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Introduction: Parkinson’s disease (PD) is a progressive movement disorder

characterized by heterogenous motor dysfunction with fluctuations in severity. Objective,

short-timescale characterization of this dysfunction is necessary as therapies become

increasingly adaptive.

Objectives: This study aims to characterize a novel, naturalistic, and goal-directed

tablet-based task and complementary analysis protocol designed to characterize the

motor features of PD.

Methods: A total of 26 patients with PD and without deep brain stimulation (DBS),

20 control subjects, and eight patients with PD and with DBS completed the task.

Eight metrics, each designed to capture an aspect of motor dysfunction in PD, were

calculated from 1-second, non-overlapping epochs of the raw positional and pressure

data captured during task completion. These metrics were used to generate a classifier

using a support vector machine (SVM) model to produce a unifying, scalar “motor

error score” (MES). The data generated from these patients with PD were compared

to same-day standard clinical assessments. Additionally, these data were compared to

analogous data generated from a separate group of 12 patients with essential tremor

(ET) to assess the task’s specificity for different movement disorders. Finally, an SVM

model was generated for each of the eight patients with PD and with DBS to differentiate

between their motor dysfunction in the “DBS On” and “DBS Off” stimulation states.

Results: The eight metrics calculated from the raw positional and force data

captured during task completion were non-redundant. MES generated by the SVM

analysis protocol showed a strong correlation with MDS-UPDRS-III scores assigned by

movement disorder specialists. Analysis of the relative contributions of each of the eight

metrics showed a significant difference between the motor dysfunction of PD and ET.

Much of this difference was attributable to the homogenous, tremor-dominant phenotype
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of ETmotor dysfunction. Finally, in individual patients with PDwith DBS, task performance

and subsequent SVM classification effectively differentiated between the “DBS On” and

“DBS Off” stimulation states.

Conclusion: This tablet-based task and analysis protocol correlated strongly with expert

clinical assessments of PD motor dysfunction. Additionally, the task showed specificity

for PD when compared to ET, another common movement disorder. This specificity was

driven by the relative heterogeneity of motor dysfunction of PD compared to ET. Finally,

the task was able to distinguish between the “DBS On” and “DBS Off” states within single

patients with PD. This task provides temporally-precise and specific information about

motor dysfunction in at least two movement disorders that could feasibly correlate to

neural activity.

Keywords: deep brain stimulation, Parkinson’s Disease (PD), essential tremor (ET), machine learning, UPDRS,

symptom assessment

INTRODUCTION

Parkinson’s disease (PD) is the second-most common
neurodegenerative disease worldwide, with an overall prevalence
of 0.3 percent (1, 2) and a prevalence of two percent in people
above age 70 (3). It is diagnosed clinically based on the presence
of bradykinesia and at least one of the following three signs:
rest tremor, postural instability, and rigidity. In practice,
symptomatology is diverse (4), making comparison of disease
severity between patients difficult (5).

Currently, the Movement Disorder Society-Sponsored
Revision of the Unified PD Rating Scale (MDS-UPDRS), a rating
system developed in 1987 and revised in 2007 (6, 7), remains
the standard clinical scale for the evaluation of PD severity
(6, 8–12). It consists of five sections, which account for a patient’s
ability to perform activities of daily living, degree of motor
impairment, and alterations in behavior, mood, and cognition.
The Motor Examination section (MDS-UPDRS-III) specifically
assesses motor impairment, and scoring in this section can alter
clinical management (13, 14). The MDS-UPDRS-III consists of
14 subsections, each rated from zero (not present) to four (most
severe). Accurate score assignment relies on the experience of
the evaluator, and it depends on the patient’s medication state
and their point in the natural fluctuation of motor dysfunction at
the time of evaluation. While it is a useful and validated tool with
high inter-rater consistency (8, 9, 11, 15), it cannot provide the
immediate, continuous, and temporally precise quantitative data
that are required for identifying the neural correlates that dictate
increasingly prevalent adaptive and personalized therapies.

The demand for a temporally precise measures of PD motor
dysfunction is reflected in the growing body of literature
describing technology-based motor assessments. As technology
companies, such as Apple Inc., have expanded their health

Abbreviations:ADL, activity of daily living; AUC, area under the curve; DBS, deep

brain stimulation; ET, essential tremor; GPi, globus pallidus internus; MES, motor

error score; PIGD, postural instability/gait difficulty; PD, Parkinson’s disease; ROC,

receiver operating characteristic; STN, subthalamic nucleus; SVM, support vector

machine; TD, tremor-dominant; MDS-UPDRS, Movement Disorder Society-

Sponsored Revision of the Unified Parkinson’s Disease Rating Scale.

monitoring services, PD has been a focus of early large-scale
data gathering studies, such as mPower (16). Many of these
approaches, like the one presented in this report, are task-based
and require a patient to generate data electively (17–22). Other
approaches use background-running software to collect data
from a patient’s quotidian interactions with their devices (23–26).
Still others utilize accelerometers in wearable devices to gather
continuous data (27). Some systems evaluate specific domains of
motor dysfunction (28, 29), while many, like the one presented
in this study, aim for a more comprehensive appraisal. These
methods are growing in their acceptance, and researchers are now
using improvement as measured by smartphone-based testing as
an exploratory endpoint in therapeutic clinical trials (30). While
these approaches each have relative advantages and drawbacks,
each yields large data sets that will expand our understanding of
movement disorders at both a population and an individual level.

