated

plasma. During the analysis, the previously marked area was selected as the scale. The plasma

volume separated after centrifugation was calculated from the position of the plasma limit.

Finally, the yield was calculated by comparing this separated plasma volume with the total
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available plasma in the sample, known from the hematocrit (Hct) measurement (See section

2.8).

2.8 Blood cell counts

RBCs and platelets count, hematocrit (Hct), and hemoglobin (Hgb) of all the pre-and post-

centrifuged blood and plasma samples were measured by a hematology analyzer (Sysmex XP-

300, Sysmex Corporation, Japan). These measurements were used to compare the separation

efficiency and purity of different designs.

2.9 Characterisation of hemolysis via spectrophotometry

A centrifuge operates at a high centrifugal force and may exert a shear rate on the RBCs result-

ing in hemolysis. The reference for hemolysis rate during storage provided by the American

Society for Clinical Pathology is 2% or less [31], the Council of Europe guidelines recommend

not to exceed 0.8% [32] and the US FDA 1%. While these values provide a useful guide to

interpret the effect of centrifugation on blood samples, it should be noted that they refer to

hemolysis in blood and blood components intended for transfusion or for further manufac-

ture, not in-vitro diagnostics. During hemolysis, RBCs release their Hgb content on the sam-

ple. Free Hgb measurements in plasma provide an estimation of the overall hemolysis of a

sample. In order to evaluate the hemolysis generated during the centrifugation with different

devices, Hgb concentration on the plasma was measured using the spectrophotometric Cripps

method at 560, 576 and 592 nm wavelengths [33]. The percentage of hemolysis was estimated

with Eq 2 [34]:

Hemolysis Percentage %ð Þ ¼
ð100 � HCTÞ � Free HGb

Total Hgb
ð2Þ

where Hct and Total Hgb represents the total hematocrit and total Hgb content of the initial

blood sample and free Hgb is the estimation of Hgb concentration using the Cripps method in

an undiluted plasma sample. In this method, background absorption from other proteins,

such as bilirubin, is automatically mitigated by the fractional absorbance between 576nm and

at 560nm and 592nm wavelengths. In order to quantify the absolute free Hgb level in our sam-

ples, a standard curve was obtained by diluting human Hgb powder (Sigma-Aldrich, USA) in

human plasma (Cambridge Bioscience, UK) to make samples of 1, 0.5, 0.1, 0.05, 0.01, and

0.005 mg/dL. The absorbance of the plasma samples extracted after centrifugation of different

devices along with the standard samples made from human plasma was measured with the 96

well plate reader (POLARstar Omega, BMG Labtech).

2.10 cfDNA extraction

To assess cfDNA levels in several designs and controls, total cfDNA was extracted from 3 mL

of separated plasma using the QIAamp Circulating Nucleic Acid kit (QIAGEN) following

manufacturer instructions. Extracted cfDNA samples were frozen until use. Real-time quanti-

tative PCR was performed using 2x Power SYBR1 Green PCR Master Mix (Thermo Fisher

Scientific) to amplify 90 bp target with LINE primers (final concentration 200 nM): forward

5’-TGC CGC AAT AAA CAT ACG TG -3’ and reverse 5’-GAC CCA GCC ATC CCA
TTA C-3’ [35]. A standard curve was created using a series of 5 dilutions of Human Geno-

mic DNA. Thermal cycling conditions involved a 10-minute cycle at 95˚C followed by 40

cycles with 15 seconds at 95˚C and 60 seconds at 60˚C. Samples were amplified in triplicates

using Applied Biosystems StepOnePlus™ Real-Time PCR System (Applied Biosystems). A
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melting curve was performed as a control measure for non-specific amplification. Absolute

amounts in each sample were obtained from the standard curve.

2.11 Protein load

Bromocresol Purple (BCP) Albumin Assay Kit (Sigma-Aldrich, Merck, Germany) performed

as per manufacturer’s instructions with plasma samples diluted 5-fold in ultrapure water. The

kit utilizes bromocresol purple, which forms a colored complex specifically with albumin. The

intensity of the colour, which is directly proportional to the albumin concentration in the sam-

ple, was measured at 610 nm with a 96 well plate reader (POLARstar Omega, BMG Labtech).

