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Abstract

Induction of type I interferons by the bacterial secondary messengers cyclic-di-GMP (c-di-GMP) 

or cyclic-di-AMP (c-di-AMP) is dependent on a signaling axis involving the STING adaptor, 

TBK1 kinase and IRF3 transcription factor. Here we identified the helicase DEAD box 

polypeptide 41 (DDX41) as a pattern recognition receptor (PRR) that sensed both c-di-GMP and 

c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via 

shRNA in murine or human cells inhibited the induction of innate immune genes and resulted in 

defective STING, TBK1 and IRF3 activation in response to c-di-GMP or c-di-AMP. These results 

suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by the DDX41 PRR, which 

complexes with STING to signal to TBK1-IRF3 and activate the interferon response.
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The host innate immune system provides a critical first line of defense against invading 

microorganisms including pathogenic bacteria. Utilizing germ-line encoded pattern 

recognition receptors (PRRs), mammalian cells detect a wide variety of highly invariant 

molecular structures (known as PAMPs, for pathogen associated molecular patterns) that are 

often required by microbes for their survival or pathogenicity1-3. Indeed, many bacterial 

pathogens employ cyclic-diguanosine monophosphate (c-di-GMP) or cyclic-diadenosine 

monophosphate (c-di-AMP), two key secondary messengers that play essential roles in 

regulating metabolism, motility and virulence 4-6. During infection with certain bacterial 

species, these bacterially derived secondary messengers can also act as PAMPs, triggering a 

host type I interferon (IFN) innate immune response, characterized by the activation of NF-

κB and IRF3 transcription factors7, 8.

The mechanism by which c-di-GMP and c-di-AMP activate the host type I IFN response 

remains poorly understood. Indeed, intracellular detection of c-di-GMP or c-di-AMP leads 

to the activation of the type I IFN response in a manner independent of the cytoplasmic PRR 

RIG-I (also known as DDX58) or its downstream adaptor IPS-1. Moreover, c-di-GMP or c-

di-AMP require neither MyD88 nor TRIF adaptors, suggesting that the Toll-like receptor 

(TLR) family of PRRs also do not play a role in the detection of c-di-GMP or c-di-AMP9. 

The activation of type I IFNs by c-di-GMP and c-di-AMP was however, shown to require 

STING (aka MITA, MPYS, ERIS or TMEM173), suggesting that these cyclic dinucleotides 

are detected via a PRR that signals via STING10, 11. In response to certain viral nucleic acids 

and B-DNA, STING functions as an adaptor protein and has been demonstrated to facilitate 

downstream signal transmission to IRF3 and NF-κB12-14. Here, we provide evidence that 

the recently identified PRR DDX41 is the primary sensor that directly binds to c-di-GMP or 

c-di-AMP and can trigger the type I IFN host immune response via STING.

RESULTS

DDX41 mediates c-dinucleotide sensing in murine DCs and human monocytes

We stably knocked down DDX41 via short hairpin RNA (shRNA) in the murine splenic 

dendritic cell line D2SC (Fig. 1a) and examined IFN-β induction in response to c-di-GMP 

and c-di-AMP. Control cells infected with L. monocytogenes displayed a robust IFN-β 

response, whereas DDX41-shRNA cells showed a marked reduction in the IFN-β response 

(Fig. 1b). Consistent with published data10, 11, STING-shRNA cells also showed impaired 

IFN-β induction in response to L. monocytogenes (Fig. 1b). Cytoplasmic delivery of either 

c-di-GMP or c-di-AMP via lipofection also yielded strong IFN-β activation which was 

largely diminished in DDX41-shRNA cells, which paralleled the impairment displayed in 

STING-shRNA cells (Fig. 1c,d). Induction of IFN-β by the synthetic DNA poly (dA:dT) but 

not by the RNA ligand poly (I:C) was impaired in DDX41-shRNA cells (Supplementary 
Fig. 1a,b), demonstrating the specificity of DDX41 for c-di-GMP, c-di-AMP and B-DNA. 

Type I IFNs mediate the innate immune response via the IFN-α/β receptor, where receptor 

ligation leads toward the activation of hundreds of interferon stimulated genes (ISGs)15. 

Both c-di-GMP and c-di-AMP activated the ISG Mx1 in control cells, however, induction of 

Mx1 was significantly reduced in DDX41-shRNA or STING-shRNA cells (Fig. 1e,f). 
Similarly, c-di-GMP-mediated activation of other ISGs was also impaired in DDX41-
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shRNA cells (Supplementary Fig. 1c-f). These results indicate that DDX41 plays a critical 

role in c-dinucleotide-mediated activation of type I IFN and IFN-mediated signaling. 