Here, we introduce a novel, goal-directed, and naturalistic
tablet-based task and a complementary analytic approach
to improve upon currently available assessments of PD
motor impairment. Specifically, we sought to increase the
temporal precision of motor assessment while accounting
for the heterogeneity of PD motor dysfunction by using
a stylus-mediated “target tracking task” combined with a
multidimensional, machine-learning based analysis of multiple
movement-derived metrics. We compared patients with PD to
non-movement disorder control subjects using this behavioral
task and found it to discriminate between these groups with high
accuracy at short timescales. This multi-dimensional approach
improves upon recently described assessments that rely on fewer
metrics (18, 19, 21, 22). Additionally, our approach showed
specificity when compared to another movement disorder,
essential tremor (ET). Our analysis showed significantly different
contributions of each metric to our support vector machine
(SVM) classifier in PD and ET. Our SVM-based classification
protocol also differentiated between stimulation states in patients
with PD with deep brain stimulation (DBS). These results
suggest that this objective, multi-dimensional approach to
movement disorder assessment can provide information about
the motor dysfunction of patients with movement disorders
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with the temporal precision necessary for correlation to
neural activity.

METHODS

Study Participation
Patients undergoing follow-up care or consultation for
neuromodulation therapy for either PD or ET at the Rhode
Island Hospital movement disorders clinic between 2017 and
2018 were offered the option to participate in this study. No
compensation was provided. To avoid possible confounding due
to cognitive impairment, a common feature of advanced PD, only
patients who were able to demonstrate a clear understanding of
the task were asked to participate.

Approximately age-matched controls (often patients’ spouses
or partners) also participated in this study. Control subjects were
required only to be free of any diagnosed or suspected movement
disorder and to have no physical limitation preventing them from
seeing the display or appropriately manipulating the stylus.

Subjects agreeing to participate in this study signed informed
consent documents and the task was administered in accordance
with Rhode Island Hospital human research protocol (Lifespan
IRB #263157) and the Declaration of Helsinki. All subject data
were de-identified. Two-letter subject identifiers that appear
in this report were randomly generated and unrelated to
subject initials.

Ultimately, 26 patients with PD and without DBS and 12
patients with ET completed the task. Additionally, 20 control
subjects volunteered to participate (Table 1). Patients with PD
who participated in the study were significantly older than
control subjects (69.69, SD ± 8.61, compared to 58.45, SD ±

10.20, T-test, T = 3.994, p = 0.0002). Patients in the PD group
had a mean duration of disease of 7.32 years (SD ± 5.94),
compared to a mean duration of 13.46 years in the ET group (SD
± 14.52). Because control subjects were frequently the spouses of
participating patients, the distribution of self-identified genders
in the patient groups differed from that of the control group,
although this difference was only significant in the PD group,
in which more males than females participated (Chi-square tests
p-values: PD= 2.67× 10−8; ET= 0.0866).

Patients with PD and without DBS were classified according
to their phenotype based on previously described analyses of
MDS-UPDRS-III subsection scores (31, 32). Briefly, if the ratio
of the average of the “tremor” scores to the average of the
“postural instability” and “gait difficulty” scores exceeded 1.5,
the patient was considered “tremor-dominant” (TD). If this ratio
was between 1 and 1.5, the patient is considered “mixed,” and if
the ratio was less than 1, the patient was considered “postural
instability/gait difficulty” (PIGD).

An additional eight patients with PD with DBS completed the
task. Patients with PD with DBS were not significantly different
from patients with PD without DBS in age (62.63, SD ± 7.09,
compared to 69.69, SD ± 8.61, T-test, T = 2.033, p = 0.0501),
disease duration (10.75, SD± 2.82, compared to 7.32, SD± 5.94,
T-test, T= 1.606, p= 0.118), or hours since last medication dose
(3.44, SD± 2.09, compared to 4.50, SD± 4.86, T-test, T= 0.569,
p = 0.574). However, there were significant differences between

the distribution of self-identified gender and handedness between
these two groups (Chi-square tests p-values: 3.56 × 10−4 and
0.0067, respectively).

Collection of MDS-UPDRS Scores
For patients with PD, MDS-UPDRS-III scores were assessed
immediately prior to administration of the tablet tracking task
by one of two board-certified neurologists at Rhode Island
Hospital with subspecialty training in movement disorders. This
uniform sequence ensured that MDS-UPDRS assessments and
task completion occurred in approximately the same drug state,
and that task performance did not bias the assessment of the
clinician. Additionally, the assessing clinician was not present
during the administration of the task. MDS-UPDRS-III scores
were obtained for all 26 of the patients with PD and without DBS.
Same-day MDS-UPDRS-III scores were available for 24 of the 26
patients with PD who completed the task.

Testing of Patients in “On” and “Off” DBS
Stimulation States
Patients with DBS implants were alternately assigned to begin
in either the “DBS On” or “DBS Off” state. Patients completed
several tasks in each stimulation state with a 15-minute, task-free
“washout” period after change in DBS setting. In addition to this
washout period, unrelated research tasks were also performed.
Cumulatively, performance of the task in each stimulation state
was typically separated by approximately one hour.

Task Administration and Data Collection
A touchscreen tablet-based motor task was developed for the
iOS system (v.11.4, Apple Inc., Cupertino, California, USA)
using the Swift programming language (v.4.1, Apple Inc.,
Cupertino, California, USA) and XCode integrated development
environment (v.9.2, Apple Inc., Cupertino, California, USA).
The task presented a continuously-moving target designed to
capture goal-directed movement. The target path was calculated
stochastically using an algorithm derived from the cubic Bezier
curve equation:

B (t) = (1− t)3 P0 + 3 (1− t)2tP1 + 3(1− t) t2P2 + t3P3

where 0 ≤ t ≤ 1, starting point P0, endpoint P3, and two
semi-random control points P1 and P2.

