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BASIC SCIENCES

Profiling of Primary and Mature miRNA 
Expression in Atherosclerosis-Associated Cell 
Types
Pierre R. Moreau , Vanesa Tomas Bosch, Maria Bouvy-Liivrand , Kadri Õunap, Tiit Örd, Heidi H. Pulkkinen , Petri Pölönen,  
Merja Heinäniemi, Seppo Ylä-Herttuala , Johanna P. Laakkonen , Suvi Linna-Kuosmanen,* Minna U. Kaikkonen *

OBJECTIVE: Atherosclerosis is the underlying cause of most cardiovascular diseases. The main cell types associated with disease 
progression in the vascular wall are endothelial cells, smooth muscle cells, and macrophages. Although their role in atherogenesis 
has been extensively described, molecular mechanisms underlying gene expression changes remain unknown. The objective of 
this study was to characterize microRNA (miRNA)-related regulatory mechanisms taking place in the aorta during atherosclerosis.

APPROACH AND RESULTS: We analyzed the miRNA expression changes in primary human aortic endothelial cells and human 
umbilical vein endothelial cells, human aortic smooth muscle cells, and macrophages (CD14+) under various proatherogenic 
stimuli by integrating GRO-seq, miRNA-seq, and RNA-seq data. Despite the highly cell-type-specific expression of multi-
variant primary miRNAs, the majority of mature miRNAs were found to be common to all cell types and dominated by 2 to 5 
abundant miRNA species. We demonstrate that transcription contributes significantly to the mature miRNA levels although 
this is dependent on miRNA stability. An analysis of miRNA effects in relation to target mRNA pools highlighted pathways 
and targets through which miRNAs could affect atherogenesis in a cell-type-dependent manner. Finally, we validate miR-
100-5p as a cell-type specific regulator of inflammatory and HIPPO-YAP/TAZ-pathways.

CONCLUSIONS: This integrative approach allowed us to characterize miRNA dynamics in response to a proatherogenic stimulus 
and identify potential mechanisms by which miRNAs affect atherogenesis in a cell-type-specific manner.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Early events in atherogenesis take place in the endo-
thelium, which forms the inner surface of the vascular 
wall (Figure IA in the Data Supplement). Endothelial 

dysfunction increases the vascular permeability promot-
ing lipid accumulation into the vessel wall, and increases 
local oxidative stress leading to the formation of oxidized 
phospholipids, which have been shown to accumulate in 
the atherosclerotic plaques.1 The formation of oxidized 
lipids stimulates chemokine production, which attracts 

monocytes to the site, and induces their differentiation 
into macrophages. After the ingestion of oxidized lipids, 
macrophages turn into foam cells that perpetuate vas-
cular remodeling. Eventually, the local release of inflam-
matory mediators induces proliferation and migration of 
vascular smooth muscle cells, resulting in vessel wall 
thickening and hypoxia, which further stimulates intra-
plaque angiogenesis and facilitates the progression 
of the disease.1,2 Although the general proatherogenic 
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changes in endothelial cell, macrophage, and smooth 
muscle cell function have been described, the mecha-
nisms leading to these changes have not been charac-
terized. This is mainly due to a lack of knowledge on how 
transcriptional programs differ between cell types and a 
lack of comprehensive gene expression data which inte-
grates different levels of gene regulation.

MicroRNAs (miRNAs) are small noncoding RNAs 
that repress gene expression post-transcriptionally in 
the cytoplasm3 but may also mediate noncanonical roles 
to regulate gene expression in the nucleus,4 as well as 
protein function.5 miRNA biogenesis begins with primary 
miRNA (pri-miRNA) transcription from the genome, 
followed by cleavage with the DGCR8 (DiGeorge 
syndrome critical region 8)/Drosha complex into a 
hairpin-shaped loop structure called precursor-miRNA 
(pre-miRNA; Figure IC in the Data Supplement). Pre-
miRNA is exported from the nucleus to the cytoplasm 
and further processed by Dicer into 2 single-stranded 
mature miRNAs.6 The primary role of miRNAs is to 
fine-tune cellular functions and maintain tissue homeo-
stasis, but in pathological states their effects become 
more pronounced and play more decisive roles.6 miRNA 
therapeutics that manipulate cellular miRNA levels have 
already entered clinical trials,6 although many aspects of 
miRNA function remain elusive.