Cytosolic detection of bacterial secondary messengers also leads to the activation of NF-κB, 

a key transcription factor important for the induction of pro-inflammatory cytokines such as 

interleukin 6 (IL-6) and TNF16. We found that IL-6 and TNF expression levels were 

significantly reduced in DDX41-shRNA cells compared to control-shRNA cells that were 

treated with c-di-GMP and/or c-di-AMP (Fig. 1g,h and Supplementary Fig. 1g). To 

determine whether DDX41 mediates c-di-GMP/c-di-AMP sensing and type I IFN activation 

in human cells, we stably knocked down DDX41 via shRNA in the human monocyte cell 

line THP-1 (Fig. 1i). Consistent with our findings in murine cells, both c-di-GMP and c-di-

AMP induced the production of IFN-β in control–shRNA cells, whereas c-di-GMP or c-di-

AMP-mediated production of IFN-β was significantly defective in DDX41- or STING-

shRNA THP-1 cells (Fig. 1j,k). Induction of ISGs in response to c-di-GMP was also 

impaired in DDX41-shRNA THP-1 cells (Supplementary Fig. 1h-l). In addition, the 

DDX41-STING signaling axis was required for the induction of IFN-β in THP-1 cells 

stimulated with B-DNA (Supplementary Fig. 1m). These results suggest that DDX41 

functions in regulating type I IFN and pro-inflammatory gene inductions in response to c-

dinucleotides in both murine and human cells.

DDX41-mediates c-dinucleotide sensing in primary cells

The role of DDX41 in facilitating c-di-GMP or c-di-AMP induced activation of type I IFN 

in primary cells was also examined. BMDCs (mDCs derived from bone marrow with 

granulocyte-macrophage colony-stimulating factor (GM-CSF)) were prepared and 

transfected with shRNA targeting DDX41 (Fig. 2a). Control-shRNA BMDCs infected with 

L. monocytogenes displayed robust production of IFN-β, while IFN-β induction in DDX41-

shRNA BMDCs was markedly reduced (Fig. 2b). c-di-GMP and c-di-AMP stimulation also 

induced the production of IFN-β in control-shRNA BMDCs, while IFN-β production was 

highly impaired in DDX41-shRNA BMDCs (Fig. 2c,d). Similarly, primary thioglycollate-

elicited mouse peritoneal macrophages transfected with siRNA targeting DDX41 (Fig. 2e) 

displayed reduced activation of IFN-β in response to L. monocytogenes infection or c-di-

GMP stimulation compared to control-siRNA transfected cells (Fig. 2f,g). Consistently, 

induction of Mx1 and IL-6 were also impaired in DDX41-siRNA peritoneal macrophages 

infected with L. monocytogenes or treated with c-di-GMP (Supplementary Fig. 2a-d).

To determine whether DDX41 plays a role in sensing c-di-GMP in primary human cells, we 

transfected peripheral blood mononuclear cells (PBMCs) with an siRNA specific for 

DDX41 (Fig. 2h). While control-siRNA PBMCs infected with L. monocytogenes or treated 

with c-di-GMP elicited the activation of IFN-β, DDX41-siRNA PBMCs showed defective 

IFN-β activation in response to L. monocytogenes or c-di-GMP (Fig. 2i,j). Similar 

reductions in IFN-β activation were displayed in DDX41-siRNA PBMCs obtained from two 

additional human donors (Supplementary Fig. 2e,f). These results further indicate a critical 

role for DDX41 in facilitating type I IFN responses induced by c-di-GMP or c-di-AMP in 

primary immune cells.
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DDX41 is a direct sensor of c-di-GMP

DDX41 is known not only to signal via the STING adaptor to activate type I IFN, but to also 

function as a PRR that directly binds viral DNA and B-DNA17. We therefore investigated 

whether DDX41 functioned as a direct sensor (PRR) for c-di-GMP or c-di-AMP. Biotin-

labeled c-di-GMP or c-di-AMP pulled down ectopically expressed DDX41 from 293T cell 

lysates (Fig. 3a and Supplementary Fig. 3a). Immunofluorescence microscopy further 

revealed that DDX41 and c-di-GMP co-localized upon their co-transfection into D2SC cells 

(Fig. 3b). In addition, we found that GST-purified DDX41 or His-purified DDX41 from 

E.coli directly bound c-di-GMP (Fig. 3c and Supplementary Fig. 3b). The c-di-GMP 

interaction with DDX41 was specific as only unlabeled c-di-GMP, c-di-AMP and poly 

(dA:dT) (B-DNA), but not poly (I:C), could competitively disrupt the c-di-GMP-DDX41 

interaction (Fig. 3d). Furthermore, the structurally similar molecules GMP and AMP, but 

not the c-di-GMP and c-di-AMP precursors, GTP or ATP, also disrupted the DDX41-c-di-

GMP complex (Supplementary Fig. 3c).