Twenty curves were generated and sequenced into a single
continuous path by setting the endpoint of a given curve equal
to the starting point of the subsequent curve. Each control point
was plotted along the arc of a theoretical circle containing the
previous point as the center. The radius of each control point was
randomly selected from a range of 2.0–2.4 cm, and the curvature
of each control point was selected from a range of 60–75◦. The
directionality of each curve (clockwise or counterclockwise) was
determined randomly unless the target was approaching one of
the screen bounds, in which case the path curved away from
the edge of the screen. Furthermore, the control points were
restricted to collinearity to prevent sharp “kinks” in the path.

The final path was rendered using the Swift UIBezierPath
“spline” function, and the target was animated along the
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TABLE 1 | Subject characteristics.

PD (Non-DBS) ET Control

Documented Mean SD p-value

(to control)

Documented Mean SD p-value

(to control)

Documented Mean SD

Total 26 - - 2.67 × 10−8 12 - - 0.087 20 - -

Men 20 - - - 5 - - - 6 - -

Women 6 - - - 7 - - - 13 - -

Age 26 69.69 8.62 0.0002 12 65.83 12.99 0.084 20 58.45 10.20

Disease duration 26 7.32 5.94 - 12 13.46 14.52 - - - -

Handedness 26 - - 0.169 12 - - 0.0218 20 - -

R-handed 25 - - - 9 - - - 19 - -

L-handed 1 - - - 1 - - - 1 - -

Ambidextrous 0 - - - 2 - - - 0 - -

Last meds 23 4.13 4.86 - 5 17.60 14.50 - - - -

Predominant phenotype 26 - - - - - - - - - -

TD 12 - - - - - - - - - -

PGID 11 - - - - - - - - - -

Mixed 3 - - - - - - - - - -

PD (DBS)

Documented Mean SD p-value (to non-DBS PD)

Total 8 - - 3.56 × 10−4

Men 5 - - -

Women 3 - - -

Age 8 60.63 7.09 0.0501

Disease duration 8 10.75 2.81 0.118

Handedness 8 - - 0.0067

R-handed 8 - - -

L-handed 0 - - -

Ambidextrous 0 - - -

Years since implant 8 1.75 1.16 -

Last meds 8 3.44 2.09 0.574

Significant results in bold. Each PD patient was classified as “Tremor-Dominant” (TD), “Postural Instability/Gait Difficulty” (PGID), or “mixed”.

path at a constant speed of 4.25 cm per second. Subjects
were asked to track the target (a circle with a radius of
4.0mm) using a pressure-sensing stylus with the dominant
hand. The task session was divided into 15 trials, each
approximately 25 seconds in duration. The coordinates of both
target and subject movements were sampled at a frequency of
100 Hz.

Metric Calculations
Metrics were crafted to capture the heterogeneity of motor
dysfunction at each time point t. Many of these metrics are based
on previous work that employed a similar approach to motor
evaluation (33), albeit in intraoperative patients undergoing
DBS implantation with a task that used a joystick, rather
than a stylus, to capture data. Notably, this work did not
assess patients with ET, nor did it test patients in different
stimulation states.

Here, data were divided into 1-second, non-overlapping
epochs, and metrics were calculated for each epoch. The

equations used to calculate each metric are shown in Table 2.
Seven of the eight metrics were calculated using positional data,
while “Pressure” reflects variance in the “force” data captured
at the stylus-tablet interface. “Distance” indicates the Euclidean
distance from the target trace to the cursor trace. “Tremor”
corresponds to the magnitude of the 3–10Hz tremor in the
cursor trace. “VectorError” calculates the magnitude of the
difference vector between the cursor and target trace vectors.
“TrackingAngle” measures the angle between the cursor and
target trace vectors. “Slowness” is an exponentially-transformed
measure of velocity such that the maximum curvature occurs

at the 80th percentile of velocity. “Speed Difference” is the

difference between the speed of the cursor trace and the speed
of the target trace. Finally, “Excursion Difference” calculates

the Euclidean distance between the cursor trace and the
origin (0, 0). The non-tremor metrics were calculated using
a 3Hz low-pass filtered trace of the subject’s movements
to minimize the possibility of a confounding contribution
of tremor.
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TABLE 2 | Equations used to calculate metrics used to train the SVM classifiers.

Metric Definitions Equation

Distance – D (t) =

√

(xC (t) − xT (t))2 + (yC (t) − yT (t))2

Tremor Magnitude ·̃C (t)2 is the analytic signal of the 3–10Hz

filtered cursor timeseries

TM (t) = x̃C (t)2 + ỹC (t)2

Vector Error – VEi =
∣

∣Ci − Ti
∣

∣

Tracking Angle – TAi = cos−1
(

Ci ·Ti
|Ci||Ti |

)

Slowness b = −0.042 Sslowi = exp
(

b ·|Ci|
1ti

)

Speed Difference – Sdi (t) = |Ci |
1ti

−
|Ti |
1ti

Excursion Difference – Ex (t) =
∣

∣C
∣

∣

Pressure Mean variance of the force captured by the

iPad over the course of each epoch

–

Supplementary Definitions

Let “target trace” refer to the curve traced out by the target, and let “cursor trace” refer to the curve traced out by the cursor. Given a time t ∈ {ti}
T
i=0, define:

xC (t) , yC (t) : x and y coordinates of cursor trace.

xT (t) , yT (t) : x and y coordinates of target trace.

Further, given the ith time (t) bin of 1t ∈ {1ti}
T
i=1, define:

Ci , (xc (i) − xC (i − 1) , yC (i) − yC (i − 1)) : vector representing the cursor trace for time bin, i.

Ti , (xT (i) − xT (i − 1) , yT (i) − yT (i − 1)) : vector representing the target trace for time bin, i.