Knowledge on the roles that miRNAs play in gene 
regulatory networks has increased significantly in the 
past 2 decades following the initial miRNA discovery.7,8 
However, most profiling studies have been performed 
at the tissue/organ level, which makes it difficult to dis-
cern the actual causes of the altered signals between 
different tissue types and patient and control samples. 
Tissues are heterogeneous collections of cell types and 

the observed changes in the miRNA profiles can, for 
instance, arise from the differences in the cell composi-
tion of the samples rather than from changes in miRNA 
expression in specific cell types.9 Similarly, the miRNA 
expression arising from cell types that are found essen-
tially in all organs, such as endothelial cells, red blood 
cells, and fibroblasts, can be misinterpreted as ubiquitous 
without knowledge on cellular miRNA expression pro-
files.10 Having cell-type-specific knowledge on miRNA 
expression patterns assures that functional miRNA stud-
ies are performed in appropriate cell types and will thus 
be of biological relevance.

Recent efforts11–13 to clarify the global miRNA expres-
sion patterns in human primary cells are filling the gaps 
in present knowledge, but the cellular miRNA expression 
patterns under disease-causing stimuli remain unknown. 
Although both miRNA and mRNA profiling studies have 
actively been conducted in various disease-relevant con-
texts, integration of different levels of genomics data is 
rarely done to elucidate miRNA expression and function. 
Importantly, mature miRNAs are processed from primary 
transcripts (pri-miRNAs), and their expression is con-
trolled at the transcriptional and posttranscriptional lev-
els. However, how regulation at multiple levels achieves 
precise control remains elusive.

In this study, we aimed to address these questions 
by investigating the miRNA expression profiles in ath-
erosclerosis-modeling primary cell types, namely human 

Nonstandard Abbreviations and Acronyms

CD14+ macrophages
DGCR8 DiGeorge syndrome critical region 8
GRO-seq global run-on sequencing
HAECs human aortic endothelial cell
HASMCs human aortic smooth muscle cell
HRP horseradish peroxidase
HUVECs human umbilical vein endothelial cell
miRNA microRNA
oxPAPC  oxidized 1-palmitoyl-2-arachidonoyl-sn-

glycero-3-phosphorylcholine
PCR polymerase chain reaction
pre-miRNA precursor miRNA
pri-miRNA primary microRNA
TF transcription factor
TSS transcriptional start site
TV transcript variant

Highlights

• Pri-miRNAs (primary-microRNAs) transcription and 
transcriptional start site usage is highly cell-type 
specific and minimally affected by the proathero-
genic stimulus.

• Mature miRNA expression patterns are similar 
among cells types and poorly correlated to primary 
miRNA expression. Furthermore, 2 to 5 miRNAs are 
shown to account for over 50% of the total miRNA 
expression in the cells.

• Pri-miRNA expression under single and combined 
proatherogenic stimulus provide evidence of similar 
transcription factor enrichment at regulated tran-
scriptional start sites.

• miR-100-5p silences the HIPPO pathway, leading 
to the activation of the YAP/TAZ cascade in endo-
thelial cells.

• TNFα-, IFNβ-, and hypoxia-pathway mediators are 
positively enriched among the miR-100-5p regu-
lated genes in human aortic smooth muscle cells 
but negatively enriched in human umbilical vein 
endothelial cells. Similarly, miR-100-5p regulated 
genes in human umbilical vein endothelial cells were 
enriched for genes involved in proliferation whereas 
in human aortic smooth muscle cells the genes were 
enriched for apoptosis.
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aortic endothelial cell (HAEC) and human umbilical vein 
endothelial cell (HUVECs), aortic smooth muscle cells 
(HASMCs), and macrophages (CD14+), subjected to 
proatherogenic stimuli (Figure IB in the Data Supple-
ment) to shed light on the miRNA-related regulatory 
mechanisms that could contribute to atherosclerosis. 
To achieve this, we generated transcriptomics data sets 
measuring nascent primary miRNA transcription (global 
run-on sequencing [GRO-seq]), mature microRNAs 
(miRNA-seq), and target mRNAs (ribosome depleted 
RNA-seq; Figure IC in the Data Supplement). Using this 
integrative approach, we were able to establish regulatory 
networks among the proatherogenic-stimuli-responsive 
miRNAs and their target genes and to identify potential 
players driving proatherogenic changes in a cell-type-
specific manner.