To determine whether c-di-GMP binding was specific to the DDX41 helicase, we compared 

c-di-GMP binding with another DEAD box helicase PRR. c-di-GMP bound to DDX41, but 

showed no interaction with DDX58 (Supplementary Fig. 3d). To define which domain of 

DDX41 was important for binding c-di-GMP or c-di-AMP, we used a series of deletion 

mutants of DDX41 (Fig. 4a,b) and evaluated their interactions with biotinylated c-di-GMP 

or c-di-AMP in 293T cells. c-di-GMP and c-di-AMP failed to interact with DDX41 lacking 

the central DEAD box domain (Fig. 4c,d). To determine the physiological relevance of this 

domain in terms of type I IFN induction, we reconstituted DDX41-shRNA THP-1 cells with 

either full length DDX41 or the DDX41 deletion mutant lacking the DEAD box domain 

(Fig. 4e). As expected, DDX41-shRNA cells displayed defective IFN-β production in 

response to c-di-GMP or c-di-AMP compared to control-shRNA cells (Fig. 4f,g). However, 

DDX41-shRNA cells reconstituted with full length DDX41, but not the DDX41 deletion 

mutant lacking the DEAD box domain, “rescued” the defective IFN-β production in 

DDX41-shRNA cells in response to c-di-GMP or c-di-AMP stimulation (Fig. 4f,g). Thus c-

dinucleotide mediated induction of IFN-β requires the central DEAD box domain of 

DDX41.

DDX41-dependent signaling downstream of c-di-GMP and c-di-AMP

DDX41 interacts and co-localizes with the STING adaptor (Supplementary Fig. 4a,b) to 

facilitate DNA ligand dependent signal transduction17. Introduction of either c-di-GMP or c-

di-AMP into D2SC cells led to enhanced DDX41-STING complex formation (Fig. 5a). In 

DNA dependent signaling pathways, STING further binds to the downstream kinase TBK1 

to activate the type I IFN response18, 19. Both c-di-GMP and c-di-AMP when transfected 

into control D2SC cells activated the formation of a STING-TBK1 complex, however, c-di-

GMP and c-di-AMP mediated activation of the STING-TBK1 complex was almost 

completely abrogated in DDX41-shRNA cells (Fig. 5b). Consequently, c-di-GMP and c-di-

AMP mediated activation of TBK1, IRF3 and the downstream type I IFN effector, STAT1 

was impaired in DDX41-shRNA cells (Fig. 5c and Supplementary Fig. 5). Activation of 

NF-κB was also impaired in DDX41-shRNA cells in response to either c-di-GMP or c-di-

AMP (Fig. 5c). Together, our findings suggest that DDX41 is a critical PRR for c-di-GMP 
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and c-di-AMP mediated IFN induction, and that its absence generates a defect in 

downstream STING-dependent signaling.

c-di-GMP signals to the STING adaptor via DDX41

A recent study found that c-di-GMP could bind to the C-terminal domain of STING (STING 

CTD) and suggested that the STING adaptor could function as an immune sensor of c-di-

GMP20. We therefore performed binding assays to determine the affinities of c-di-GMP or 

c-di-AMP for DDX41 and for STING in parallel. Biotin-labeled c-di-GMP pulled down 

ectopically expressed DDX41 with greater affinity over ectopically expressed STING from 

293T cell lysates (Fig. 6a). Physiologically, binding of c-di-GMP with endogenous DDX41 

was also greater than the association between c-di-GMP and endogenous STING (Fig. 6b). 

