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Enterobacter sp. strain Bisph2 was isolated from a sandy soil from Biskra, Algeria and exhibits glyphosate-
degrading activity. Multilocus sequence analysis of the 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes demonstrated
that Bisph2 might be a member of a new species of the genus Enterobacter. Genomic sequencing of Bisph2 was
used to better clarify the relationships among Enterobacter species. Annotation and analysis of the genome se-
quence showed that the 5.535.656 bp genome of Enterobacter sp. Bisph2 consists in one chromosome and no de-
tectable plasmid, has a 53.19% GC content and 78% of genes were assigned a putative function. The genome
contains four prophages of which 3 regions are intact and no CRISPER was detected. The nucleotide sequence
of this genome was deposited into DDBJ/EMBL/GenBank under the accession JXAF00000000.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications

Organism/cell line/tissue Enterobacter sp. Bisph2
Sex Not applicable
Sequencer or array type Illumina MiSeq

Data format Assembled
Experimental factors Genomic sequence of microbial strain isolated
from soil

Description of the complete genomic
sequencing and annotation with a set of
features for strain Enterobacter sp. Bisph2.
Not applicable

Biskra, Algeria

Experimental features

Consent
Sample source location

1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/assembly/GCF_000814915.1/

* Corresponding author.
E-mail address: benslama.wided@hotmail.fr (O. Benslama).

http://dx.doi.org/10.1016/j.gdata.2016.03.005

2. Introduction

Glyphosate (N-phosphonomethylglycine) is the most commonly
used herbicide worldwide [1]. Because of concern regarding its toxicity
for non-targeted species in soil, finding glyphosate-degrading bacteria
in soil is of interest. A limited number of bacterial and fungal species
grow when glyphosate is supplied as the sole phosphorus source [2-4].
Most of such isolates were identified as Pseudomonas species [5-8] and
Arthrobacter species [9,10]. Rhizobium sp. [2] and Agrobacterium sp. strains
[11] have been mentioned as using glyphosate as sole source of phos-
phorus in liquid phosphorus-free culture medium. In addition, Bacillus
megaterium [8], Alcaligenes sp. [6], Flavobacterium sp. [9,12], and the
thermophile Geobacillus caldoxylosilyticus [13], have been reported as
utilizing the glyphosate as sole source of phosphorus. When investigating
Saharian soil microbiota in Biskra, Algeria, we isolated a glyphosate-
degrading organism for which first-line identification was unsuccessful.
The isolate further appeared to be probably representative of a new
species of the genus Enterobacter. The genus Enterobacter was created in
1960 [14]. To date, this genus is comprised of 19 species (excluding
E. aerogenes) making it one of the largest genera within the family
Enterobacteriaceae. Enterobacter is also one of the most rapidly expanding
genera within the Enterobacteriaceae, with 50% of the novel species
descriptions taking place in the last decade [15]. Members of the genus
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were isolated mostly from the environment, in particular from soil, plants
and fruit, but also frequently isolated from humans, notably in health-care
associated infection [16]. Here we present a summary classification and a
set of features for strain Enterobacter sp. Bisph2, together with the
description of the complete genomic sequencing and annotation.

3. Results
3.1. First-line characterization of strain Bisph2

Isolate Bisph2 consists of Gram-negative rods cells (Fig. 1), facul-
tatively anaerobic and motile by peritrichous flagella, of 0.9 pm wide
by 2.1 um long and occur singly or in pairs (Fig. 2). Strain Bisph2 is
catalase positive, oxidase negative and fermentative. Growth occurs
after 18-24 h at 25-44 °C with an optimum growth at 37 °C on Columbia
agar with 5% sheep-blood and chocolate agar.

Using the API 20E and API ZYM system (bioMérieux, La Balme les
grottes, France), positive reactions were obtained for 3-galactosidase,
indole production, Voges-Proskauer, glucose, mannose, sorbitol,
rhamnose, saccharose, amygdalin, inositol, alkaline phosphatase,
leucine arylamidase, trypsin and (3-glucosidase. Whereas, negative
reactions were obtained for arginine dehydrolase, lysine decarboxylase,
ornithine decarboxylase, citrate, H,S production, tryptophane deaminase
and urease.

The isolate Bisph2 was identified by MALDI-TOF analysis as belonging
to Enterobacter genus with a score of 1.6.