MATERIALS AND METHODS
Cell Cultures and Treatments
HUVECs were isolated from 6 different donors. HUVECs 
were extracted from umbilical cords obtained from the 
maternity ward of Kuopio University Hospital (used at pas-
sage 4–7) or purchased from Lonza (passage 9). This study 
has been performed according to the recommendations of 
the Research Ethics Committee of the Hospital District of 
Northern Savo, Kuopio, Finland. Informed written consent 
was received from all the participants, and the experiments 
were performed according to the relevant guidelines and reg-
ulations. HUVECs were cultivated in Endothelial Cell Basal 
Medium (EBM; Lonza) with recommended supplements 
(EGM SingleQuot Kit Supplements and Growth Factors, 
Lonza) after a fibronectin-gelatin coating (10 µg/mL fibro-
nectin [Sigma, St Louis, MO] and 0.05% gelatin). Each HUVEC 
donor was analyzed as a separate replicate.

HAECs from different donors were obtained from Lonza and 
cultivated in Endothelial Cell Basal Medium (Lonza) with rec-
ommended supplements (EGM SingleQuot Kit Supplements 
& Growth Factors, Lonza) after fibronectin-gelatin coating (10 
µg/mL fibronectin [Sigma, St Louis, MO] and 0.05% gelatin). 
HASMCs from different donors were obtained from Lonza and 
cultivated in medium 231 (Thermofisher, Carlsbad, CA) supple-
mented with smooth muscle growth supplement. Human mono-
cytes from different donors were obtained from Lonza. The 
monocytes were cultivated in Roswell Park Memorial Institute 
(RPMI) 1640 Medium, supplemented with 10% FBS, 100 μg/
mL streptomycin, 100 U/mL penicillin, 2 mmol/L glutamine, 
1% Na-pyruvate, 1% NEAA (Non-Essential Amino Acid cell 
culture supplement), and supplemented with rHu M-CSF (50 
ng/mL; ThermoFisher Scientific) to differentiate them into 
macrophages. The monocyte-derived macrophages will be 
referred to as CD14+ macrophages throughout the study.

To mimic an intermediate atherosclerotic state, we treated 
cells with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphorylcholine (oxPAPC) and hypoxia for 7 hours. 
Oxidized phospholipids have been reported to accumulate 
after disruption of the endothelial barrier, contributing to vas-
cular inflammation.14–17 In addition, hypoxia is present in ath-
erosclerotic lesions stimulating proatherosclerotic processes.18 

A 7-hour timepoint was chosen to capture both early and late 
transcriptional responses to stimulus.19 Moreover, short expo-
sure to hypoxia tends to promote cell survival and growth, while 
prolonged exposure to hypoxia leads to cell death.20 Hypoxia 
was achieved using a Ruskinn InvivO2 400 hypoxia worksta-
tion (Baker Ruskinn, Bridgend, Wales) in the presence of 1% 
O2 and 5% CO2. OxPAPC was generated from 1-palmitoyl-
2-archidonoyl-sn-glycero-3-phophocholine (PAPC, 10 mg/mL 
[Avanti Polar Lipids Inc, Alabaster, AL]). PAPC was exposed to 
air for 40 hours, then dissolved in chloroform and stored at 
−70 °C. At the start of the oxPAPC stimulation, chloroform was 
evaporated with nitrogen gas, and lipids were resuspended in 
growth medium to achieve a concentration of 30 μg/mL.