Immunofluorescence imaging further revealed greater co-localization between c-di-GMP 

and DDX41 in comparison to STING (34.13% vs 6.25%) (Fig. 6c). Affinity capillary 

electrophoresis (ACE) experiments were also performed to examine the binding affinities 

between c-di-GMP and recombinant DDX41 or recombinant STING CTD. c-di-GMP bound 

DDX41 with a Kd of ~5.65 μM, whereas c-di-GMP associated with STING CTD with a Kd 

of ~14.54 μM (Fig. 6d). Consistent with these findings, c-di-GMP bound to purified 

recombinant DDX41 with stronger affinity than purified recombinant STING CTD in 

pulldown binding assays (Fig. 6e). We therefore hypothesized that DDX41 is the major 

primary sensor of c-di-GMP and c-di-AMP, operating upstream of STING, and upon 

binding these PAMPs, yields enhanced complex formation with STING to facilitate 

downstream signaling and type I IFN activation (Supplementary Fig. 6). Accordingly, c-di-

GMP was significantly impaired in its capacity to associate with ectopically expressed 

STING in 293T cells transfected with siRNA targeting DDX41 (Fig. 7a). Consistently, co-

localization between c-di-GMP and STING was largely reduced in DDX41-shRNA cells, 

whereas c-di-GMP-DDX41 interactions remained intact in STING-shRNA cells (Fig. 7b,c). 

Taken together, our findings indicate that DDX41 is the primary PRR for c-di-GMP and c-

di-AMP, which signals via STING for type I IFN induction.

DISCUSSION

Many bacterial pathogens including Staphylococcus, Streptococcus, Pseudomonas, 

Yersiniae, Listeria and Mycobacterial species employ key secondary messengers including 

c-di-GMP or c-di-AMP that play essential modulatory roles in bacteria4, 7. Although several 

substrates and effectors have been identified for these cyclic dinucleotide monophosphate 

species within the bacterial cell, our understanding of these bacteria-specific secondary 

messengers on the innate immune response within the mammalian host cell is just beginning 

to emerge. c-di-GMP and c-di-AMP activate the host type I IFN response in a manner 

dependent on the STING adaptor10, 11 and our findings indicate that the DNA sensor 

helicase DDX41 functions as a direct PRR for these cyclic dinucleotides in both murine and 

human cells. Our results showed that unlabeled c-di-GMP or c-di-AMP could disrupt the 

DDX41-c-di-GMP interaction. We found that GMP and AMP, but not the bulkier GTP or 

ATP molecules, could also competitively disrupt the DDX41-c-di-GMP complex. Although 

two molecules of GMP or AMP are structurally similar to c-di-GMP or c-di-AMP, 

respectively, they are not known to function as PAMPs in mammalian cells9. It will 
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therefore be of further interest to determine how these species play a modulatory role in the 

type I IFN response. Our competition experiments additionally revealed that B-DNA could 

disrupt the DDX41-c-di-GMP complex. Indeed DDX41 has been shown to function as a 

sensor for B-DNA as well17. The mechanism by which DDX41 binds B-DNA, as well as 

cyclic dinucleotides, as revealed by co-crystallization studies and point mutation analysis 

will be the subject of future investigation.

Our results additionally indicated that c-di-GMP and c-di-AMP mediated activation of 

innate signaling and type I IFN induction were similarly defective between cells in which 

DDX41 or STING had been knocked down , suggesting DDX41 and STING share a 

common signaling pathway. STING-deficient cells displayed a very modest defect in NF-κB 

activation in response to c-di-GMP or c-di-AMP. The reason for this phenomenon is not 

entirely clear10, however it may be possible that there is redundancy or compensation in 

signaling to NF-κB. Another DNA sensor, IFI16 (also known as p204) was also shown to 

facilitate some viral DNA triggered signaling via the STING adaptor21, 22. Although a role 

for IFI16 cannot be ruled out in the c-di-GMP and c-di-AMP signaling pathway, it is 

however unlikely that IFI16 functions as a primary sensor for these molecules since its’ 

basal expression is low and is rather induced in a type I IFN-dependent manner. DDX41 

expression on the other hand, is greater at the basal state and is not modulated by type I 

IFNs17.

Our data suggests that DDX41 serves as the PRR for c-di-GMP and c-di-AMP, which upon 

receptor binding signals to TBK1-IRF3 via the STING adaptor. Lending further credibility 

as a scaffolding molecule, STING was recently shown to bridge TBK1-IRF3 interactions for 

optimal signaling23. Nevertheless, consistent with a published report20, we also found that c-

di-GMP associated with STING, however, with lower affinity than DDX41. Although the 

physiological relevance of this interaction requires further investigation, our data shows that 

c-di-GMP interaction with STING is significantly enhanced in the presence of DDX41 in 

cells. The solved structure of the C-terminal domain of STING in complex with c-di-GMP 

revealed that one molecule of c-di-GMP binds one dimer of STING24-28. We propose that c-

di-GMP detection and binding to DDX41 promotes enhanced DDX41-STING interactions 

leading to an increase in binding affinity of STING toward c-di-GMP, ultimately driving 

downstream signaling events. Thus, STING may function as a secondary receptor or co-

factor in the cyclic dinucleotide signaling pathway.

