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Introduction: The fungi ITS sequence length dissimilarity, non-specific amplicons,
including chimaera formed during Polymerase Chain Reaction (PCR), added to
sequencing errors, create bias during similarity clustering and abundance estimation in
the downstream analysis. To overcome these challenges, we present a novel approach,
Hierarchical Clustering with Kraken (HCK), to classify ITS1 amplicons and Abundance-
Base Alternative Approach (ABAA) pipeline to detect and filter non-specific amplicons in
fungi metabarcoding sequencing datasets.

Materials and Methods: We compared the performances of both pipelines against
QIIME, KRAKEN, and DADA2 using publicly available fungi ITS mock community
datasets and using BLASTn as a reference. We calculated the Precision, Recall,
F-score using the True-Positive, False-positive, and False-negative estimation. Alpha
diversity (Chao1 and Shannon metrics) was also used to evaluate the diversity
estimation of our method.

Results: The analysis shows that ABAA reduced the number of false-positive with all
metabarcoding methods tested, and HCK increases precision and recall. HCK, coupled
with ABAA, improves the F-score and bring alpha diversity metric value close to that of
the BLASTn alpha diversity values when compared to QIIME, KRAKEN, and DADA2.

Conclusion: The developed HCK-ABAA approach allows better identification of the
fungi community structures while avoiding use of a reference database for non-specific
amplicons filtration. It results in a more robust and stable methodology over time. The
software can be downloaded on the following link: https://bitbucket.org/GottySG36/
hck/src/master/.

Keywords: ABAA, benchmarking, F-score, fungi, HCK, hierarchical clustering, ITS amplicons

INTRODUCTION

The mycobiome concept was first introduced in 2010 to designate the fungal community of
the human oral cavity (Tang et al., 2015) before being extended to other micro-environments.
Three genomic markers are widely used to identify fungal species in a microbial environment:
18S ribosomal gene (Wu et al., 2015), 28S ribosomal gene (Ninet et al., 2003), and the Internal
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Transcribed Spacers (ITS) (Martin and Rygiewicz, 2005;
Bellemain et al., 2010). The most commonly used is the ITS
amplicon (Fujita et al., 2001) which targets two loci: ITS1, located
between the 18S and 5.8S genes, and ITS2, between 5.8S and
28S (Bellemain et al., 2010). ITS1 has been demonstrated to
yield the best performance (Bazzicalupo et al., 2013; Wang et al.,
2015). Several packages have been developed to automate the
process, and most of them are OTU (Operational Taxonomic
Unit) sequence similarity-based pipeline (Schloss et al., 2009;
Gweon et al., 2015; Rognes et al., 2016; Mysara et al., 2017; Bolyen
et al., 2018). To date, the research communities are gradually
moving to the new concept of ASVs (Amplicons sequence
Variants) or Exact Sequences Variants (ESVs) (Callahan et al.,
2017). With these pipelines, the taxonomy delineates based on the
single nucleotides’ variant of amplicons, assuming that amplicons
sequences have a similar length which is not the case with fungi
ITS sequences. To date, several pipelines have been developed
to classify fungal species using ITS sequencing. These include
Plutof (Abarenkov et al., 2010b), Clotu (Kumar et al., 2011),
PIPITS (Gweon et al., 2015), CloVR-ITS (White et al., 2013), and
BioMaS (Fosso et al., 2015) specially designed to analyse fungi ITS
datasets, Kraken (Wood and Salzberg, 2014), Mothur (Schloss
et al., 2009) Qiime (Caporaso et al., 2010; Bolyen et al., 2018),
Vsearch (Rognes et al., 2016), and DADA2 (Callahan et al., 2016)
among many others, to examine both bacterial 16S rRNA and
fungal ITS amplicons.

The size of fungal ITS sequences is highly variable, and
species can differ widely by the number of loci (Tang et al.,
2015; Khodadadi et al., 2017). The sequence length dissimilarity
creates bias during clustering and affects OTUs abundance
estimation. Moreover, besides biologically valid amplicons, PCR
generates many non-specific fragments resulting from elongation
interruption or two or more incomplete amplicons joining
(chimaeras) (Lahr and Katz, 2009; Edgar, 2016; Bjørnsgaard
Aas et al., 2017). These non-specific amplicons are hybrid
products between multiple parent sequences that can be falsely
interpreted as existing or novel species, thus significantly affect
the diversities, including the alpha and beta diversity metrics
(Zajec et al., 2012). Hence, non-specific amplicons formed
during amplification with two incomplete segments (bimeras)
are generally at a lower proportion. However, chimaeras with
more than two fragments (multimers) may form at comparable
rates and account for a significant fraction in an amplified
sample (Lahr and Katz, 2009). The most commonly used
pipeline to detect chimaeras is UCHIME, composed of reference-
based and de novo approaches (Edgar, 2016). The reference-
based approach detects non-specific amplicons in a dataset by
making a model from a concatenated pair of sub-sequences
in a reference database. Chimaeras are detected if the query
alignment sequence score of the model exceeds a threshold.
UCHIME depends on a reference database, and ITS sequence size
variation can be a significant source of false-positive detection,
throwing away biologically valid sequences. DADA2 implements
isBimeraDenovo() function that identifies exact bimeras or
multimeras sequences. Child sequences that differ by a single
mismatch from the chimeric model are flagged if the left parent
and right parent are at least four nucleotides away from the child