Support Vector Machine Analysis
For n metrics, the epochs of a subject trace were transformed
into a vector of metrics, mi ∈ Rn, where R is the set of real
numbers, to the formulas in Table 2. To classify the points
of a subject’s trace as symptomatic or asymptomatic, an SVM
was trained for each subject in Rn. The points of the control
traces were labeled “non-movement disorder-associated,” while
the points of a movement disorder patient trace were labeled
“movement disorder-associated.”

Given the large size of the pooled control subject dataset
compared to the single patient dataset to which it was compared,
a Monte Carlo method was employed to reduce control bias.
For each iteration of this method, control points were randomly
subsampled (without replacement) by a factor of 1

20 to yield
a 1:1 ratio of symptomatic to non-symptomatic points (this
denominator reflects the total number of control subjects). For
each classifier, an SVM with a linear kernel was fit to 80 percent
of the data with 10-fold cross-validation as a “training” dataset,
to generate a hyperplane in Rn with coefficients hin ∈ Rn+1 for
iteration i,with a constant 0th coordinate, and the 1st through nth

coefficients corresponding to the coefficient of each metric. This
process was repeated 100 times, and average of the coefficients
h
i were used to produce a hyperplane with coefficients h =

∑100
i=1 h

i

100 . The SVMs were fit using scikit-learn 0.19.1 (34). The
remaining 20 percent of the data were used as a test set for the
classifier; validation accuracies are reported from this test dataset.
However, “motor error scores” (MES) were calculated from a
classifier trained on all of the data to maximize the yield of our
dataset. SVM hyperparameters were selected in advance of any
of these analysis and were not tuned to individual patients to
minimize the possibility of overfitting.

The degree of motor dysfunction at a point was measured by
the signed Euclidean distance from that point to the hyperplane;
we called these values MES. A positive MES corresponded to
increased motor dysfunction. That is, given the coefficients h of a

hyperplane and a subject vectormi,

SSi =
h1:n·mi+h0

|h1:n|
(1)

where h1:n is a vector with the 1st to nth coordinates of h, and h0

is a constant with the first coordinate of h.
The weight of a metric was defined as the square of its

corresponding coefficient divided by the sum of the squares of
the coefficients. Thus, the weight of the ith metric is given by:

wi =
hi

2

∑1
j=1 hj

2
. (2)

Other Analyses and Plot Generation
All other statistical analyses were performed using the “stats”
library from SciPy (35), and all graphs were generated using
the Matplotlib (36) and seaborn libraries (www.seaborn.pydata.
org). All analysis and plotting scripts were executed using Python
3 (www.python.org).

Data and Code Availability
De-identified data and analysis code are available upon request
for use in collaboration.

RESULTS

Non-redundant Metrics Were Used to
Calculate an Inclusive “Motor Error Score”
Using raw positional and pressure data epochs collected during
each trial, eight metrics were calculated (Table 1). Across
the entire group of either control subjects (Figure 1A) or
patients with PD (Figure 1B), correlations between metrics
were calculated to assess for potential redundancy. For each
metric pair, Pearson’s r2 was calculated. In both of these
groups, “Tracking Angle” and “Tremor” showed r2 values >0.7;
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FIGURE 1 | Generation of MES using non-redundant metrics. (A,B) For each subject, the distribution for each metric was normalized to the pooled control subject

data for that metric. The strength of the association was compared between each pair of normalized metric means across all control subjects (A) and patients with PD

(B). Pearson’s r2 are shown to indicate the strength of correlation. (C,D) The raw trace data from individual trials (top) of control subjects like h0039IH (C) and patients

with PD, like s0156LN (D) were used to calculate the eight metrics. These metrics were then used to generate an SVM classifier model by comparing a single subject

to a sampling of pooled control subject data. The distance from each point of patient data to the hyperplane for a given epoch corresponds to the MES, which serves

as an aggregate, scalar measure of motor dysfunction across a representative trial (bottom). Here, a Gaussian smoothing function was applied to the MES for

visualization purposes.

however, no other metric pairing showed a strong correlation.
The overall independence of the metrics suggests that each
captures a different component of motor dysfunction, and
correlation analysis of the relationships between metrics and
MDS-UPDRS sub-scores revealed some evidence, albeit not
statistically significant in this sample, in support of this possibility
(Supplementary Figure 1).

Using these eight metrics, we used SVM, a linear machine
learning algorithm, to generate a classifier to differentiate

patients with PD and control subjects. Specifically, we produced
classifiers to discriminate individual movement disorder subjects
from the pooled performance data across control subjects.
From these models, we generated a set of “Motor Error
Scores” (MES) for each patient, which corresponded to
the distance between a given patient’s data points and the
SVM hyperplane. Thus, these MES are scalar measures of
motor dysfunction that capture the constellation of movement
abnormalities to reflect the cumulative severity of a patient’s
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FIGURE 2 | Correlations of MES with MDS-UPDRS-III. (A) Using MDS-UPDRS-III, Spearman’s correlation coefficient (red line) and corresponding p-values (blue line)

were calculated using percentiles between 0 and 100 of session-wide MES for each patient. Higher percentiles correspond to progressively smaller fractions of

higher-valued MES. The dotted line indicates a p-value of 0.05, the selected alpha-level in this analysis. In general, better correlations between MES and MDS-UPDRS

were observed when considering patients’ epochs of more prominent motor dysfunction; the maximum correlation and lowest p-value occurred at the 96th percentile

of MES. (B) MDS-UPDRS-III (Motor Examination subsection) scores plotted with corresponding 96th percentile session-wide MES for 24 patients with PD for which