GRO-Seq, RNA-Seq, and miRNA-Seq
For the GRO-seq, HUVECs, HAECs, HASMCs, and CD14+ 
macrophages were treated with a medium containing 1% FBS 
with or without oxPAPC (30 μg/mL) for 6 hours under nor-
moxia or hypoxia. Cells were washed twice with cold PBS and 
incubated on ice with 10 mL of swelling buffer (10 mmol/L 
Tris-HCl, 2 mmol/L MgCl2, 3 mmol/L CaCl2, and 2 U/mL 
SUPERase inhibitor [Thermofisher, Carlsbad, CA]) for 5 min-
utes. The cells were scraped and centrifuged at 400g for 10 
minutes and resuspended in 50 μL of swelling buffer supple-
mented with 10% glycerol. Next, 500 μL of swelling buffer 
containing 10% glycerol and 1% Igepal was added drop by 
drop while gently vortexing. The nuclei were washed twice with 
a lysis buffer (10 mL of swelling buffer containing 0.5% igepal 
and 10% glycerol), and once with 1 mL of a freezing buffer 
(50 mmol/L Tris-HCl pH 8.3, 40% glycerol, 5 mmol/L MgCl2, 
and 0.1 mmol/L EDTA). Finally, the nuclei were counted, centri-
fuged at 900g for 6 minutes to be further resuspended into a 
concentration of 5 million nuclei per 100 μL of freezing buffer, 
snap-frozen in liquid nitrogen, and stored at −80 °C until run-
on reaction. The run-on reaction and library preparation were 
performed as described in Bouvy-Liivrand et al.21 Libraries 
were amplified using 13 to 15 cycles, size-selected (180–350 
bp) from 10% TBE gels (Life Technologies) and sequenced 
(single end 50 bases) using an Illumina HiSeq 2000 at EMBL 
GeneCore (Heidelberg, Germany).

RNA-seq samples were obtained 1 hour after the collection 
of the GRO-seq samples from the matching samples (reflect-
ing the lag in nascent transcription and mature RNAs). The 
cells were treated for 10 minutes with cycloheximide (0.1 mg/
mL) to stop mRNA translation,22–24 subsequently washed with 
PBS and scraped into a lysis buffer (1x Mammalian Polysome 
Buffer [Epicentre, Madison, Wisconsin], 1% Triton X-100, 1 
mmol/L DTT, 250 U/mL SUPERase Inhibitor, 7.1 U/ml Turbo 
DNase [ThermoFisher Scientific, Waltham, MA] and 0.1 mg/
mL Cycloheximide) on ice. To confirm the complete lysis of 
the cells, they were drawn up and expelled 4× through a ster-
ile 22 to 25 gauge needle. The cleared whole cell lysate was 
further treated with 10% SDS, snap-frozen in liquid nitrogen, 
and stored at −80 °C. Larger mRNAs (>200 nt), from the 
total RNA, were purified with a Zymo RNA Clean and Conc 
kit (Zymo Research, Irvine, CA), and rRNAs were eliminated 
using the Ribo-Zero Gold rRNA Removal Kit (Illumina, San 
Diego, CA). The RNA was then fragmentated (RNA fragmenta-
tion reagent, Thermofisher) and dephosphorylated. The librar-
ies were prepared as described in Bouvy-Liivrand et al21 for 
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GRO-seq but omitting the anti-BrUTP pulldown. The libraries 
were amplified by 11 to 16 cycles, size selected (190–350 bp), 
and quantified (Qubit dsDNA HS Assay Kit on a Qubit fluorom-
eter, Thermofisher, Carlsbad, CA). Sequencing (single-end 50 
bases) was performed with an Illumina Hi-Seq2000 at EMBL 
GeneCore (Heidelberg, Germany).

For the RNA-seq gene expression quantification of the 
HASMC and HUVECs samples transfected with miRNA mimic 
control and miR-100-5p treated with hypoxia+oxPAPC, the 
total RNA was isolated using an RNeasy Mini Kit (QIAGEN). 
Libraries were prepared using the QuantSeq 3′ mRNA-Seq 
Library Prep Kit FWD for Illumina (Lexogen) according to the 
manufacturer’s instructions. For each sample, 250 ng of total 
RNA was used for the library preparation, and the libraries were 
sequenced using a read length of 78 bases (single-end) on 
an Illumina NextSeq 500 sequencer. The average sequencing 
depth was 6.3×106 reads per library (range, 5.5–7.3×106).

A small RNA-fraction (17–200 bases) was obtained 
by adding ethanol to the flow through from the total RNA 
extracted from the RNA Clean and Concentrator (Zymo 
Research, Irvin, CA) kit and passing the RNA through a new 
column. The libraries were prepared at the Finnish Microarray 
and Sequencing Centre Turku Centre for Biotechnology (Turku, 
Finland) using the TruSeq small RNA-seq protocol or at Exiqon 
(Vedbæk, Denmark) with the small RNA-Seq protocol.