sequence (Callahan et al., 2016). The challenge is that databases
are rarely updated, and the similarity search can be time-
consuming, especially when databases are large. Computational
resources are one of the critical limitations. Maintaining specific
databases up to date is a real challenge, and a broad range of
databases suffer from contamination and unannotated sequences.
The available databases, such as UNITE, which is commonly
used, presents 26% of entries that cannot be consistently assigned
to a taxonomic family (Nilsson et al., 2008; Kõljalg et al., 2013).
These tools are mainly developed for 16S/18S markers but
widely applied to fungal ITS amplicons. Besides, these tools have
been optimised using simulated datasets and not real datasets
(Bjørnsgaard Aas et al., 2017).

To overcome the above limitations, we present a novel
classification approach for ITS amplicon’s taxonomy assignment.
This approach consists of two steps: The amplicons Abundance-
Base Alternative Approach (ABAA), a de novo method to
filter non-specific amplicons from sequence datasets and a
Hierarchical Clustering with Kraken (HCK) to classify ITS
amplicons. We built HCK on a hierarchical clustering approach
with multiple-step iterating runs. Each cluster’s representative
sequences are taxonomically assigned usingKrakenwith the exact
alignment of k-mers using fungal ITS loci sequence database
(ITSdb). In this study, we use comparative analysis approach
to assess the performance of ABAA and HCK. We calculated
the Precision, the Recall, and the F-score using the True-
Positive, False-positive, and False-negative estimation. Alpha
diversity (Chao1 and Shannon) was also used to evaluate the
methods’ diversity estimation. Chao1 is based on the concept
that rare species allow inferring the number of missing species.
As the Chao1 richness estimator gives more weight to the
low abundance species while the Shannon index measures the
richness and the evenness (Kim et al., 2017), making the Chao1
metric more sensitive to abundance estimation than Shannon’s.
Henceforth, to simplify the manuscript, chimaeras and non-
specific amplicons will interchangeably be used to designate
all non-specific amplicons, including chimaeras, incomplete
amplicons and sequencing errors.

MATERIALS AND METHODS

The methodology in this study is organised in two parts. In
the first part, we will describe ABAA and HCK workflow using
publicly available ITS mock community datasets. We will then, in
a second part, compare the performance of HCK-ABAA to that of
QIIME, DADA2 and KRAKEN using BLASTn search abundance
estimation as a reference.

Fungi ITS Mock Communities’ Datasets
We downloaded Biological mock community datasets of three
different projects from the SRA NCBI database. The three
projects were conducted using the Illumina Miseq sequencing
technology. The first project, available under accession number
PRJNA516455 (McTaggart et al., 2019), contains six different
samples (SRR8473974, SRR8473977, SRR8473978, SRR8473979,
SRR8473980, SRR8473984), which were prepared from subsets of
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53 species of fungi with an emphasis on human lung pathogens.
The second project, available under accession number SRP132544
(Hoggard et al., 2018), contains three samples (SRR6702280,
SRR6702281, SRR6702283), including specific fungal species
from different human body location or organs (lung, oral
cavity, gastrointestinal tract, and skin). The third project,
available under accession number PRJNA382746, contains two
samples (SRR5439721, SRR5439722) that include 16 species of
fungi. Overall, the mock communities contain 36 fungi genera
which are: Alternaria, Apophysomyces, Aspergillus, Blastomyces,
Candida, Cladosporium, Clavispora, Coccidioides, Cryptococcus,
Cunninghamella, Exophiala, Fusarium, Histoplasma, Lichtheimia,
Malassezia, Meyerozyma, Mucor, Paecilomyces, Penicillium,
Phanerochaete, Pichia, Purpureocillium, Rasamsonia,
Rhizopus, Saccharomyces, Sarocladium, Scedosporium,
Schizosaccharomyces, Sporidiobolus, Sporothrix, Talaromyces,
Trichoderma, Trichosporon, Wickerhamomyces, Sclerotina,
Rhyzomucor, Trichophyton detailed in Table 1.

Fungi ITS Analysis Workflow With
HCK-ABAA
Data Pre-processing and Quality Check
The sequence reads are trimmed with paired-end mode using
Trimmomatic (Bolger et al., 2014) to remove residual adapters.
The default parameters are used, including “phred33” to encode
the quality part of the Fastq file to base 33, the low-quality
bases from the sequence beginning and the end is set to 3
bases, respectively. The sliding window size was set to 4 with a
minimum length of 50 bases. The paired reads generated from the
trimming are then joined into contigs to produce the final fasta
file using Pandaseq (Masella et al., 2012) with default parameters.
Sequences with ambiguous bases are removed.