2.12 Statistical Analysis

Statistical significance was determined by an unpaired parametric Student t-test. Unless speci-

fied, the p-value significance threshold was set at 0.05. When reporting on statistical signifi-

cance symbols ‘ns’ is used to indicate non-significance (p>0.05), while �, ��, ��� denotes

p<0.05, p<0.01, p<0.001 as per conventional practice.

2.13 Safety Notice

To accommodate the large rotor adaptor, the original safety lid of the mini-centrifuge was

removed. During the development phase, other safety measures were put into place in case of

an adverse event (e.g., accidental detachment of rotor adaptor). Firstly, the base of the micro-

centrifuge was fixed with a 5 mm Perspex sheet with recessed screws. Secondly, all the experi-

ments were performed under a custom 6 mm thick Perspex safety hood. All the designs went

through a 30-minute continuous runtime without incident. None of the designs showed any

overheating, rotor displacement/detachment. The motor power load was measured on A-E0

designs on a Bench Digital Multimeter (Keithley DMM6500, Tektronix, Beaverton, OR, USA)

(S4 Table in S1 File) and found to operate well below the indicated power rating of the original

instrument at full speed. Peak power loads within 10% of the original power rating were

observed at the beginning of each cycle. Motor power load measurements are available on Fig-

share at https://doi.org/10.6084/m9.figshare.16762444.v2. While we are confident the adapted

rotor can be safely operated, we recommend additional precautions, such as (i) performing a

thorough visual inspection of the printed parts to ensure they have no defects (ii) ensuring the

correct balance of the tubes prior to spin, and (iii) operating the instrument within an appro-

priate enclosure (we recommend at least 5 mm thick solid polycarbonate).

3. Results and discussion

3.1 Design statement and design progression

The main goal of the design was to achieve the separation of plasma from blood in least one

9mL Sarstedt tube within 10 minutes, with separation performance equivalent or better than a

control on a commercial centrifuge. A full set of requirements was drawn, shown in Table 1. A

total of thirteen designs were manufactured and tested. Each design is presented in Fig 3

alongside physical parameters. All the designs developed were capable of holding two 9 mL

S-Monovette tubes (Requirement R1) as well as all installation requirements (R2-R5). To

achieve operational requirements R6-9, engineering parameters such as the size of the device,

weight, radial distance, aerodynamic drag force around the device and the rotational angle

were explored. Design A and B were the preliminary rotor designs and were planned without

aerodynamic drag force considerations. The primary objective of these designs was to have a

smaller footprint and utilise less material, lowering the end centrifugation cost to a minimal.
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For these two devices, We varied the angles and radial distance of these two designs while

keeping the weight constant around 60 g to observe the radial distance effect on the RCF.

Although the radial distance of design A is higher than that of design B, Design A had

smaller final RCF. A close inspection of angle variations also showed similar phenomena. The

Table 1. Design requirements.

Reference Requirements

Capacity requirements

R1 The centrifuge must have capacity for at least two 9mL Sarstedt monovette tubes

Installation requirements

R2 The centrifuge must work properly under the normal range laboratory environment: Temperature 15–

25 C, humidity 30–50%

R3 The centrifuge must be bench top and must not move during operation

R4 The centrifuge must be easy to clean

R5 The centrifuge must be able to operate with electrical power

Operational requirements

R6 The centrifuge must have vibration-free performance, defined as hemolysis of samples not exceeding

2%

R7 The maximum speed achieved must be equal (within 5%) to the speed of the original devices: 7,000rpm

R8 The centrifuge must be capable of providing same or better yield and separation performance (residual

plasma RBC) as control within 10 min of operation

Health and Safety requirement

R9 The centrifuge should be turned on and off in a safe manner, which does not bring the user in contact

with moving parts

R10 The noise level generated during operation of the equipment should not exceed the level of 90 dB