miRNA Overexpression and Silencing 
(Transfection)
HUVECs were seeded on 6-well plates and transfected at 
70% confluence using Oligofectamine (Invitrogen, Carlsbad, 
CA). The following oligonucleotides were employed: 
MISSION miRNA Mimics Negative Control No. 1 (HMC0002, 
Sigma-Aldrich, Saint-Louis, MO), hsa-miR-100-5p mimic 
(HMI0023, Sigma-Aldrich, Saint-Louis, MO), MISSION 
Synthetic microRNA (miRNA) Inhibitors Negative control I 
(NCSTUD001, Sigma-Aldrich, Saint-Louis, MO), and hsa-miR-
100-5p inhibitor (HSTUD0023, Sigma-Aldrich, Saint-Louis, 
MO). Mimic miRNAs were used at a final concentration of 
25 nmol/L, while inhibitor miRNAs were used at 1 nmol/L. 
Medium supplements were added 4 hours posttransfection, 
and on the next day the cells were washed with PBS and a 
fresh EBM medium with full supplements was added. RNA 
isolation, Western blot, and miRNA expression analyses were 
performed 48 hours after transfections.

miRNA Purification
HUVEC miRNAs and mRNAs were separated using an 
RNeasy Mini Kit (QIAGEN, Hilden, Germany). The cells were 
disrupted using 350 μL of buffer RLT, followed by 350 μL of 
70% ethanol. The samples were then transferred to an RNeasy 
Mini spin column and centrifuged for 15 s at 8000g. The flow 
through was kept to extract the miRNAs while the column was 
loaded with the larger RNAs (>200 nt). The miRNA fraction 
was diluted using a 0.65 volume of 100% ethanol and loaded 
into a new RNEasy Mini Kit (QIAGEN, Hilden, Germany) col-
umn. The column was then washed using 2 steps of RPE buf-
fer (RNEasy Mini Kit [QIAGEN, Hilden, Germany]) of 700 μL 
and 500 μL, respectively, followed by 500 μL of 80% ethanol. 
Each washing step was separated by a centrifugation step at 

8000g, and the flow through was discarded. The miRNAs were 
then eluted in RNAse-free water.

miRNA cDNA Synthesis
The miRNA fraction was reverse transcribed using a miRCURY 
LNA Universal microRNA polymerase chain reaction (PCR; 
Exiqon, Vedbaek, Denmark) kit according to manufacturer’s 
protocol for individual assays.

Quantitative PCR Analysis
A reverse-transcribed miRNA fraction was diluted 80-fold 
in RNAse-free water and measured in 10 μL PCR reactions 
according to the protocol for the miRCURY LNA Universal 
microRNA PCR (Exiqon, Vedbaek, Denmark) and the ExiLENT 
SYBR Green master mix (Exiqon, Vedbaek, Denmark) using 
a LightCycler 480 Real-Time PCR System (Roche, Basel, 
Switzerland). Levels of the miRNAs were determined using 
a miRCURY LNA miRNA PCR assay primer mix (Exiqon, 
Vedbaek, Denmark) of miR-100-5p and SNORD48. Data anal-
ysis was done using the Roche LC software for Cp determi-
nation (using the second derivative method) and for a melting 
curve analysis. SNORD48 was used for the normalization of the 
miRNA levels.

For mRNA detection upon miR-100-5p silencing and over-
expression, quantitative PCR was performed on the Applied 
Biosystems StepOne Plus TM system using SYBR Green 
ER master mix (Invitrogen) and the following conditions: 10 
minutes at 95 °C, then 40 cycles of 15 seconds at 95 °C, 15 
seconds at 60 °C, and 30 seconds at 72 °C. The RPLP0 and 
ATP5F1 housekeeping genes were used for the normalization 
of the mRNA levels. Primer sequences used are listed in Table 
I in the Data Supplement. Data was checked for normal distri-
bution before performing statistical tests. Paired Student t test 
(2-tailed) was used for data that followed normal distribution 
and equal variance. Otherwise, nonparametric Mann-Whitney 
test was used. P<0.05 was used to define a significant differ-
ence between the groups.