MDS-UPDRS-III scores were available. Strength of association was determined by calculating Spearman’s correlation coefficient (ρ = 0.501, p = 0.0125).

disease manifestation in short epochs (Figures 1C,D). To assess
the true effectiveness of the SVM-generated classifier, we re-
ran the classification on our cohort of clinic patients with
PD or ET after randomly shuffling the labels applied to each
subject (“control” or “patient”). This label-shuffling resulted
in highly significant decreases in classification accuracy, from
0.839 (SD ± 0.140) to 0.477 (SD ± 0.0828) in the PD-
control comparison and from 0.892 (SD ± 0.187) to 0.506
(SD ± 0.113) in the ET-control comparison. This loss of
specificity with label shuffling indicates that our task and analytic
approach differentiated specifically between control subjects
and patients with motor dysfunction (Supplementary Figure 2,

Wilcoxon signed-rank tests, W = 0.0 and p = 8.256
× 10−6, W = 0.0 and p = 0.00221 for PD and ET
analyses, respectively).

Multi-dimensional Metric-Based Analysis
Correlated With Clinician-Assessed
MDS-UPDRS-III Scores
Of the 26 patients with PD who performed the behavioral task,
same-day clinical MDS-UPDRS-III assessments were available
for 24. In all cases, patients underwent the clinical assessment
and completed the behavioral task in the same medication
state, as described in Materials and Methods. We assessed the
correlation between MDS-UPDRS-III score and a broad range of
percentiles of SVM-generated MES. We calculated the MES for
each percentile between 1 and 100 for each patient (a patient’s
median MES would be represented by the 50th percentile). Then,
for a given percentile, the MES for each patient were correlated
with their MDS-UPDRS-III scores, and Spearman’s rank order
correlation analysis was performed. From this analysis, we
observed that the p-value for this analysis dropped below the
pre-selected alpha level of 0.05 near the 20th percentile of MES.
The p-value of this analysis reached its minimum (p = 0.0125)

at the 96th percentile of MES. Around this same percentile, we
also observed the maximum correlation coefficient (ρ = 0.501)
(Figures 2A,B). This analysis suggests that clinicians were likely
generating their clinical assessments based more closely on their
perception of a patient’s maximum symptom severity. There was
no correlation between the MES and the patients’ point in their
inter-dose interval at the time of task completion (Spearman ρ =

−0.0969, p= 0.676).
A similar analysis was performed using the sum of all

components of the MDS-UPDRS-III that assessed symptom
severity in the dominant upper extremity (DUE), given that the
tracking task collects data related to symptoms only affecting
this extremity. In this case, the maximum Spearman’s ρ and the
minimum p-value occured at the 98th percentile of MES, and
were 0.351 and 0.0929, respectively (Supplementary Figure 3B).

Distributions of MES Were Effective
Differentiators Between Subject Types
To assess the ability of MES to classify individual epochs as
symptomatic or asymptomatic, we performed pairwise analyses
between each individual patient and control. For each pair,
a unique classifier was generated using SVM as described
above. The MES distributions generated from these SVMs were
analyzed using receiver operating characteristic (ROC) curves,
and discrimination between the distributions was quantified
using the area under these ROC curves (AUC). When comparing
patients with PD to control subjects using this method, the
mean AUC across all pairs was 0.883 (SD ± 0.149), indicating
good discrimination between these two subject types at the
1-second epoch timescale (Figure 3A). Lower AUCs were
generally grouped by patient with PD, suggesting that these
particular patients had less motor dysfunction at the time of
task performance. Importantly, there are no similar groupings
by control subject, suggesting lower variability of performance
across this group. A similar comparison of patients with ET to
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FIGURE 3 | MES effectively discriminated between movement disorder patients and control subjects. (A,B) The distributions of MES over a session were compared

between individual control subjects and (A) patients with PD or (B) patients with ET. Here, unique SVM models were generated for each comparison and the resulting

MES for each control subject-patient combination were calculated based on these models. These MES distributions were then compared using a ROC analysis. The

AUC for each comparison was then calculated. AUCs for each pair-wise comparison are shown. (C) ROC curves were generated from compiled MES distributions

from each subject group. All MES were derived from an SVM comparison of individual subjects within a group with a random sampling of pooled control data. The

AUCs were then calculated to quantify the discriminatory ability of each comparison.

control subjects yielded an even higher mean AUC of 0.937 (SD
± 0.122) (Figure 3B), meaning that, for these cohorts, the task
differentiated patients with ET from control subjects significantly
better than it did for patients with PD (Mann-Whitney test, U
= 37,899 and p < 0.0001). Like the analysis of patients with
PD, lower AUCs were generally grouped by patient and not by
control subject.

We also compared MES distributions of different groups
of subjects at the population level (Figure 3C). All MES were

derived from SVM classification compared to a random sampling
of the pooled control subject data. We then calculated the
area under these curves (AUC) to assess the discriminability of
experimental groups based upon MES. In our comparison of
the MES distributions of patients with PD and control subjects,
we found an AUC of 0.701 (p = 0.010 by bootstrapping with
100 re-samplings). A similar comparison of patients with ET
and control subjects yielded an AUC of 0.817 (p = 0.010 by
bootstrapping with 100 re-samplings). Therefore, in addition
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TABLE 3 | Comparison of metric weights between patients with PD and patients

with ET.

Metric t ratio Adjusted p-value

Tremor 3.947 0.00281

Distance 3.771 0.00467

VectorErr 2.317 0.211

SpDiff 1.645 0.869

ExDiff 1.561 1.00

TrAngle 1.569 1.00

Slowness 0.414 1.00

Pressure 0.107 1.00

Multiple t-test results with correction using the Bonferroni-Dunn method comparing metric

weights between patients with PD or ET, each compared to pooled control subject data.