Non-specific Amplicons Filtering: ABAA
We empirically consider that amplicons with length-frequency
below the standard deviation overall distribution to originate
from non-specific amplification. Technically, after determining
the amplicons’ length distribution and their frequency within
each sample, an amplicon is considered to be non-specific if
its length-frequency is below a certain threshold. This threshold
corresponds to the standard deviation of the frequency of the
amplicon lengths. ABAA filtering corresponds to step 1 of
the whole pipeline.

Hierarchical Clustering With Kraken Assignment
(HCK)

Amplicons Hierarchical Clustering
Amplicon hierarchical clustering corresponds to step 2 of
the whole pipeline. HCK clusters amplicons sequences using
multiple-step iterated runs of sequence alignments with a
neighbour-joining algorithm implemented in CD-HIT version
4.5.4 (Fu et al., 2012). A segment sliding window in this context or
“word” is defined as the consecutive position of a certain number
of nucleotides in a sequence fragment. We implemented three
iterative runs in the clustering and set the sequence identities
(c) to 0.99, 0.98, and 0.97, as well as the “word” size (n) to 10,

8, and 7 bps, respectively. It is possible to control the sequence
length difference cut-off(s), the alignment coverage of the more
extended sequence (aL), and the alignment coverage for the
shorter sequence (aS). The most crucial parameter is the length
difference cut-off(s) depending on the overall distribution of the
amplicon’s size. It can be empirically estimated by dividing the
average size by the size of the most extended amplicon. This value
was set to 90% in the study. The iterated clusters generated are
then merged into one single, no redundant cluster file and sorted
by size to remove singleton amplicons. An intermediary step 3
is essential to retrieve representative sequences from each cluster
and be classified using Kraken (Figure 1A).

ITS Loci RefSeq
We downloaded the fungal Internal Transcribed Spacer RNA

(ITS) RefSeq Targeted Loci (ITSdb) containing 11,252 entries.
We retrieved the corresponding taxonomy profile from the NCBI
taxonomy database1 and created a Qiime-compatible taxonomy
file. Both files (fasta and taxonomy file) were sorted and cleaned
to have similar entries, using the following utilities2. ITSdb was
used to generate a kraken database following the procedure
available at this web address: http://ccb.jhu.edu/software/kraken/
MANUAL.html.

Taxonomical Classification
Each cluster’s representative sequences are classified using

the Lowest Common Ancestor (LCA) algorithm with Kraken
version 1 (Wood and Salzberg, 2014). The taxonomy assignment
is then extended to other amplicons of the respective clusters
for a complete classification. This step corresponds to step 4 of
the HCK workflow. The command uses the sample metadata
information to generate a BIOM file. The final stage, step 5, uses
the BIOM file to estimate the diversity abundance and further
metric calculation analysis (Figure 1B).
Benchmark Analysis and Performances
Evaluation
BLASTn (Reference)
We determined the actual reference diversity and abundance
with BLASTn sequence similarity search against the NCBI
NT database. Consensus classification was determined for
coverage ≥98%, identity ≥97%, and e-value ≤ 0.00001 with
a maximum of 100 hits retained per entry. The BLASTn
output was then filtered for the best hits successively by the
e-value, coverage percentage, and identity percentage. The final
consensual taxonomy classification for each amplicon is kept
based on a minimum number of 80 identical taxid out of 100 for
each query (80% of the total hits) to generate an abundance table
following a procedure described by other authors (Blaalid et al.,
2013; McTaggart et al., 2019).

Comparative Analysis
To evaluate the efficacy of the newly developed tools, we
compared the absolute count diversity of HCK to Qiime v1.9

1ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci/Fungi/
2https://github.com/bakerccm/entrez_qiime
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FIGURE 1 | HCK workflow diagram. (A) Hierarchical clustering with three iterations. Chimaeras free sequences are results of pipeline step 1, including raw reads
trimming, merging (forward and reverse reads) and ABAA filtering. Sequences are combined into one single fasta file and clustered using a hierarchical clustering
approach in step 2. All clusters are then merged into one single non-redundant clusters and got rid of singletons sequences. HCK retrieves representative
sequences from each cluster for amplicons’ classification, the second part of the pipeline (step 3). (B) Classification uses Lowest Common Ancestor (LCA)
taxonomical assignment implemented in Kraken to classify representative sequences and taxonomy reported to each cluster, and a final BIOM file can be generated
for downstream analysis (Steps 4 and 5).