R11 The centrifuge must provide sample tube protection

https://doi.org/10.1371/journal.pone.0266769.t001

Fig 3. Evolution of design and basic characterisation.

https://doi.org/10.1371/journal.pone.0266769.g003
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radial distance of designs with higher angle was slightly higher than the designs with smaller

angle. As an example, the radial distance of design B-45˚ is 0.931 mm higher than that of B-30˚

design and the RCF value is 16×g lower. This effect can be explained by the aerodynamic drag

force acting during the rotation which is directly related to the drag coefficient (depends on

the shape of the body), the frontal area and the square of the rotating velocity [36]. The frontal

area of design A and B can be compared to a flat plate that is highly resistive to the surrounding

air and have a high drag coefficient of 1.17 to 1.98 [37, 38]. With a higher radial distance or

angle, the frontal area becomes even larger and minimize the speed of the device and its RCF

value. Thus, the maximum achievable speed of designs A and B is much smaller than the rated

speed of the motor because of their high air resistive flat plate shape. Therefore, although these

initial arbitrary shaped designs have some advantages such as the low material amount and

low material cost, and fast printing time (<2 hours), the achieved speed and RCF are not capa-

ble of highly efficient centrifugal separation (Requirements R8&R9).

In industrial centrifugation, conical designs such as cone-stack type centrifuge [39, 40], and

conical plate centrifuge [41] are prevalent. In subsequent designs (C-E), we adopted a trun-

cated cone shape design to achieve a drag coefficient to 0.05–0.5 and thus reduce the aerody-

namic drag force operating around the rotor body. A schematic diagram of the aerodynamic

drag force around the designs A-B and C-E is provided in Fig 4A. The speed of the truncated

conical shape C-E devices was over two folds that of the primary designs A-B. The relationship

between the radial distance and speed for all designs is displayed Fig 4B.

After achieving a higher speed (4160 RPM) with the original truncated cone shape design

C, speed was further increased with the later designs D-E by decreasing the lateral surface area

(Fig 4C). Design with a smaller lateral surface area provided the least air resistance during the

rotation which increased the speed of these designs. The final design E5, achieved a rotational

speed of 6884 RPM, almost the rated speed of the original mini-centrifuge, and a RCF value of

around 1100×g. The final RPM is higher than that of many previously designed centrifuges

[16, 18, 19, 21, 42] which was critical in achieving our operational requirement R8. Despite the

fact that some of the previously developed devices have similar [20] or higher [17] RPM, our

design stands apart for severa reasons. Firstly, none of the high-speed devices can handle sam-

ples with large volumes (>9 mL). Secondly, because our design can directly accommodate this

widely used Monovette blood handling tubes, there is no need to process the blood after with-

drawal. Our design is simple, consisting of three parts: a tube holder, as well as a base and lid

that can be threaded with the tube holder. It can be noted that the final three designs (E0, E2

and E5) all possess a 25˚ rotational angle. Although a higher angle is recommended to ensure

the most compact pellet, the trade-off has to be made to increase the speed and RCF of the

designs. The evaluation of all designs against the set list of requirements is available as (S5

Table in S1 File).

3.2 Truncated cone shape design and vibrational analysis

In the previous section, we discussed that by considering the aerodynamic drag force with the

first truncated cone shape design, Design C, the rotational speed was increased almost 2-fold

compared to design B where a lower speed has been observed because of its flat plat like struc-

ture which increased the aerodynamic drag force of the body. However, with higher speeds,

vibrations were observed during the ramping up or slowing down of the rotation. In order to

understand the nature of these vibrations and reduce them, we used video analysis to measure

their amplitude and duration (see Material and Methods section). Fig 5A illustrates this pro-

cess on Design C. Fig 5Ai and 5Aii show snapshots of the recorded video before, and after, the

edge detection with the Python OpenCV code. Fig 5Aiii shows the deflection measurements
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obtained from one of the Design C videos. A deflection around 4 mm was observed both in

the accelerating and decelerating phase close to 800 RPM, the critical speed of Design C. These

vibrations at high speed could damage the RBCs because of high shear stress, hence the pri-

mary target was to lower the critical speed of the conical shape designs while ensuring higher

rotational speed. To achieve this purpose, the lateral surface area of the abovementioned

designed devices was decreased to boost the rotational speed. To predict the critical speed

before printing the devices, we used in-silico Ansys Finite Element Analysis (FEA).