Two-tailed p-values are given. Significant results in bold.

to discriminating between epochs in individual patients, our
approach has the ability to discriminate between patients with
movement disorders and control subjects on a population level.

Metric-based Analysis Highlighted Motor
Differences Between PD and ET Patients
The SVM algorithm returns a “weight” for each metric that
reflects its relative contribution to generating the classification
hyperplane. Thus, these “metric weights” should approximate
the heterogeneity of the motor dysfunction in each movement
disorder patient. SVM comparison of individual patients with
PD and pooled control subjects showed a high degree of
such heterogeneity. This diversity was reflected in the relative
variability in metric weights in patients with PD and patients
with ET. Mixed effect analysis of these data showed a significant
interaction between the metrics and the different movement
disorders (F = 9.39, p < 0.0001). Multiple T-tests comparing
metric weights of patients with PD and patients with ET with
p-values adjusted using the Bonferroni-Dunn method showed
significant differences between “Tremor” and “Distance” at the
p < 0.05 level (t ratios were 3.947 and 3.771; adjusted p-values
were 0.00281 and 0.00467, respectively) (Table 3).

On average, patients with ET demonstrated higher MES than
those with PD (1.931, SD ± 1.407 compared to 1.027, SD ±

0.945, respectively; Mann-Whitney U test, U= 96.0, p= 0.0308)
(Figure 4A). We hypothesized that the unique constellation of
motor abnormalities observed in PD and ET might contribute
to the differentiation between these patients in our analysis.
Specifically, the differentiation of patients with ET from control
subjects relied heavily on the “Tremor” metric (Figure 4B), while
the metric most important for differentiation between patients
with PD and control subjects varied in individual cases. To
further interrogate these differences, we compared each patient
with PD to a random sampling of pooled data from patients
with ET. We chose to use the patient with ET data analogously
to the control data in this analysis because the ET-control SVM
analysis showed relatively homogenous metric weights relative to
patients with PD, suggesting less motor feature variability within
this cohort. In this analysis, the SVM distinguished individual
patients with PD from the pooled ET subject data with an

accuracy of 0.924 (SD± 0.0764), consistent with the ability of our
multi-dimensional approach to motor analysis to differentiate
between these movement disorders despite some possible overlap
in clinical presentation, specifically with regard to tremor.

To confirm the relative importance of tremor in classifying
patients with ET compared to those with PD, we repeated
our SVM analyses without including the “Tremor” metric
(Figure 4C). In the PD-control SVM analysis, excluding
“Tremor” reduced the classification accuracy from 0.839 (SD ±

0.140) to 0.772 (SD ± 0.155) (Wilcoxon signed-rank test, W
= 13 and p = 3.656 × 10−4), while a “Tremor”-excluded ET-
control SVM analysis reduced mean classification accuracy from
0.892 (SD ± 0.187) to 0.672 (SD ± 0.190) (Wilcoxon signed-
rank test, W = 0.0 and p = 3.346 × 10−3). Finally, removing
the “Tremor” from the PD-pooled ET SVM comparison reduced
classification accuracy from 0.924 (SD ± 0.0764) to 0.760 (SD
± 0.140) (Wilcoxon signed-rank test, W = 0.0 and p = 8.277
× 10−6). The mean accuracy difference (with vs. without the
“Tremor” metric) in patients with PD was significantly less
than the mean accuracy difference in patients with ET (T-test
with Welch’s correction, T = 2.872 and p = 0.0117). These
analyses indicate that “Tremor” is a more critical metric for
differentiation of patients with ET from pooled control subject
data compared to classification of patients with PD, consistent
with the expected phenotypic dominance of the tremor in
patients with ET and the more heterogenous clinical phenotype
of patients with PD.

We then analyzed the changes in MES after the removal of
“Tremor” from the SVM algorithm (Figure 4D). In the PD-
control analysis, the mean MES for patients with PD decreased
from 1.027 (SD ± 0.945) to 0.760 (SD ± 0.731), a statistically
significant change (Wilcoxon signed-rank test, W = 28.0 and p
= 2.956 × 10−4). In the ET-control analysis, the mean MES for
patients with ET decreased from 1.931 (SD± 1.407) to 0.535 (SD
± 0.684), also a significant change (Wilcoxon signed-rank test,
W = 1.0 and p = 2.873 × 10−3). The mean MES difference was
significantly lower in patients with PD compared to those with
ET (T-test with Welch’s correction, T = 3.382 and p = 0.0051),
again consistent with the notion that tremor accounts for a larger
component of overall motor dysfunction in ET than in PD.

Examination of these data on the level of individual patients
further illuminates the relative differences in the diversity of
motor manifestations between patients with PD and ET. In
both the MES and classification accuracy analyses, all but two
of the 12 patients with ET showed a sharp decline in the
“Tremor”-excluded analysis, and the two patients that did not
show this decline had mild baseline motor impairment according
to their tremor-inclusive MES (0.0562, SD ± 0.195). This
observation confirms that, in patients with ET who are relatively
symptomatic, tremor is the dominant clinical phenotype.