3.2. Phylogenetic analysis of strain Bisph2

Strain Bisph2 showed the highest 16S rRNA gene sequence
similarity (>97%) with Enterobacter asburiae (GenBank Accession
No. gb [JF772103.1]) and Klebsiella pneumoniae (GenBank Accession
No. gb |EF197996.1|). The strain exhibited the highest rpoB gene se-
quence similarity of 94% with E. cloacae (GenBank No. gb |CP009756.1]).
The result of hsp60 gene analysis showed that Bisph2 shared
94.7% and 92.6% of similarity with E. cloacae (GenBank Accession
No. emb|FN547033.1|) and E. cowanii (GenBank Accession No.
emb|AJ567896.1]), respectively. Whereas, the highest gyrB sequence
similarity (90.7%) was found with E. cloacae (GenBank No. gb
| CP002272.1]). The result of dnaJ sequence analysis showed that strain
Bisph2 exhibited 89.3% and 88.4% of similarity with E. cancerogenus
(GenBank Accession No. dbj|AB272637.1|) and E. cloacae subsp. cloacae
(GenBank Accession No. emb|FP929040.1 ), respectively.

Fig. 1. Gram stain of Enterobacter sp. Bisph2.

Fig. 2. Transmission electron micrograph of Enterobacter sp. Bisph2, taken using a Morgani
268D (Philips) at an operating voltage of 60 kV. The scale bar represents 1 pm.

3.3. Genome sequencing analysis

The whole genome Shotgun project of Bisph2 strain has been deposit-
ed at DDBJ/EMBL/GenBank under the accession number JXAFO0000000.
Assembling yielded 27 scaffolds and 46 large contigs (>500 bp), generat-
ing 159.85x genome equivalents of a 5.3 Mb-genome. The genome
consists of one circular 5.535.656 bp chromosome without detected
plasmid with a 53.19% GC content (Fig. 3). A total of 5.248 genes (78%)
were assigned a putative function. The remaining genes were annotated
as either hypothetical proteins or proteins of unknown function. No
CRISPER was detected. The genome contains four prophages of which
three regions are intact, including PHAGE_Salmon_SP_004_NC_021774,
PHAGE_Cronob_ENT47670_NC_019927, PHAGE_Entero_HK225_NC_
019717 and one incomplete PHAGE_Aggreg_S1249_NC_013597. The
distribution of genes into COGs functional categories is presented in
Table 3. The properties and the statistics of the genome are summarized
in Tables 2 and 3.

4. Discussion

Results of morphological and physiological studies showed that
strain Bisph2 presents the general characteristics of the genus Entero-
bacter. For the MALDI-TOF analysis, a score enables the presumptive
identification and discrimination of the tested species from those in
a database: a score >2 with a validly published species enable the
identification at the species level, a score >1.7 but <2 enabled the
identification at the genus level, and a score <1.7 did not enabled
any identification. For strain Bisph2, the score was 1.6, suggesting
that this isolate was not a member of known species of Enterobacter.

Bisph2 differ from their nearest neighbors by several properties
including the negative test to ornithine decarboxylase and arginine
dihydrolase, positive for indole production and the ability to growth
on dulcitol, D-arabitol, 5-ketogluconate and malonate.

The isolate was initially identified by the first-line identification tools
(morphological, physiological studies, MALDI-TOF and API system) as
belonging to Enterobacter genus. Further identification to the species
level was not possible.

The analysis of 16S rRNA gene sequence indicated that strain Bisph2
belongs to the family of Enterobacteriaceae. Comparison of the sequences
of conserved genes, most commonly those encoding 16S rRNA, is used for
bacterial genotypic identification. Currently, Enterobacter has been shown
to be polyphyletic based upon 16S rRNA gene sequence analysis [17,18],
making it difficult to assign novel species to Enterobacter [15]. Among
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Fig. 3. Graphical circular map of Enterobacter sp. Bisph2 genome. From outside to the center: Genes on the forward strand, genes on the reverse strand, RNA genes (tRNAs green, rRNAs

red), GC content, and GC skew.