The significance of type I IFN induction in the context of anti-bacterial innate immunity is 

currently unclear and somewhat controversial, particularly due to conflicting reports on 

whether type I IFN either functions to support or inhibit bacterial growth29-32. It will 

therefore be of interest to further study how different bacteria and host cells use secondary 

messengers and DDX41 as virulence factors and innate immune receptors, respectively, in 

their battle of infection and immunity33-35. As such, cyclic dinucleotide species and DDX41 

represent new targets such that modulation of their interaction during certain bacterial 

infections can alter the host immune response in a manner to suppress bacterial replication 

and spread.
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METHODS

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/natureimmunology/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
c-di-GMP and c-di-AMP mediated induction of the innate immune response in murine DCs 

and human monocytes requires DDX41. (a) Immunoblot analysis of DDX41 and STING in 

D2SC mDCs transfected with non-targeting scrambled shRNA, or shRNAs targeting 

DDX41 or STING. (b-d) Expression of IFN-β mRNA measured via qPCR in control-

shRNA D2SC mDCs left unstimulated (US) or in control-shRNA, DDX41-shRNA or 

STING-shRNA mDCs stimulated with L. monocytogenes (b), c-di-GMP (c) and c-di-AMP 

(d) for 6 h. (e-h) Expression of Mx1 mRNA (e,f) or IL-6 mRNA (g,h) measured by qPCR in 

D2SC cells treated as in c-d and stimulated with c-di-GMP (e,g) and c-di-AMP (f,h). (i) 
Immunoblot analysis of DDX41and STING in THP-1 monocytes treated with non-targeting 

scrambled shRNA control, or shRNAs targeting either DDX41 (two shRNAs: DDX41-a and 

DDX41-b) or STING. (j,k) ELISA of IFN-β cytokine production in control-shRNA, 

DDX41-shRNA or STING-shRNA THP-1 monocytes 16 h after stimulation with c-di-GMP 

(j) or c-di-AMP (k). Error bars indicate standard error. Data are representative of at least 

three independent experiments.
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Figure 2. 
Cyclic dinucleotides activate IFN via DDX41 in primary cells. (a) Immunoblot analysis of 

DDX41 in primary mouse BMDCs treated with non-targeting scrambled shRNA, or 

shRNAs targeting DDX41 (three shRNAs: DDX41-a, DDX41-b and DDX41-c). (b-d) 

ELISA of IFN-β cytokine production in control-shRNA or DDX41-shRNA BMDCs treated 

with L. monocytogenes (b), c-di-GMP (c) or c-di-AMP (d) for 16 h. (e-g) Quantification of 

DDX41 mRNA (e) or IFN-β mRNA induction (f,g) by qPCR in primary mouse peritoneal 

macrophages transfected with either control siRNA or siRNA targeting DDX41 (e), then 

stimulated with L. monocytogenes (f) or c-di-GMP (g) for 6 h. (h-j) Quantification of 

DDX41 mRNA (h) and IFN-β mRNA induction (i,j) via qPCR performed as in e-g using 

primary human peripheral blood monocytes electroporated with either control siRNA or 

siRNA targeting DDX41 (h), then stimulated with L. monocytogenes (i) or c-di-GMP (j) for 

6 h.. Error bars indicate standard error. Data are representative of at least two independent 

experiments.
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Figure 3. 
DDX41 is a direct sensor of c-di-GMP. (a) Pulldown and immunoblot analysis of 

biotinylated c-di-GMP interactions with Myc-DDX41 from 293T cell lyasates. (b) Confocal 

imaging of c-di-GMP-DDX41 colocalization in D2SC cells co-transfected with Myc-

DDX41 and biotinylated c-di-GMP. (c) Pulldown and immunoblot analysis between 

biotinylated c-di-GMP and GST-DDX41. (d) Pulldown and immunoblot analysis of 

biotinylated c-di-GMP (2.0 μM) interactions with GST-DDX41 alone or with increasing 

amounts of unlabeled ligands as indicated, (3× = 6.0 μM, 10× = 20 μM). Immunoanalysis 

was performed as in c. I, input GST-DDX41; N, no competitor. Data are representative of at 

least two independent experiments.
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Figure 4. 
DDX41 DEAD box domain is required for c-di-GMP and c-di-AMP mediated induction of 