The fine meshing of design C and the mode shape during the deflection of the device can

be observed from Fig 5Bi and 5Bii, for illustration. The Ansys model correctly predicted the

critical speed of each model with high accuracy (model vs experimental measurement values

Fig 4. Influence of design shapes and sizes on speed (A) Schematic diagram showing an arbitrary shape design

provides higher aerodynamic drag force than the truncated cone shape design by resisting much of the surrounding

airflow. For simplicity, airflow is showed only in one direction instead of all sides. (B) Radial distance of all designs vs

their rotational speed (C) Lateral surface area of the truncated cone-shaped designs vs their rotational speed. NB: Both

the panel B and C share the same legend.

https://doi.org/10.1371/journal.pone.0266769.g004
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in Fig 5Biii, R2 = 0.983). The maximum deflection of each design at their critical speed can be

found in Fig 5C. The final design, E5 with the lowest critical speed of around 600 RPM pro-

vided a maximum deflection of around 7 mm whereas for the other designs the average deflec-

tion was limited within 4 to 5 mm. These deflections can be interpreted as impulsive

vibrations which might exert excessive shear stress on the RBCs and cause hemolysis [43, 44].

Therefore, the final degree of hemolysis depends on the shear stress exerted on RBCs and the

Fig 5. (A) Deflection measurement from the recorded video of conical Design C. A.i) Snapshot of one of the video

recordings of Design C A.ii) Edge capturing from one of Design C videos using Canny, an edge detection operator in

Python OpenCV module. Further details about the deflection measurements are available in (S1 Fig in S1 File) A.iii)

Measured deflection of both acceleration and decelerating phase from the recorded video using python OpenCV

module for Design C. All recordings are available from (S2 Fig in S1 File) (B) Critical speed measurement in Ansys

workbench B.i) Meshing of Design C (Nodes: 6749, Elements: 39228) C B.ii) Mode shape during natural frequency B.

iii) Simulated (model) vs experimental critical speed of each conical shape design showing a good agreement between

them with low percentage difference (1–5%) (C) Measured deflection of each conical shape design showing all designs

experiencing deflection from 4 to 7 mm (D) Duration of deflection higher than 1.5 mm was decreasing the lowering of

critical speed except design E5 which experienced higher deflection for longer times.

https://doi.org/10.1371/journal.pone.0266769.g005
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exposure time of the impulse vibration [45]. Fig 5D illustrates the duration of deflection higher

than 1.5 mm. The duration of large deflections was minimised from C to E2. However, design

E5 appeared to be providing maximum deflection for about 7 seconds. Therefore, despite hav-

ing the highest rotational speed and lowest critical speed, we predicted that E5 would have a

low separation efficiency because of the amplitude and the duration of these impulsive vibra-

tions. This was verified during the biological characterisation of the devices.

3.3 Plasma yield

Following the physical characterisation of the devices, we proceeded to the biological charac-

terisation of Designs C-D to investigate if the requirement R8 was met. the first, we investi-

gated the separation yield, which indicates how much plasma volume the centrifuge can

separate from the total volume of available plasma. To determine the plasma separation yield,

9 mL of pooled blood samples were centrifuged with each conical design (C, D, E0-2-5) and

the full–scale centrifuge control for 3, 6 and 10 minutes and the separated plasma volume and

full blood count were measured. Fig 6 shows photographs (panel A) and quantitative results

(panel B) of plasma yield in the initial sample and samples after 3, 6, and 10 minutes centrifu-

gation on the adapted centrifuge and the control.