Western Blot Sample Preparation
HUVEC samples were collected using an NE-PER Nuclear and 
Cytoplasmic Extraction kit (ThermoFisher Scientific, Waltham, 
MA) following the manufacturer’s protocol for an adherent cell 
culture. A PhosSTOP Phosphatase Inhibitor Cocktail (Roche, 
Basel, Switzerland) and cOmplete, EDTA-free Protease Inhibitor 
Cocktail (Roche, Basel, Switzerland) were used to replace the 
BupH Phosphate (ThermoFisher Scientific, Waltham, MA), 
and the Thermo Scientific Halt Protease Inhibitor Cocktail 
(ThermoFisher Scientific, Waltham, MA), respectively. Protein 
concentrations were assessed using a Pierce BCA Protein 
Assay Kit (ThermoFisher Scientific, Waltham, MA) according 
to manufacturer’s protocol. Equal amounts of proteins were 
loaded into stain-free gels (Bio-Rad, Hercules, CA) from each 
sample (10 µg of nuclear and 15 µg of cytoplasmic proteins in 
HUVEC and 5 µg of proteins in all HASMC samples). For total 
protein measurement, the stain-free gel was activated with 2.5 
minutes exposure to UV-light before protein transfer to mem-
brane. For detecting and normalizing the amount of nuclear 
TAZ (transcriptional co-activator with PDZ-binding motif) pro-
tein, primary antibodies YAP (Yes-associated protein)/TAZ and 
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histone H3 (Cell Signaling Technology, Danvers, MA) were 
used. Similarly, antibodies for phospho-TAZ and β-actin (Cell 
Signaling Technology, Danvers, MA) were used to determine the 
cytoplasmic retention of TAZ. HRP (Horseradish peroxidase) 
conjugates were used as secondary antibodies. Detection of 
antigen-antibody complexes was performed with a PIERCE 
ECL Western Blotting Substrate (Thermo Fisher Scientific, 
Waltham, MA) and ChemiDoc MP Imaging System (Bio-Rad, 
Hercules, CA). A quantitative analysis of the immunoblot tar-
get protein bands were performed with ImageLab 6.0 software 
(Bio-Rad, Hercules, CA). For HUVEC samples, the adjusted 
volume intensity values of target proteins were normalized with 
the same values of the loading controls (Histone H3, β-actin). 
For HASMC samples, the target protein intensity values were 
obtained with an automatic total protein normalization tool. The 
loading control balanced values were normalized to the respec-
tive treatment control.

Data Analysis
Reads obtained after library preparation were poly(A) trimmed 
and low-quality reads were discarded. After the quality control, 
the miRNA reads were trimmed to a final size of 21 bp. For GRO-
seq, reads passing quality control were mapped to the hg19 
genome using Bowtie.25 The Bowtie parameters allowed up to 
2 mismatches and reporting only one alignment for each read. 
RNA-seq and miRNA-seq reads were aligned to the GRCh37/
hg19 reference genome using STAR v2.5.4b.26 STAR parameters 
followed ENCODE standard options for a long RNA-Seq pipeline 
and small RNA-Seq pipeline.27 Tag directories were generated 
with the fragment length set to 75 and for the RNA-seq, the maxi-
mum number of tags per base pair was set to 3. Raw counts were 
quantified using Homer V4.928 and the analyze Repeats routine 
using the standard option, or a customized bed file containing 
the annotations from mirbase v2229–31 and the custom pri-miRNA 
coordinates (Table III in the Data Supplement).21 The fold change 
was calculated after filtering low expressed transcripts (RPKM 
>0.5 in at least 3 samples) for each cell type to improve the 
sensitivity and the precision of the differential expression analy-
sis.32 Differential expression was calculated using EdgeR33,34 or 
DESeq235 for each cell type individually.

For RNA-seq gene expression quantification of HASMC 
and HUVEC samples transfected with miRNA mimic control 
and miR-100-5p, reads were first trimmed for poly(A), Illumina 
adapter, and low-quality bases using cutadapt (version 2.836). 
Subsequently, the nf-core RNA-Seq pipeline (version 1.4.237) 
was used to align the reads to the GRCh37/hg19 human 
genome with the STAR aligner and count the reads in transcripts 
according to the Ensembl GRCh37 release 87 gene annotations. 
The following gene biotypes were retained in the gene expres-
sion matrix: protein coding, lincRNA, and antisense. To filter out 
lowly expressed genes, the filterByExpr function of the EdgeR 
package (version 3.24.333,34) was used (minimum count: 5; mini-
mum total count: 15). For each cell type, all genes were ranked 
by the response to miR-100-5p (relative to mimic control) based 
on the Wald statistic calculated by the DESeq2 package (version 
1.22.235) using the default parameters. Gene set enrichment 
analysis of the ranked lists was performed using the fgsea pack-
age (version 1.8.038) with the Hallmark gene sets obtained from 
the Molecular Signatures Database (release 7.139).