Multi-dimensional SVM Classification
Differentiated Between DBS States
We applied our tablet-based task and multi-dimensional SVM
analysis to nine patients with PD with implanted DBS systems
to determine the task’s ability to differentiate between DBS
states within individual patients. One of these nine patients was
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FIGURE 4 | MES metric weights, particularly tremor, differed between patients that have PD compared to ET. (A) Mann-Whitney U test showed that patients with ET

have a significantly higher mean MES on a session-to-session basis than patients with PD (U = 96.0, p = 0.0308). Each point represents the mean MES across a

single session for a given patient. (B) For the SVM classifier developed for each patient compared to pooled control subject data, the relative contribution of each of

the seven different metrics varied. The left plot shows the metric weights calculated for each patient with PD (gray lines) and the mean metric weights across all

patients with PD (purple line). The right plot shows a similar analysis for patients with ET (orange line). (C) Removing the “Tremor” metric from the SVM algorithm

reduced the accuracy of the resulting classifier in PD v. pooled control (left, purple) and ET v. pooled control (right, orange) comparisons (Wilcoxon signed-rank tests,

test statistics were 13.0 and 0.0, while p-values were 3.656 × 10−4 and 3.346 × 10−3, respectively). (D) Removing the “Tremor” metric from the SVM algorithm

reduced the MES generated in PD v. pooled control (left, purple) and ET v. pooled control (right, orange) comparisons (Wilcoxon signed-rank tests, test statistics were

28.0 and 1.0, while p-values were 2.956 × 10−4 and 2.873 × 10−3, respectively).

excluded due to their inability to complete the task in the “DBS
Off” state due to symptom severity. Characteristics of the eight
patients who completed the task in both stimulation states are
described in Table 2.

Patients were alternately assigned to perform the task first
either in the “DBS On” or “DBS Off” state to reduce the
impact of learning with task repetition affecting results. A single
SVM classifier was generated to distinguish between stimulation
states within a single patient. The accuracies generated from
this analysis were compared to the accuracies produced from an
SVM-based analysis for each patient in the DBS state in which
labels prior were shuffled prior to generation of the hyperplane.
A pair-wise comparison of these analyses showed that shuffling
of labels significantly decreased classification accuracy from
0.819 (SD ± 0.108) to 0.507 (SD ± 0.0720) (Wilcoxon signed
rank test, W = 0.0 and one-tailed p = 0.0117) (Figure 5A),

indicating that the SVM effectively distinguished between the two
stimulation states.

Separately, we generated classifiers to differentiate between
each patient in each stimulation state and pooled control subject
data to analyze the differences in metric weights. A two-way
ANOVA analysis of these data showed no significant interaction
between the metrics and the different movement disorders (F =

1.966, p= 0.0762) (Figure 5B).

DISCUSSION

Using data captured from our naturalistic, goal-directed task
and an eight-dimensional, metric-based analysis of these data,
we found that, across a cohort of patients with PD, our multi-
dimensional “MES” correlated with the cumulative score of
the Motor Examination subsection of the MDS-UPDRS. This
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FIGURE 5 | SVM analysis differentiated between DBS states in symptomatic patients. Each patient was tested in both the “DBS On” and “DBS Off” states within the

span of 1 h. The order of DBS states tested alternated between patients. (A) Accuracies of a single SVM classifier comparing individual patients in two different

stimulation states are compared to accuracies produced using an analogous SVM analysis, but with random label shuffling prior to hyperplane generation (Wilcoxon

signed rank test, W = 0.0 and p = 0.0117). (B) Metric weights generated by PD patient-pooled control data SVM comparisons were used to examine the relative

contributions of each metric in the two different DBS states. The left polar plot depicts the mean metric weights of patients in the “DBS On” state. and the right plot

shows the weights of patients in the “DBS Off” state. In each plot, gray lines represent metric weights for individual patients. A two-way ANOVA analysis of these data

showed no significant interaction between the metrics and the different movement disorders (F = 1.966, p = 0.0762).

indicates that our method of motor dysfunction assessment can
approximate the severity of a patient’s condition when compared
to the standardized assessments of trained clinicians. While other
tools developed for quantification of motor dysfunction correlate
more strongly with MDS-UPDRS-III (37), we did not specifically
design our task to optimize this relationship. Rather, our goal
was to achieve maximal differentiation between normal and
abnormal goal-directed movement. Any correlation with MDS-
UPDRS-III, in other words, was incidental. While we did not
observe correlations between specific metrics and components
of the MDS-UPDRS-III, increased data collection across centers
facilitated by the objectivity and usability of our task may reveal a
relationship between our metrics and MDS-UPDRS-III subscore
“factors” of motor dysfunction (11).

Our task’s correlation with MDS-UPDRS-III lends it validity,
but it was specifically designed to assess motor dysfunction
with high temporal precision and thus provide insight into
the short-timescale fluctuations in PD symptomatology (38–
40). Importantly, such high-resolution temporal measurement of
these fluctuations in motor dysfunction is necessary to correlate
behavioral phenotypes with neural activity, a crucial step in the
development of adaptive or closed-loop DBS systems (41–44).
Additionally, this task can be performed in a non-clinical setting,
meaning that the frequency of data collection need not be limited
to the interval between office visits. More frequent assessment
of symptomatology might allow for more robust projection of
trends and more timely implementation of beneficial therapeutic
changes (16, 18, 24–26).

Analysis of MES distributions offered strong evidence that
the task differentiated between control subjects and movement
disorder patients using 1-second epochs of motor performance.
However, it is important that such a tool detects motor
dysfunction specific to the movement disorder of interest. A

direct comparison of patients with PD or ET within a single SVM
model showed that differences in metric weight patterns across
these groups can be used to generate a high-accuracy classifier.
Using linear SVM models allowed us to examine the relative
contributions of several different measures of performance to
the overall MES. In comparing patients with PD to those with
ET, these metric weights reflected broad clinical distinctions
between the diseases. Within individual patients and across
the entire group, patients with PD showed greater symptom
heterogeneity, while MES generated for patients with ET relied
predominantly on the “Tremor” metric. Comparison of metric
weights across groups confirmed that “Tremor” differs the
most among subject groups, although “Distance” also differed
significantly (Table 3).