It is worth noting that most of the plasma gets separated within 3 minutes of centrifugation

(minimum separation ~70% for Design C) and the separation volume further increases at 6

and 10 minutes. The single most striking observation is the decreased separation performance

of Design E5 at 6 and 10 minutes. Device E5 shows much greater performance after 3 minutes

centrifugation (~90% yield) compared to the control. However, during 6- and 10-minutes sep-

aration instances, the design failed to maintain this higher performance where it was unable to

Fig 6. (A) Images of the initial and post centrifugated (3,6,10 minutes) S-Monovette tubes showing that larger

centrifugation times resulted in a higher volume of plasma separated from 9 mL sample. (B) Measured separation yield

of different designs compared with the control centrifugation performance. Statistics: standard unpaired t-test between

each column and the control. Design E2 and E5 were able to separate the same amount of plasma as the control at 6

and 10 minutes with no statistically significant difference.

https://doi.org/10.1371/journal.pone.0266769.g006
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separate all RBCs present in the separated plasma. To facilitate the discussion here, it needs to

be clarified that this reddish colour of plasma at 6 and 10 minutes was exclusively because of

the nonseparated red blood cells present in plasma, not due to any RBC damage which was

quantified and will be described later. The internal shape of design E5 might be a reason

behind this poor separation efficiency. This design is comparatively the smallest of all the

other designs and to accommodate this size, the sidewall was brought very close to the placed

tube inside and furthermore, the tube was completely encased against the sidewall, unlike the

other design where the tubes are hanging freely, away from sidewalls. In the previous section,

we noticed a high deflection and duration of deflection with design E5 which we suspect might

cause the sidewall to touch the S-Monovette tubes randomly at several instances and hinder

the separation efficiency. With device E2, it was possible to achieve almost 80% yield within 3

minutes which was almost equivalent to the performance of the control. The comparative

yield of design E2, E5 (approximatively 95%) are not significantly different from the control

after 10 minutes of centrifugation.

As discussed previously, the overarching goal in this study was to customize a low-cost

microcentrifuge in such a way that it could handle a large 9 mL clinical sample volume directly

after the blood withdrawal without any extra blood handling steps. At the same time, the

device should ensure at least similar separation performances as a benchtop refrigerated cen-

trifuge. We, and others in the field, have previously demonstrated microfluidic solutions as an

alternative to traditional centrifugation [46–49]. However, we have concluded that for

extremely low biomarker detection such as the detection of various fractions of circulating

DNA, microfluidic approaches are not viable because of their low separation yield and the dif-

ficulty to handle the large volume of the viscous whole blood sample. The main barrier in the

microfluidic approach is the cell-cell interaction between red blood cells. When high volume

fractional blood is flowed at a high flow rate, the cell interaction between a large number of

RBCs in the microfluidic channel increases, which inhibits the cell-free layer formation and

other deterministic effects, thus reducing the separation performance [50]. As a result, the use

of high-volume fractional blood in the above comparative high-throughput studies has

resulted in much lower separation yields. Comparatively, we can see in this study, design E0

and E2 managed to secure more than 95% of the available plasma within 10 minutes of centri-

fugation. This high plasma yield is a valuable factor in low-level biomarker detection.

3.4 Plasma quality: Residual blood cell count

Firstly, the total RBC count was measured each time the blood sample was remixed following

centrifugation to investigate the integrity of the blood sample after centrifugation. Fig 7A pres-

ents the pre-and post-centrifuged whole blood RBC count at 3, 6 and 10 minutes. It is apparent

that there was no significant decrease in RBC count between centrifugations. Due to the

removal of plasma (the hematology analyser removes around 50 μL of the sample during each

measurement) at every time instance, we noticed a slight increment in the RBC count per litre

of blood on some of the designs (and control). The absence of hemolysis in most of the samples

(see Section 3.6) corroborate this interpretation.

Secondly, a residual cell count can be used to establish the quality of the separated plasma.