(Caporaso et al., 2010), Kraken (Wood and Salzberg, 2014),
and DADA2 (version 1.8) (Callahan et al., 2016) with and
without non-specific sequences/chimaera removal using BLASTn
abundance estimation as reference. We test HCK, Kraken, Qiime
with ITSdb, Qiime with UNITE (Abarenkov et al., 2010a) and
ITSdb database. DADA2 is tested only with the native UNITE
database. The performance of each method is determined by
its ability to assign the suitable taxa to the right sequence and
to be able to assign the maximum of good sequences using
sensitivity (recall), the positive predictive value (precision), and
the f-score metric calculation (Figure 2). We determined True
positive (TP) as following: For xi, the abundance estimated
by the BLAST (reference) and yi, the abundance estimated by
the tested methods for given sample i, we determined true
positives by TPi = min(xi,yi). The overestimated abundance
classified by the tested method is considered false positive,
and the underestimation differences are included in the false
negatives. The false negatives (FN) are determined by the
sum of counts of amplicon only detected by BLAST but
are not correctly assigned by the assessed method. For Tri,
the total abundance estimated by BLAST for given sample
i, FNi = Tri − TPi. The false positive (FP) corresponds to
the sum of counts of amplicons wrongly assigned by the
tested method but not detected by BLAST or not included in

the initial mock community composition. For Tmi, the total
number of amplicons classified for given taxa by the tested
method, FPi = Tmi – TPi. We determined the precision (Pi)
and the recall (Ri) and calculated the F- score using the
following formula. Pi = TPi/(TPi+FPi), Ri = TPi/(TPi+FNi),
F-scorei = 2∗Pi∗Ri/(Pi +Ri) (Gardner et al., 2019). We also
calculated alpha diversity using Shannon and chao1 indices
to assess the association of chimaera removal methods and
taxonomy classification in downstream diversity analysis. We
compared it to the diversity of BLAST abundance estimation.
We estimate the difference between the alpha diversity of
the assessed methods and that of the BLASTn estimation.
The lower the difference, the best is the method. All scripts
and command lines are details in Supplementary Material:
scripts_and_command_lines.

RESULTS

Fungi ITS Amplicons Length: A Vast
Diversity Among Species
All 11 samples from the three projects were combined into one
single dataset during the pre-processing treatment. The average
read length is 200.9 bp (SD = 65.6), the maximum read size is
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FIGURE 2 | Benchmarking workflow: the workflow is organised in pre-processing, including Illumina sequencing reads trimming and forward and reverse reads
merging. To determine the best non-specific amplicons filtering method, ABAA was tested with UCHIME (UCHIME_Ref, UCHIME_DENOVO, and isBimeraDenovo()
implemented in DADA2. The classifier tested also includes HCK with ITSdb, the newly designed pipeline, QIIME with ITSdb and UNITE, Kraken with ITSdb, DADA2
with UNITE and compared to BLASTn search using NCBI NT database, as reference. The pipelines performances are evaluated using precision, recall and F-score.

251 bp, and the minimum is 35 bp (Figure 3A). Fragments with a
read length below 150 bp have fewer duplicated percentages than
those between 240 and 250. After joining the paired reads, the
average size is 233.3 bp (SD = 94.45) with a maximum of 472 bp
and a minimum of 35 bp. The predominant amplicons size is
251 bps. We observed low-frequency fragments below 250 bp and
above 400 bp (Figure 3B).

Taxonomic Assignment Using BLAST:
Mock Communities Real Abundance
Estimation as a Reference
We conducted a BLASTn search against the NCBI NT database
to re-estimate the absolute abundance of the expected
genus. We observed discrepancies between theoretical data
and BLAST results. Even though samples SRR5439721
and SRR5439722 were from the same mock preparation,
Aspergillus amplicons could not be detected in SRR5439721,
and Cryptococcus was undermined in sample SRR5439721.
Malassezia was also undermined in SRR6702280, SRR6702281,

SRR6702283. The details of the abundance table are shown
in Table 1.

Benchmark and Comparative Analysis:
Performance of HCK and ABAA
ABAA: Amplicons Filtering
For our analysis, amplicons length below 250 bp and above
400 bp have shown low frequency compared to those comprised
between 251 and 400 bp (Figure 3D). Each peak in Figure 3C
is composed of amplicons of a similar size. The enlargement
of the base of the curve may correspond to the variation of
the amplicon’s size. The frequency of these amplicons indicates
that they could also be derived from non-specific amplification.
Here we hypothesise this amplicon to be a chimaera and
attempt to filter them out. The minimum sequence length
detected by ABAA is 35 bp, with an average of 308 bp, higher
than the overall average length (233 bp) and a maximum
of 472 bp. It indicates that most chimaeras formed in this
dataset may result from bimera and or multimera forming than
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FIGURE 3 | Chimaera detection flow using ABAA: (A) distribution of reads from all datasets; The average read length is 200.9 bp (SD = 65.6, a median of 250), the
maximum reads size is 251 bp, and the minimum is 35 bp. (B) Distribution of the frequency of contigs length (assembly of forward and reverse reads), the average
size is 233.3 bp (SD = 94.45) with a maximum of 472 bp and a minimum of 35 bp. The predominant amplicons size is 251 bps. (C) Distribution of contigs
length-frequency by length: determination of non-specific amplicons filtering cut-off: cut-off was tested for means (blue line), standard deviation (green line), and
mean + standard deviation (red line). The standard deviation was kept for better performance. (D) Distribution of sequences by the length in all datasets. Blackline
represents the distribution of all sequences). Moreover, the red line represents the distribution of filtered sequences with ABAA (standard deviation).