Enterobacteriaceae, variation within 16S rRNA gene does not allow confi-
dent species identification. In common with ribosomal RNA-encoding
gene, the rpoB encoding the bacterial RNA polymerase B-subunit is
universal [19]. It was showed by a study of Mollet et al. that the levels
of divergence between the rpoB sequences of different strains of
Enterobacteriaceae were markedly higher than those between their
16S rRNA genes. The comparison of partial sequences of the rpoB
gene was more sensitive than the 16S rRNA gene and represents
between 1% to 15.4% more variability [20]. As the utility of rpoB
gene for species identification and discrimination between members
of the family Enterobacteriaceae has been demonstrated previously
by several authors [18,20], this approach was used to determine
the taxonomic position of the strain Bisph2. The result of rpoB gene
analysis demonstrated that the isolate shared similarities with
Enterobacter species below the determined cut-off (97.7%) [20].
However, even the increased resolution of the rpoB gene fails to
resolve Enterobacter and its closest phylogenetic relatives in mono-
phyletic clade. Multilocus sequence analysis (MLSA), based on partial
sequencing of the protein-encoding gene has been used to address
several taxonomic issues [15].Thus, three additional protein-encoding
genes gyrB [21], hsp60 [22,23] and dnaj [24] were sequenced to further
describe the phylogenetic relationships of strain Bisph2 with other
members of the genus Enterobacter. Based on Dauga's studies, similari-
ties between gyrB sequences from all Enterobacter species ranged from
84.8 to 97.3% [21]. Strain Bisph2 exhibited a gyrB sequence similarity
between 84 and 97.3% with E. cloacae. According to the study of
Nhung et al,, the degree of divergence of the dnaj gene in the family of
Enterobacteriaceae was approximately six times greater than that of
the 16S rRNA gene. In addition, the greater divergence of the dnaJ
sequences was particularly evident for species not well differentiated
by other gene analysis [24]. E. hormaechei for example, showed 0.9%
sequence difference for 16S rDNA gene to those of E. cloacae [25], but
11.1% dna] sequence difference was found between these two species.
Strain Bisph2 showed 10.7% of dnaJ sequence difference with E. cloacae.

Thus, it is likely that strain Bisph2 represents a new Enterobacter species,
supporting the results of rpoB, hsp60 and gyrB sequences analysis.

Enterobacter sp. Bisph2 isolated from soil collected in Biskra, Algeria
grow in a mineral salt medium containing the glyphosate as sole source
of phosphorus and can resist to the high concentration of the herbicide.
Thus, this isolate might therefore be useful for bioremediation of
glyphosate-contaminated environments. Because of the ability to
bioremediation of the strain Bisph2 regarding glyphosate, we per-
formed detailed genome sequencing and annotation.

The comparison of the genome of Enterobacter sp. strain Bisph2 with
those of E. massiliensis strain JC163T, E. aerogenes strain KCTC 2190,
E. asburiae strain LF7a, E. cancerogenus strain YZ1, E. cloacae strain
EcWSU1, E. cloacae subsp. dissolvens strain SDM, E. hormaechei strain
ATCC49162 and E. lignolyticus SCF1 showed that the draft genome
of Enterobacter sp. Bisph2 is larger than those of E. massiliensis,
E. aerogenes, E. asburiae, E. cancerogenus, E. cloacae, E. cloacae subsp.
dissolvens, E. hormaechei and E. lignolyticus (5.53, 4.92, 5.28, 3.81, 4.80,
4.79, 4.96, 4.80 and 4.81 Mb, respectively). Enterobacter sp. Bisph2 has
a G + C content lower than all the species mentioned previously
(53.19,55.1,54.8,53.8,55.54, 54.54, 55.1, 55.2 and 57.02%, respectively)
and has the greatest number of predicted genes (5.248, 4.724, 5.021,
4.805, 4.495, 4.740, 4.646, 4.779 and 4.558, respectively).

5. Materials and method
5.1. Enrichment and isolation of glyphosate-degrading strains

Soil specimens were collected from a sandy field located in the
region of Biskra between 34°51’01” north latitude and 5°43'40" east
longitude in northeastern Algeria on the northern edge of the Sahara
Desert. Samples of about 1 kg were taken from the first 15 cm of
depth and then pooled and sieved. Samples were air dried and stored
in sterile plastic bags at 4 °C until use. About 5.0 g of soil were added
to 95 mL of sterile minimal medium in 250 mL flasks with the addition
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Table 1
Project information.

Property Term

Finishing quality
Libraries used
Sequencing platforms

High-quality draft
One paired-end 454 3-kb library
454 GS FLX Titanium

Fold coverage 159.85x

Assemblers Abyss version 1.3.4-3
Gene calling method Prodigal

Genbank ID JXAF00000000
GenBank date of release January 09, 2015
GOLD ID Gp0109567
BIOPROJECT PRINA270819

Source material identifier Bisph2

Project relevance Study of pesticide soil degrading bacteria

of glyphosate as the sole phosphorus source at a final concentration of
500 mg/L and incubated in the dark at 30 °C under shaking condition
for seven days. A 5 mL volume of this suspension was then transferred
to fresh sterile minimal medium containing 1 g/L of glyphosate and
incubated for seven days. Three additional successive transfers were
made into medium successively containing 3, 6 and 12 g/L of glyphosate.
The appropriate dilutions of enriched sample were plated on nutrient
agar supplemented with 1 g/L of glyphosate. The plates were incubated
at 37 °C for 24 h. Strain Bisph2 was isolated and obtained in pure culture.