Pri-miRNA Transcript Variant Annotation and 
Quantification
Primary miRNA transcript coordinates were identified from 
GRO-seq data using a custom de novo detection pipeline.21 To 
achieve this, GRO-seq, and matching ChIP-seq and CAGE-seq 
data were assembled for 27 human cell types. Briefly, nonmap-
pable coordinates, exons of coding genes, and ribosomal RNA 
regions were removed from pri-miRNA transcripts before quan-
tification using BEDTools40 (subtractBed) to exclude regions 
known to cause problems in quantification of GRO-seq data.

Next, primary transcripts were identified de novo from GRO-
seq nascent transcripts using the HOMER software suite pro-
gram findPeaks.pl, with the -groseq -uniqmap options, as well 
as 3 parameter settings for varying detection sensitivity and 
specificity. Transcription start site (TSS) coordinates were then 
assigned based on CAGE-seq peaks within ±500 bp of the 
detected transcripts and collapsed for unique across cell types. 
The TSS status was further supported by promoter histone 
methylation levels: all putative TSSs had to exhibit >10 CPM 
H3K4me3 and 5-fold H3K4me3> H3K4me1. Transcript end 
coordinates were assigned based on de novo transcripts clus-
tered by adjacency and a change point analysis. The final de 
novo coordinates represent nonoverlapping regions between 
TSSs across individual loci thus allowing the investigation of 
transcription originating from different TSSs per locus. Pre-
miRNA locations were assigned based on GENCODE (v19) 
and miRBase (v20) existing annotations and subsequently the 
overlap of de novo coordinates was used to define candidate 
pri-miRNA transcripts. To obtain transcript variant (TV)-specific 
expression values, the nonoverlapping pieces of each pri-
miRNA transcript were quantified using HOMER (analyzeRe-
peats.pl with parameters -strand + -noadj -noCondensing -pc 
3). The lengths of the quantified region and total read counts per 
sample were used to report normalized signal levels (RPKM). 
The contribution of each TSS (named TSSi) to the overall tran-
scriptional activity in a given locus was determined by subtract-
ing the signal level at the upstream element (named TSSi+1), 
based on the RPKM (reads per kilobase of transcript per mil-
lion mapped reads) values: RPKMi=RPKMi–RPKM(i+1).

The differential expression of the primary miRNA transcripts 
between the different cell types was calculated using DESeq.

Super-enhancer locations were obtained from previous 
reports.41,42 The distance between the super-enhancers’ loca-
tion and the mature miRNAs were calculated using the HOMER 
annotatePeaks algorithm using the -pdist option.

To detect the transcription factor enriched under the stud-
ied stimuli, we pooled the tag directories from each cell type 
separately under all stimuli. All transcribed regions were iden-
tified using HOMER v4.9 (http://homer.ucsd.edu/homer/43) 
with the command findPeaks.pl with the option -groseq. The 
expression of each transcript was further quantified using the 
HOMER command analyzeRepeats.pl for all the tag directo-
ries. The transcript start sites (±200 bp) of each transcript 
displaying a fold change above 1 between different condi-
tions were further analyzed to detect the enriched transcription 
factor using CiiiDER.44 To achieve this, the hg19 coordinates 
were converted to hg38 using the convertcoordinates.pl tool 
from HOMER and the fasta-sequences were extracted using 
BEDTools40 (getfasta).
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Analysis of miRNA Targets and Function
To study the biological effects of the expressed miRNAs, 
the MicroRNA Target Filter of Ingenuity Pathway Analysis 
(IPA, Qiagen Redwood City, www.qiagen.com/ingenuity) and 
miRWalk (http://zmf.umm.uni-heidelberg.de/apps/zmf/mir-
walk2/) were used. MicroRNA Target Filter uses experimen-
tally determined microRNA targets using miRecords45 and 
TarBase46 alongside with manual curation from published 
literature. IPA’s target filter was used to analyze the full lists 
of the expressed miRNAs with their expressional changes 
under proatherogenic stimuli for one cell type at a time. On 
the contrary, miRWalk has been shown to present better 
accuracy and precision than other available programs.47The 
data sets were coupled with their respective RNA-seq data 
sets and filtered to include those miRNA target genes that 
showed opposite expression trends from the miRNAs and 
thus could be under canonical posttranscriptional regulation. 
The addition of this correlation between miRNAs and their 
potential targets allows us to be more accurate in the miRNA 
target definition. We further filtered the targets to contain 
those most relevant to cardiovascular disease. Then, we 
compiled the target lists with their expression changes and 
entered them into IPA’s Core Analysis, and finally continued 
to perform an IPA Comparison Analysis to bring all the data 
sets together into one analysis.