Thus, our task and corresponding panel of metrics not
only distinguished patients with movement disorders from
those without movement disorders, but that it is capable of
discriminating between movement disorders directly. Although
the textbook clinical pictures of these two movement disorders
are distinct, misdiagnosis persists in both directions (45). Some
quantitative diagnostic tools designed to distinguish between PD
and ET are accelerometer-based and rely on differences in tremor
characteristics alone, such as frequency (19, 46, 47). Others
require significant training for proper administration, such as
those that use electromyography or transcranial sonography
(48, 49). Although our task specifically targets PD-associated
motor dysfunction without the goal of de novo diagnosis, it is
an easily-implemented test that can discriminate between ET
and PD, even in cases where tremor characteristics may be
ambiguous (50, 51).

Importantly, generating classifiers for individual patients
proved effective at differentiating between stimulation states
within individual patients with PD. Ultimately, the purpose of
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a temporally precise, highly quantitative symptom assessment
is to correlate behavior with neural activity in order to guide
adaptive neuromodulation therapy. This task’s ability to detect
behavioral changes that correspond to different stimulation
states suggests that it has potential to effectively contribute
to the understanding of the neural changes related to motor
dysfunction in movement disorders.

This study had several limitations. On average, patients with
PD were significantly older and more male than control subjects,
highlighting two potential confounding factors. Additionally,
the task only assesses symptomatology in the dominant upper
extremity, which introduces two possible sources of error. Firstly,
PD motor dysfunction is generally unilateral, particularly in
early stages of the disease, while the tremor of ET is generally
bilateral. In our assessment, it is feasible that a patient with
PD may have more severe motor dysfunction in their non-
dominant hand, while we capture the milder dysfunction in
their dominant hand. Secondly, as compared to the MDS-
UPDRS-III, our task does not provide a global assessment
of the patient’s motor dysfunction. We do not assess lower
limbs, face, speech, or several other components of this scale.
Also, despite screening for significant cognitive impairment, we
cannot exclude the possibility that cognitive dysfunction, a well-
known sequela of late-stage PD, may affect task performance
in a way that our analysis may mistake for pure motor
dysfunction. Finally, the tremor phenotypes characteristic of
various movement disorders may be unequally assessed by this
task. For example, resting tremor is considered a hallmark
symptom of PD, although action tremor is still a common
finding (52) that correlates with the severity of resting tremor
and rigidity, suggesting that it is more likely to be present in
advanced disease. Given the small magnitude of movements
captured by our task, it likely assesses components of both
action and postural tremor. Thus, it may be less effective in
patients in earlier stages of PD without components of these
two tremor features. Additionally, the action tremor captured
through a goal-directed task aligns more closely with the typical
clinical phenotype of patients with ET, highlighting the potential
problems of a direct comparison of MES of patients with PD
and ET. Our study is also limited in terms of its sample sizes,
particularly in the assessments of patients with PD and DBS (N
= 8) and patients with ET (N = 12). By performing the task
with more patients, we could further elucidate the relationship
between our metrics and specific clinical symptoms of different
movement disorders.

Overall, despite these limitations, our results suggest that
an objective, continuous, naturalistic motor task can capture
motor impairment patterns that are specific to PD and ET, can
distinguish between DBS states in patients with PD, and can
be used to quantify the degree of motor dysfunction with high
temporal precision.
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Supplementary Figure 1 | MDS-UPDRS-III sub-scores weakly correlated with

motor dysfunction metrics. Raw metric data for individual patients with PD were

normalized to the aggregated data of this group. Metrics were then compared to

each of the shown MDS-UPDRS-III sub-scores, and Pearson’s correlation

coefficients were calculated. Displayed are Pearson’s correlation coefficients (r).
∗ indicates p < 0.05.

Supplementary Figure 2 | SVM classifiers specifically differentiated patients with

motor dysfunction from control subjects. To confirm that the SVM classification

was indicative of the task’s ability to broadly distinguish between patients with

movement disorders and control subjects instead of simply differentiating between

individuals based upon idiosyncratic task performance, PD (left) or ET (right)

patient and control subject data labels were randomly shuffled before generation

of the hyperplane. This shuffling decreased the mean classification accuracy from

0.839 (SD ± 0.140) to 0.477 (SD ± 0.0828) in the PD-control comparison and

from 0.892 (SD ± 0.187) to 0.506 (SD ± 0.113) in the ET-control comparison

(Wilcoxon signed-rank test, W = 0.0 and p = 8.256 × 10−6 and W = 0.0 and p

= 0.00221). Each gray line represents a single patient and black lines represent

means.
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Supplementary Figure 3 | Pooled MDS-UPDRS-III scores for the dominant

upper extremity also correlate to calculated MES. (A) The sum of all

MDS-UPDRS-III score components from each patient’s dominant upper extremity

(DUE) were plotted with corresponding, session-wide MES means for 24 patients

with PD. Spearman’s correlation coefficient (red line) and corresponding p-values

(blue line) and were calculated using percentiles between 0 and 100 of

session-wide MES per patient. Dotted line indicates a p-value of 0.05, the

selected alpha-level in this analysis. The maximum strength of correlation and

statistical significance occurred at the 98th percentile of MES. (B) Using

MDS-UPDRS-III DUE, Spearman’s correlation analysis demonstrated significant

association between MDS-UPDRS-III DUE and the 98th percentile of session wide

MES for each patient (ρ = 0.351, p = 0.0929).

Supplementary Table 1 | Stimulation parameters of patients with PD with DBS.

Electrodes were targeted to stimulate either the subthalamic nucleus (STN) or the

globus pallidus internus (GPi).
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