incomplete amplification. Filtered amplicons by ABAA include
amplicons below 250 bp, above 400 bp, and low amplification
between 250 and 400 bp (Figure 3D). In total ABAA has
detected 252,567 sequences accounting for 10.86% of overall
sequences as non-specific amplicons while 528,544 (22.72%) with
uchime_ref and 1,165,031 (50.08%) by DADA2 and 32 (0.0013%)
detected by uchime_denovo. isBimeraDenovo() in DADA2 has
filtered out up to 75.43% of sequences in sample SRR5439722.
However, 24.76% were detected with UCHIME_REF, and
17.02% by ABAA on the other hand. Also, 51.74% were
detected in sample SRR5439721, while 24.67% detected with
UCHIME_REF and 17.23% by ABAA and UCHIME_REF seem
to be more consistent than isBimeraDenovo() in DADA2 as
samples SRR5439721 and SRR5439722 were from the same mock
preparation (Table 2).

HCK-ABAA: Taxonomic Assignment Performances
The second step of the HCK pipeline handles the chimaeras-
free sequences. Samples sequences pre-processed and filtered
by ABAA in the first step are then combined into a single

fasta for the clustering process. With our datasets, we cluster
a total of 2,326,239 amplicons with HCK using multiple-step
iterated runs of cd-hit-est to perform hierarchical clustering. The
first iteration performed with 99% sequence similarity generates
88,428 clusters, the second iteration with 98% creates 32,200
clusters (3/8 of the initial clusters), and the final iteration at 97%
produces 18,831 clusters. The final iteration reduces the total
clusters by 1/5 of the initial clusters, a crucial benefit of the
hierarchical clustering that will be detailed in the discussion. All
clusters generated by different iterations are merged into 18,770
non-redundant clusters, including 14,431 singletons, for which
2,545 have fragments size ≤ 149 bp and 11,886 with sequence
size ≥150 bp (150 bp, widely considered as the minimum
standard of ITS length). The singletons are removed from further
analysis based on the assumption that a unique sequence might
derive from sequencing errors or non-specific amplification. As
a result, only 4,339 clusters are composed of biologically valid
amplicons corresponding to 4,339 representative sequences. The
performance of HCK with and without ABAA is assessed using
the precision (positive predictive value), the recall (sensitivity),
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TABLE 1 | Absolute count of reads affiliated of each genus among the different datasets of the mock community (determined by BLASTn against NT database).