5.2. First-line characterization of strain Bisph2

For morphological and physiological studies, Bisph2 was grown in
aerobically and anaerobically atmospheres at different temperatures
(25 °C-44 °C) on Columbia agar 5% sheep-blood media (Biomérieux,
la Balme-les-Grottes, France). Motility and morphology after Gram
staining and after negative staining for transmission electron microscopy
were observed. Observation by electron microscopy was done as
previously described [26]. Briefly, strain Bisph2 was suspended and
then washed in phosphate buffer and stained with 1% (w/v) phos-
photungstic acid. Afterwards examination was carried on using
Morgagni 268 D (Philips) electron microscope at an operating
voltage of 60 kV. Physiological studies were performed using the
API 20E and API ZYM system (bioMérieux, La Balme les grottes,
France).

5.3. Matrix-assisted laser-desorption/ionization time-of flight analysis

The matrix-assisted laser-desorption/ionization time-of-flight mass
spectrometer analysis (MALDI-TOF-MS) (Bruker Daltonics, Bremen,
Germany) was carried-out as previously described [27]. Briefly, a
pipette tip was used to pick one isolated bacterial colony from a culture
agar plate, and to spread it as a thin film on a MTP 384 MALDI-TOF target
plate (Bruker Daltonics, Leipzig, Germany). Twelve distinct deposits
were done from twelve different colonies of strain Bisph2. Each smear
was overlaid with 2 pl of matrix solution in 50% acetonitrile, 2.5% tri-
fluoracetic-acid, and allowed to dry for 5 min. Measurements were
performed with a Microflex spectrometer (Bruker). Spectra were
recorded in the positive linear mode for the mass range of 2.000 to
20.000 Da. A spectrum was obtained after 675 shots at a variable laser
power. The twelve spectra were imported into the MALDI BioTyper soft-
ware (version 2.0, Bruker) and analyzed by standard pattern matching
against the main spectra of 6.213 bacteria including 36 spectra from
validly published Enterobacter species that were used as reference
data in the BioTyper database. The method of identification includes
the m/z 3.000 to 15.000 Da. For every spectrum, 100 peaks at most
were taken into account and compared with spectra in the database.

5.4. 16S rRNA, rpoB, hsp60, gyrB and dnaJ genes amplification and
sequencing

The 16S rRNA gene of Bisph1 was amplified using the primer pair
fD1 (5'-AGAGTTTGATCCTGGVTCAG-3’) and P2 (5-ACGGCTACCTTGTT
ACGACTT-3") [28]. PCR amplification was carried-out in a 50 pL volume
containing 5 pL template, 50 mM KCl, 1.5 mM MgCl,, 200 pM each dNTP,
0.2 UM each oligonucleotide primers and 0.5 units of Tag DNA polymer-
ase (EuroblueTagq, Eurobio, Les Ulis, France). The thermal cycle consisted
of an initial 5 min denaturation at 95 °C followed by 35 cycles of 30 s
denaturation at 95 °C, primer hybridization at 52 °C for 30 s, elongation
at 72 °Cfor 5 min and a final 5 min elongation step at 72 °C. PCR reaction
was examined by electrophoresing 5 pL of PCR product on a 1% agarose
gel stained with ethidium bromide. The gel was visualized using Gel Doc
1000 (Bio-Rad, California, USA). Successful PCR was transferred into PCR
purification plate (Macherey Nagel Hoerdt, France). Purified PCR prod-
uct was sequenced using BigDye® Terminator v1.1 cycle sequencing
ready reaction kit (Applied Biosystems, Courtabeuf, France) and the
primers 536F (5’-CAGCAGCCGCGGTAATAC-3), 536R (5’-GTATTACCGC
GGCTGCTG-3'), 800F (5’-ATTAGATACCCTGGTAG-3'), 880R (5’-CTAC
CAGGGTATCTAAT3'), 1050F (5'-TGTCGTCAGCTCGTG-3’) and 1050R
(5’-CACGAGCTGACGACA-3’). The rpoB, gyrB, hsp60 and dnaJ genes
were amplified and sequenced as previously described by [20-22,24],
respectively.