Fig 7B shows the remaining RBC count on the separated plasma. The remaining RBCs in

design E2 was significantly lower than that of the control at all time instances. Design E5 per-

formed best at 3 minutes, however, due to the vibrations reported earlier in this work, the sep-

aration reversed at 6 minutes. The best cell separation performance was observed in the

platelet counts (Fig 7C). All adaptors (apart from E5) were capable of separating more platelets

than the control because of their much higher speed. Notably, design E2 separated almost 4
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times more platelets than the control, which could be of benefit in coagulation studies requir-

ing platelet-poor plasma. As explained in Materials and Methods, the separation performance

was investigated on pooled blood samples (see Materials and Method section), which has the

advantage of removing individual sample specificities and enables accurate comparison

between designs and control. To investigate any notable differences between individual pools,

we compared the separation performance of designs E0, E2 and control after 10 minutes of

centrifugation with two different pools of blood (Fig 7D). The two pools investigated were

found to have significant differences in original Hct (Pool 1, Hct� 45.5%; Pool 2, Hct�

43.2%). However, in terms of relative difference post and pre-centrifugation, the pools showed

no significant differences in RBC and platelet relative counts.

3.5 Plasma quality: Hemolysis detection

To assess the quality of the separated samples, we measured the free-hemoglobin released after

centrifugation and derived a hemolysis percentage (See Materials and Methods). Hgb levels

from collected plasma samples of design E0, E2 and control (single and double centrifugation)

were measured using Cripps method (See Materials and Methods). As reported in Fig 8A, all

the measured samples had an estimated percentage of hemolysis between 1 to 1.7% corre-

sponding to a free Hgb concentration of 0.2–0.4 g/dL. Despite the deflections observed on

Designs E0 and E2, the separated plasma is well below the threshold of hemolysis limit and

similar to the control used in our experiment, which shows the adapted device is adequate for

general low-speed spin of clinical blood samples.

Fig 7. Blood count at 3, 6 and 10 minutes (A) The red blood cell counts of pre (initial) and post (3,6, 10 minutes)

separated blood show the integrity of the sample after centrifugation. The statistical indications relate to a non-paired

t-test between the RBC counts between 0, 3, 6, and 10 minutes (B) The red blood cell (RBC) count on plasma after

centrifugation shows RBC concentration with design E2 was significantly lower than the control in all periods. On the

contrary, design E5, although performing well at 3 minutes was hampered by vibrations reversing the separation

process. Here the statistics relate to a non-paired t-test between each of the designs and the control, for each time point

(C) Platelet count (PLT) on separated plasma. Design E2 was able to separate almost 4 times higher platelet than the

control within 10 minutes. Here the statistics relate to a non-paired t-test between each of the designs and the control

for each time point (D) Relative RBC and Platelet counts after 10 minutes centrifugation from two different pools of

blood. Here the statistics relate to a non-paired t-test between Pool 1 and Pool 2 for each experiment. No significant

difference was observed between different pools of blood.

https://doi.org/10.1371/journal.pone.0266769.g007
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3.6 Plasma quality: Protein load

Albumin is known to be the most abundant plasma protein in humans which accounts for

almost 60% of the total serum protein. It is an established biomarker of nutritional status [51]

and reliable prognostic indicator for heart failure [52], pulmonary arterial hypertension [53],

in acute surgical patients [54], morbidity and mortality [55] and many more diseases. The

recovered plasma from the best designs (E0, and E2) and control centrifugation (single and

double) were analysed to quantify the concentration of albumin. The albumin quantification

from the sample was obtained by directly measuring the absorbance at 610 nm when the avail-

able albumin in a sample provides a peak in the presence of reagent bromocresol purple (see

Materials and Methods). As shown in Fig 8B, E0 and E2 samples (single and double centrifuga-

tion) showed a similar concentration to the full-scale centrifuge control, around 1.5 mM (~2.5

g/dL) with no statistically significant difference which shows the adapted centrifuge is suitable

for plasma protein studies. Similar albumin level has been detected in previous studies [49].

The albumin concentration in all samples, including control samples, was slightly lower than

the normal range of Albumin in plasma (3.4 to 5.4 g/dL), which can be explained by the age of

the samples (3 days old).