IFN-β. (a) Schematic of deletion constructs of DDX41. (b) Input immunoblot of HA-tagged 

DDX41 deletion mutants used in co-immunoprecipitation experiments (for c and d). (c,d) 

Co-immunoprecipitation and immunoblot analysis of biotinylated c-di-GMP (c) or 

biotinylated c-di-AMP (d) incubated with lysates from 293T cells transfected with HA-

DDX41-full length or deletion constructs labeled A-E as shown. (e) Immunoblot of THP-1 

monocytes treated with control shRNA or shRNA targeting the 3’UTR of DDX41, then 

transfected with HA-DDX41 full length (X41A) or HA-DDX41 lacking the DEAD box 

domain (X41C). (f,g) ELISA for IFN-β cytokine production from THP-1 cells treated with 

control shRNA or shRNA targeting DDX41 that were reconstituted as in e following 

treatment with c-di-GMP (f) or c-di-AMP (g) for 16h. Error bars indicate standard error. 

Data are representative of at least two independent experiments.
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Figure 5. 
c-di-GMP and c-di-AMP require DDX41 for STING dependent signaling. (a) 

Immunoprecipitation and immunoblot analysis of DDX41-STING interactions is D2SC cells 

transfected with c-di-GMP or c-di-AMP for 4 h. (b) Immunoprecipitation and immunoblot 

analysis of STING-TBK1 interactions in control-shRNA or DDX41-shRNA D2SC cells 

transfected as in a. (c) Immunoblot analysis of TBK1, IRF3, p65 and STAT1 

phosphorylations in control-shRNA, DDX41-shRNA or STING-shRNA D2SC mDCs 

transfected with c-di-GMP, c-di-AMP, Poly (I:C) or B-DNA for 4 h. Data are representative 

of at least two independent experiments.
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Figure 6. 
c-di-GMP binds DDX41with a greater affinity than STING (a) Pulldown and immunoblot 

analysis of biotinylated c-di-GMP interactions with Myc-DDX41 or Myc-STING from 293T 

cell lyasates. (b) Pulldown and immunoblot analysis of biotinylated c-di-GMP or 

biotinylated c-di-AMP interactions with endogenous DDX41 and STING from D2SC cell 

lysates. (c) Confocal microscopy indicating c-di-GMP interactions with DDX41 or STING 

in 293T cells co-transfected with Myc-DDX41 and biotinylated c-di-GMP (top) or Myc-

STING and biotinylated c-di-GMP (bottom). (d) Hill plots of Affinity Capillary 

Electrophoresis analysis showing binding affinities between recombinant DDX41 and c-di-

GMP (left panel) or recombinant STING CTD (139-379) and c-di-GMP (right panel). 

DDX41-c-di-GMP Kd =5.65 μM, R2 = 0.99992. STING CTD-c-di-GMP Kd = 14.54 μM, R2 

= 0.98342. Kd, dissociation constant. (e) Pulldown and immunoblot analysis of biotinylated 

c-di-GMP interactions with bacterially purified DDX41 and STING CTD. Data are 

representative of at least two independent experiments.
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Figure 7. 
DDX41 is required for c-di-GMP downstream association with STING. (a) Pulldown and 

immunoblot analysis of biotinylated c-di-GMP interactions with HA-STING from lysates of 

293T cells transfected with control siRNA or siRNA targeting DDX41. (b) Confocal 

analysis showing c-di-GMP colocalizations with DDX41 or STING in control-shRNA or 

DDX41-shRNA (upper right panel) and STING-shRNA (lower right panel) D2SC mDCs 

co-transfected with biotinylated c-di-GMP and Myc-STING (upper panels) or biotinylated 

c-di-GMP and Myc-DDX41 (lower panels). (c) Quantification of c-di-GMP colocalizations 

with DDX41 or STING in control-shRNA (upper panel), c-di-GMP colocalization with 

DDX41 in STING-shRNA (middle panel) or c-di-GMP colocalization with STING in 

DDX41-shRNA (lower panel) D2SC cells from b. Error bars indicate standard error. Data 

are representative of at least two independent experiments.
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