Taxa SRR
5439721

SRR
5439722

SRR
6702280

SRR
6702281

SRR
6702283

SRR
8473974

SRR
8473977

SRR
8473978

SRR
8473979

SRR
8473980

SRR
8473984

Alternaria 0 0 3,941 3,334 5,462 39,009 0 0 0 0 0

Apophysomyces 0 0 0 0 0 0 0 0 0 0 191

Aspergillus 0 1,381 924 1,029 1,120 315,986 5,991 5,096 5,657 3,613 2,362

Blastomyces 0 0 0 0 0 0 379 230 256 183 0

Candida 150,704 108,934 33,556 28,123 39,320 125,949 0 0 0 0 0

Cladosporium 0 0 51 66 76 22,476 0 0 0 0 0

Clavispora 0 0 0 0 0 1,645 0 0 0 0 0

Coccidioides 0 0 0 0 0 0 502 649 698 515 0

Cryptococcus 1,087 33,983 12 9 16 16 555 568 825 665 131

Cunninghamella 0 0 0 0 0 0 0 0 0 0 13

Exophiala 0 0 3,340 2,791 4,140 0 299 271 319 221 2

Fusarium 0 0 52 54 76 39,505 0 0 0 0 138

Histoplasma 0 0 0 0 0 0 152 112 138 87 0

Lichtheimia 0 0 0 0 0 0 0 0 0 0 45

Malassezia 0 0 50 67 67 0 0 0 0 0 0

Meyerozyma 0 0 0 0 0 15,220 0 0 0 0 0

Mucor 0 0 0 0 0 11,935 109 96 109 80 438

Paecilomyces 0 0 0 0 0 0 0 0 0 0 80

Penicillium 0 0 32,037 29,551 39,368 27,888 1,645 1,461 1,593 854 0

Phanerochaete 32,650 20,763 0 0 0 0 0 0 0 0 0

Pichia 22,965 69,159 0 0 0 95,622 0 0 0 0 0

Purpureocillium 0 0 0 0 0 0 120 120 128 96 0

Rasamsonia 0 0 2 0 0 292 0 0 0 0 128

Rhizopus 0 0 0 0 0 57 2,283 2,354 3,447 2,584 109

Saccharomyces 57,107 46,582 1,737 1,863 1,942 12,654 0 0 0 0 0

Sarocladium 0 0 0 0 0 0 257 269 336 221 0

Scedosporium 0 0 0 0 0 3 62 75 86 54 36

Schizosaccharomyces 36,413 23,880 0 2 0 7 0 0 0 0 0

Sporidiobolus 0 0 0 0 0 17,476 0 0 0 0 0

Sporothrix 0 0 0 0 0 2 0 0 0 0 1

Talaromyces 0 0 0 0 0 1,336 435 382 403 160 6

Trichoderma 29,027 18,431 0 0 0 0 0 0 0 0 0

Trichosporon 0 0 122 77 185 88,790 2,305 2,080 2,221 1,642 0

Wickerhamomyces 2,208 1,235 0 0 0 10 0 0 0 0 0

Sclerotina 25,545 12,058 0 0 0 0 0 0 0 0 0

Rhyzomucor 0 0 0 0 0 0 0 0 0 0 0

Trichophyton 0 0 7,142 6,084 9,087 0 0 0 0 0 0

and the F-score based on the true-positive, false-positive, and
false-negative rates as described in material and method. This
performance is compared to other pipelines, e.g., QIIME version
1 with both databases ITSdb and UNITE, Kraken version1 with
ITSdb, and DADA2 with UNITE database. All classification
methods are tested with and without the chimaera removal step.
The analysis shows that HCK without non-specific amplicons
removal is slightly better than Kraken (precision: 0.685 and
0.682, recall: 0.986 and 0.983 and F-score: 0.80 and 0.79,
respectively) and HCK decreases by 13.22% the false-positive
detection and by 45.36% of false negatives compared to Kraken.
The chimaera removal step with UCHIME_REF reduces the
false positives by 32.05% and the false-negative by 10.44%
compared to raw sequence processing. However, adding a step

of chimaera filtering affects the sensitivity (recall), regardless of
the method (Table 3).

HCK yields better classification performance when ABAA
is added upstream (precision 0.83 and the second best is
HCK/UCHIME_REF with 0.8), and consequently, the F-score is
also improved (0.89, Figure 4). Besides, the association of HCK
and ABAA reduces the proportion of false-positive by 35.52%
compared to HCK with UCHIME_REF and 97.01% without non-
specific sequences removal. QIIME used with UCHIME_REF,
and ITSdb performs better (F-score = 0.716) than similar
approach with UNITE database (f-score = 0.648). DADA2 was
also tested with its filtering method includes in the pipeline.
The true-positive sequence classified was shallow compared to
others, and this might be due to the high number of chimaeras
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TABLE 2 | Level of detection of chimaera removal methods.

Samples Total
sequences

Chimaera
ABaa

Chimaera free
Abaa*

Chimaera
uchime_ref

Chimaera free
uchime_ref*

Chimaera
uchime_denovo

Chimaera free
uchime_denovo*

Chimaera
dada2

Chimaera free
dada2*

SRR5439721 426,354 73,482
(17.23%)

352,872 105,167
(24.67%)

321,187 03 (00007%) 426,351 220,607
(51.74%)

205,747

SRR5439722 397,268 68,091
(17.02%)

329,177 98,367
(24.76%)

298,901 00 (0%) 397,268 299,665
(75.43%)

97,603

SRR6702280 174,185 19,187
(11.02%)

154,998 61,937
(35.56%)

112,248 11 (0.0063%) 174,174 71,129
(40.84%)

103,056

SRR6702281 148,397 17,980
(12.12%)

130,417 55,059 (37.10) 93,338 09 (0%) 148,388 63,247
(42.62%)

85,150

SRR6702283 246,368 31,616
(12.83%)

214,752 90,865
(36.88%)

155,503 08 (0.0032%) 246,360 93,543
(37.97%)

152,825

SRR8473974 865,248 40,730 (4.71%) 824,518 112,068
(12.95%)

753,180 01 (00001%) 865,247 388,352
(44.88%)

476,896

SRR8473977 17,181 379 (2.21%) 16,802 1,566 (9.11%) 15,615 00 (0%) 17,181 7,044 (41.00%) 10,137

SRR8473978 15,694 121 (0.77%) 15,573 1,363 (8.68%) 14,331 00 (0%) 15,694 6,510 (41.48%) 9,184

SRR8473979 18,394 295 (1.60%) 18,099 1,336 (7.26%) 17,058 00 (0%) 18,394 7,421 (40.34%) 10,973

SRR8473980 12,730 676 (5.31%) 12,054 387 (3.04%) 12,343 00 (0%) 12,730 4,898 (38.48%) 7,832

SRR8473984 4,420 10 (0.23%) 4,410 429 (9.71%) 3,991 00 (0%) 4,420 2,615 (59.16%) 1,805

Total 2,326,239 252,567
(10.86%)

2,073,672 528,544
(22.72%)

1,797,695 32 (0.0013%) 2,326,207 1,165,031
(50.08%)

1,161,208

*Sequence filtered with the corresponding method and cleaned.