The nucleotide sequences were edited using ChromasPro soft-
ware. The 16S rRNA, rpoB, hsp60, gyrB and dnaJ gene sequences
of strain Bisph2 were deposited in GenBank with the accession
number KC315994, KC316002, KC316000, KC315998 and KC315996,
respectively.

5.5. Genomic DNA preparation

Strain Bisph2 was grown aerobically on 5% sheep-blood enriched
Columbia agar (bioMérieux) at 37 °C. Four Petri dishes were spread,
bacteria were harvested and resuspended in 4 x 100 pl of TE buffer.
Then, 200 pl of this suspension was diluted in 1 ml TE buffer prior to
being treated with 2.5 pg/ul lysozyme for 30 min at 37 °C, and then
with 20 pg/ul of Proteinase K overnight at 37 °C. The DNA was then
purified by 3 successive phenol-chloroform extractions followed by
an ethanol precipitation at — 20 °C overnight. Following centrifugation,
the DNA was resuspended in 160 pl TE buffer. The yield and concentra-
tion were measured by the Quant-it Picogreen kit (Invitrogen) on the
Genios Tecan fluorometer.

5.6. Genome sequencing and assembly

Genomic DNA of strain Bisph2 was sequenced on a MiSeq sequencer
(Illumina Inc., San Diego, CA, USA) using paired-end sequencing with
the Nextera XT. To prepare the paired-end library, genomic DNA was
diluted 1:3 to obtain a 1 ng/ul concentration. The “tagmentation” step

Table 2

Genome statistics.
Attribute Value % of total
Genome size (bp) 5,535,656 100
DNA coding (bp) 4,891,263 88.35
DNAG + C (bp) 2,944,511 53.19
DNA scaffolds 27 100
Total genes 5248 100
Protein coding genes 5174 98.58
RNA genes 74 141
Genes assigned to COGs 5.248 78
Genes with Pfam domains 4740 90.32
Genes with signal peptides 471 8.97
Genes with transmembrane helices 1006 19.16
CRISPR repeats 0
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Table 3
Number of genes associated with general COG functional categories.

Code Value %age Description

162 3.09 Translation, ribosomal structure and biogenesis
1 0.02 RNA processing and modification
357 6.80 Transcription

175 3.33 Replication, recombination and repair
0 0 Chromatin structure and dynamics
33 0.63 Cell cycle control, cell division, chromosome partitioning
49 0.93 Defense mechanisms

220 4.19 Signal transduction mechanisms
234 446 Cell wall/membrane biogenesis
103 1.96 Cell motility

87 1.66 Intracellular trafficking and secretion
133 2.53  Posttranslational modification, protein turnover, chaperones
235 448 Energy production and conversion

463 8.82 Carbohydrate transport and metabolism
391 7.45 Amino acid transport and metabolism
80 1.52  Nucleotide transport and metabolism
166 3.16 Coenzyme transport and metabolism
119 2.27 Lipid transport and metabolism
243 4.63 Inorganic ion transport and metabolism
94 1.79  Secondary metabolites biosynthesis, transport and catabolism
466 8.88 General function prediction only
299 5.70 Function unknown
1138 21.68 Not in COGs

LwIOoTTITMmAONOCZZA<UWC R >

The total is based on the total number of protein coding genes in the genome.

fragmented and tagged the DNA with a mean size of 1.4 kb. Then, a
limited PCR amplification (12 cycles) completed the tag adapters and
introduced dual-index barcodes. After purification on AMPure XP
beads (Beckman Coulter Inc., Fullerton, CA, USA), the library was then
normalized on specific beads according to the Nextera XT protocol
(Illumina). The pooled single strand library was loaded onto the reagent
cartridge and then onto the instrument along with the flow cell. Auto-
mated cluster generation and paired-end sequencing with dual-index
reads were performed in a single 39 h run in 2 x 250 bp. Total information
was obtained from a 574 K/mm cluster density with a cluster passing
quality control filters of 95.4% of the clusters passing quality control filters.
The passed-filter reads were assembled on the abyss software with
10x coverage cutoff. A summary of the project information is shown
in Table 1.

5.7. Genome annotation

Prodigal program was used to predict the open reading frames
(ORFs) [29]. tRNAs were predicted using the Aragorn program [30]
and rRNAs were predicted using RNAmmer. The predicted genes were
Blasted against non-redundant database. The functional annotation of
predicted ORFs was performed using RPS-BLAST [31] against the cluster
of orthologous groups (COG) database [32] and Pfam database [33].
TMHMM program was used for gene prediction with transmembrane
helices [34] and signalP program was used for prediction of genes
with peptide signals [35]. PHAST software was used for bacteriophage
detection [36].
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