3.7 Plasma quality: cfDNA extraction

Cell-free DNA (cfDNA) are small (50-200bp) DNA fragments that originate from cell apopto-

sis or necrosis. cfDNA overall levels or specific cfDNA regions can be used biomarkers in the

diagnosis, prognosis, or monitoring of fetal chromosomal abnormalities, various cancers,

infectious diseases and organ transplants [56]. This is an emerging biomarker that is now rou-

tinely and increasingly used in clinical practice. To assess the suitability of the adapted centri-

fuge for cfDNA-based assays, we measured the levels of cfDNA using a LINE PCR. Total

cfDNA was extracted from 3 mL of separated plasma as per Material and Methods. After the

first centrifugation, we found the cfDNA concentration from design E0 and E2 to be higher

(6.5–8 ng/μL) compared to the control (~5 ng/μL) (Fig 8C). This could be due to the substan-

dard pelleting of white blood cells singe significantly more residual white blood cells (WBCs)

were found in the adapted centrifugation, compared to the control (S3 Fig in S1 File). The lysis

of remaining cells (including WBCs) during the cfDNA extraction has introduced genomic

DNA, resulting in overall higher cfDNA levels. Other studies also have reported higher cfDNA

concentration after single centrifugation [27]. A second, higher speed centrifugation is often

incorporated in cfDNA extraction protocols. This second spin at a higher speed (12,000×g

RCF for 10 minutes), can be performed on smaller sample volumes using cheaper and smaller

bench centrifuge. To test if cfDNA yields can be brought to the same level as the control, we

applied a second spin to both design E2 and control samples. After this second centrifugation,

both sample types showed a similar lower concentration of cfDNA with no statistically signifi-

cant difference. Generally speaking, it can be noted that the total cfDNA levels are higher than

levels reported elsewhere, this is due to age of the samples (three days old) which is sub-opti-

mal for cfDNA-based diagnostic, but adequate to characterise the performance of a device.

Although designs E0 and E2 showed similar RBCs separation and the yield compared to that

of control, the low rotational angle of 25˚ resulted in lower buffy coat compaction and conse-

quently higher WBC counts in the separated plasma, compared to the benchmark. This issue

might be addressed by exploring the use of a higher rotational angle or longer spin duration.

Fig 8. (A) Percentage of hemolysis in separated plasma from E0, E2 and control. (B) Albumin concentration in E0, E2

and control (C) Cell-free DNA levels in E0, E2, and control after single centrifugation or with additional second

separate centrifugation.

https://doi.org/10.1371/journal.pone.0266769.g008
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In the meantime, a second high-speed centrifugation can remove remaining WBCs and lead

to similar cfDNA levels in the adapted design and benchmark.

4. Conclusion

In this study, a mini-centrifuge costing <$130 was adapted to handle large volume (9 mL)

standard clinical samples in S-Monovette collection tubes. Our results showed that the air

resistance was the most crucial parameter needed to be optimised to ensure an adequate cen-

trifugal force for comparable cell separation to a commercial centrifuge. Following optimisa-

tion, the final design reached a speed of around 6725 RPM and RCF of 1060×g. Similar yield,

cell counts (red blood cells), hemolysis and albumin levels were obtained from the optimised

design and benchmark. Furthermore, the performance of this customised centrifuge in platelet

separation is better than the control due to its high speed, which can be useful in coagulation

studies. Only the total cfDNA levels of the plasma separated in the adapted design were found

to be significantly different to the benchmark, owing to a reduced separation performance for

white blood cells. This can be alleviated by further optimisation of vibration or potentially by a

slightly longer spin time. The nearest cheapest option for 9mL S-Monovette centrifugation

cost over $1,500. The bill of material for our adapted centrifuge stands at around $140. The

overall performance of the optimised adapted centrifuge, which costs a fraction of the total

price of the commercial control centrifuge, was equivalent to a commercial centrifuge and

superior to microfluidic approaches in yield, throughput and quality. Therefore, our design

offers value and performance to the low-resource environment or could be further adapted to

created portable diagnostic laboratories.
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