TABLE 3 | Precision, recall, accuracy, and F-score performance of HCK and ABAA version other tested combination of chimaera detection and taxonomy
assignment methods.

Taxa. assign. Chimaera remov. Database Total
sequences

Unclassified
sequences

True positive False positive False
negative

Precision Recall F-score

hck ABaa ITSdb 2,073,672 378046 1,528,646 166,980 27,314 0.834998 0.97222 0.89594

hck Uchime_ref ITSdb 1,797,695 231779 1,306,938 258,978 249,022 0.803725 0.84344 0.81431

hck Uchime_denovo ITSdb 2,326,207 102360 1,547,646 676,201 8,314 0.670532 0.98645 0.79213

hck – ITSdb 2,326,239 220025 1,547,649 558,565 8,311 0.685258 0.98645 0.8013

kraken ABaa ITSdb 2,073,672 73480 1,497,681 502,511 58,279 0.713001 0.9651 0.81431

kraken Uchime_ref ITSdb 1797695 138673 1,277,882 381,140 278,078 0.725327 0.83483 0.77351

kraken Uchime_denovo ITSdb 2,326,207 141772 1,540,747 643,688 15,213 0.682455 0.98295 0.7977

kraken – ITSdb 2,326,239 141804 1,540,747 643,688 15,213 0.682455 0.98295 0.7977

qiime ABaa ITSdb 2,073,672 407960 1,369,677 296,035 186,283 0.782386 0.83022 0.78878

qiime Uchime_ref ITSdb 1,797,695 389342 1,175,806 232,547 380,154 0.765336 0.72615 0.71648

qiime Uchime_denovo ITSdb 2,326,207 515687 1,391,958 418,562 164,002 0.734174 0.83587 0.76968

qiime – ITSdb 2,326,239 525891 1,391,597 408,751 164,363 0.735705 0.83605 0.77068

qiime ABaa Unite 2,073,672 455026 1,208,721 409,925 347,239 0.529577 0.76841 0.62466

qiime Uchime_ref Unite 1,797,695 43024 1,050,365 704,306 505,595 0.510642 0.64894 0.56654

qiime Uchime_denovo Unite 2,326,207 347217 1,310,235 668,755 245,725 0.527798 0.79978 0.63181

qiime – Unite 2,326,239 52075 1,307,126 967,038 248,834 0.539557 0.79841 0.6396

Dada2 Unite 1,161,208 0 750,588 410,620 805,372 0.717852 0.5755 0.62471

These values were highlighted in bold to show they are the top values.

sequences filtered (50.08%). Its F-score performance is 0.62, with
411 775 false-positive and 805 372 false negatives. The Kraken
based classification implemented with chimaera methods yields
comparable sensitivity results (recall) to that of HCK, but the
higher number of false-positive impacts the precision and the
overall performance (F-score: 0.79) (Table 3).

Diversity Metrics Analysis
One of the most significant endpoints of ITS sequencing is
the comparison of alpha diversity; thus, we compare the alpha

diversity of all tested classification methods to that of BLASTn
using Chao1 and Shannon indexes, assuming that diversity
with BLAST search is closer to reality. With the Chao1 index,
HCK diversity is closed to BLASTn estimation compared to
Kraken, QIIME, and DADA2 estimation. With chao1, HCK in
association with ABAA held the lowest difference with BLASTn
(54.02), followed by HCK with UCHIME_DENOVO. With
the Shannon index, HCK, used with UCHIME_REF, held the
best rank(0.76), followed by HCK with ABAA (Supplementary
Table 1). The data show that the BLASTn search estimates the
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chao1 index between 8 and 14 for all the samples. HCK with
ABAA chaos1estimates is between 20 and 80, and kraken with
and without chimaera removal’s estimation between 176 and
856. DADA2’s chao1 estimation is also close to the BLASTn
search’s; however, there is an overestimation for some samples
(15−650, Figure 5). The average Shannon index diversity
of BLASTn search is 2 for all samples. It varies between
2 and 3 with HCK and ABAA, 2−7 for DADA2, 3 for
Kraken with or without chimaera removal, and up to 6 for

QIIME, depending on the database and the chimaera removal
method (Figure 5).

Computing Specification and Speed
ABAA and HCK computing resources were tested and timed
on ubuntu-based system 20.04, WSL2; Processor: Intel R© CoreTM

i7-8650U CPU @ 1.90GHz 2.11 GHz; RAM 16.0 GB; System
type 64-bit Operating System, x64-based processor. The running
speed for each method tested is listed in Supplementary Table 2.

FIGURE 4 | F-score performance of HCK (light green), Kraken (mauve), Qiime with ITSdb (blue), Qiime with Unite database (red), and DADA2 (green).

FIGURE 5 | Estimation of Alpha diversity metric with Chao1 (left) and Shannon (right) indexes calculated with the estimated abundance of different methods and
association with various chimaera removal methods
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ABaa filtered 2,326,239 sequences (623 MiB) in less than
2 min (1 min 18 s), while this requires almost 50 min for
UCHIME_REF. isBimeraDenovo() function of DADA2 could
not be tested separately as this step depends on many other
steps. HCK and Qiime v1 process 23,700 sequences per min on
average, while DADA2 processes 65,300 sequences per min. This
speed does not include sequence truncation as it is not required
for ITS processing.

DISCUSSION

In this work, we present full fungi ITS based classification
workflow using two newly developed tools, ABAA and HCK,
to filter non-specific amplicons and taxonomically classify them.
We compare the performance of ABAA to UCHIME and
isBimeraDenovo() in DADA2 and the performance of HCK to
that of Kraken, QIIME, and DADA2 using publicly available
mock community Illumina sequencing datasets. The analysis
revealed that HCK-ABAA yields the best performance. The
F-score is systematically improved when ABAA is used to filter
amplicons regardless of the classifier. This work also shows the
impact of filtering methods on the ecological diversity metrics
and how they can dramatically change the estimation of a
sample’s diversity.

The efficiency of sequence amplification and the quality of
sequencing reads are critical and determinants for the outcome
of the metabarcoding analysis and especially for fungi ITS locus
(Schloss et al., 2011). Non-specific amplicons present a serious
threat to the classification and taxa abundance estimation. The
size and the number of ITS loci are highly variable, unlike
the 16S rRNA gene in bacteria and sufficiently polymorphic
to delineate fungi at the genus and or species level (Tang
et al., 2015; Khodadadi et al., 2017). This variation can be
biological or can derive from high rates of insertions and
deletions in the evolution of this less conserved genetic region.
It can also derive from non-specific amplification. ABAA has
this advantage of considering the real distribution of amplicons
size from real datasets. It does not need database maintenance
and only requires minimum computing resources. It filters
sequences based on the distribution of their size-frequency
and mainly targets amplicons with low length-frequency. The
performance of the majority of chimaera filtering methods are
usually assessed on simulated chimaera sequences (Nilsson et al.,
2010; Harris et al., 2012), but when applied to the real dataset,
it is challenging to determine whether sequences that have
been filtered are real chimaeras. The fragment size dissimilarity
also creates bias during conventional clustering. Consequently,
this affects OTUs picking and abundance estimation, including
overestimating or underestimating community abundance (De
Filippis et al., 2017). Except for Kraken, the majority of
metabarcoding methods include a clustering process. Clustering
consists of reducing the amplicons similarity redundancy
of data diversity. The most commonly used in amplicon
metabarcoding analysis are uclust in the usearch algorithm
(Edgar, 2010), vsearch (Rognes et al., 2016), and CD-HIT
(Fu et al., 2012). usearch and vsearch can cluster nucleotide
sequences based on their similarity, length, and abundance,

assuming that the same species’ amplicons will probably be
identical in size with a minimal coverage dissimilarity. As a
result, with fungi ITS, clustering may create multiple OTUs
from the same species amplicons and increase the alpha and the
beta diversities.

CD-HIT implements a more realistic clustering approach,
hierarchical clustering, which consists of a multiple-step, iterated
runs with a neighbour-joining approach and generates a
hierarchical structure. In HCK, with the datasets that we
analyse, the second iteration with 98% identity reduces the
first number of clusters by 3/8 and the final iteration with
97% identity by 1/5. In addition to filtering out the singleton,
HCK drastically reduces the number of false-positive and
normalises the diversity abundance. It is essential to highlight
that databases also play an important role in the performance
of the classifier. Qiime version 1 performs better with the ITSdb
database than its native database UNITE, regardless of the
filtering method. The inappropriate estimation of the abundance
(overestimation, underestimation of population or sequence
wrongly classified) can also influence metrics of diversity. The
high diversity found with the UNITE database might be due
to the higher number of incorrect classification sequences in
the UNITE database.

CONCLUSION

The classification of fungi using ITS marker is very challenging. It
is owed to the high diversity of the kingdom. Moreover, targeting
an intergenic section as ITS1 leads to diversified amplicon sizes
and sequences that are not taken into account with the classical
approaches developed for 16S analysis. Combining HCK and
ABAA increases the number of true-positive and decreases the
proportion of false-positive, as shown with the datasets we have
evaluated. Consequently, HCK maintained the alpha diversity
metric with the Chao1 index close to that of the BLASTn,
compared to QIIME, Kraken, and DADA2. As demonstrated in
this analysis, the use of HCK in association with ABAA allows a
more realistic estimation of fungal diversity. So far, it is the best
option to perform fungi ITS1 metabarcoding analysis on clinical
and non-clinical samples.
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