To study the function and interaction of a selected miRNA 
set, we used miRWalk47,48 and compiled putative target lists for 
the miRNAs. We included targets, which were present in at 
least 3 of the 6 target prediction databases for 5′ UTR targets, 
or 4 of 12 target prediction databases for 3′ UTR and coding 
sequence targets. The list was further filtered to contain only 
those targets that were differentially expressed (RNA-seq/
GRO-seq exhibiting a false discovery rate [FDR] <0.05) under 
proatherogenic stimuli compared with control conditions. These 
targets were uploaded to IPA for core analysis, and a subse-
quent comparison analysis to determine the canonical path-
ways and functions that were affected by the proatherogenic 
stimuli and the selected miRNAs.

RESULTS
Promoter Usage and Transcript Variant 
Expression of pri-miRNAs Is Cell-Type-
Dependent
We first generated GRO-Seq data from HAECs, 
HUVECs, HASMCs, and CD14+ macrophages to 
compare the nascent pri-miRNA transcription profiles 
between the 3 cell types. Here, the cell-type specificity 
could arise from either pri-miRNA (1) being expressed 
only in one of the studied cell types or (2) exhibiting 
alternative usage of TSS and thus resulting in pri-miR-
NAs of different lengths. To evaluate these options, we 
used our previously described pri-miRNA transcript 
variant annotation tool.21 Altogether, we identified 781 
pri-miRNAs expressed in at least one condition in all 
replicates of a single cell type (RPKM >0.5). Despite 

most pri-miRNAs being expressed in all cell types, the 
majority of them (681/781, 87%) were differentially 
expressed (FDR <0.05) between the cell types under 
all conditions and for 453 (67%) pri-miRNAs the dif-
ference was over 10-fold in at least one pair-wise com-
parison of cell types (Figure 1A and 1B). Of these, 24% 
(110/453) exhibited alternative TSS usage as exempli-
fied by a miR-23b/27b/24-1 cluster (Figure 1C and 
1D). We did not observe clear stimuli-specific patterns 
in TSS usage and transcript variant expressions, which 
suggests that the expression of pri-miRNAs is mainly 
regulated in a cell-type-specific manner (Figure 1C, 
Figure II in the Data Supplement). Altogether, our data 
provides evidence that pri-miRNA transcription and TSS 
usage is highly cell-type specific and minimally affected 
by the proatherogenic stimulus.

Although the majority of pri-miRNAs were differen-
tially expressed over 10-fold, only 84 pri-miRNAs were 
exclusively expressed (RPKM <0.5 in the 3 other cell 
types) in a given cell type (Figure 1E). These are exem-
plified by previously described MIR143, MIR145 (which 
are essential for HASMC functions),50–53 MIR126, 
endothelial cell-specific miRNA regulating vascular 
inflammation54 and MIR342, that promotes macrophage-
driven inflammation.55,56 However, high similarity in the 
pri-miRNA expression was seen between HUVECs 
and HAECs, as only 6 pri-miRNAs were differentially 
expressed including MIR339, MIR3194, MIR3938, 
MIR10B, and MIR196B for HUVEC and MIR320E for 
HAEC. Altogether, this analysis provides a resource for 
investigation of pri-miRNA transcription in atherosclero-
sis-associated cell types.

Majority of Expressed miRNAs Are Shared 
Between Cell Types and Dominated by the 
Expression of Few miRNAs
Next, we set out to compare the cell-type-specificity of 
nascent pri-miRNAs to the mature miRNA. To this end, 
we analyzed the miRNA profiles of HUVECs, HAECs, 
HASMCs, and CD14+ macrophages in response to 
7 hours proatherogenic stimuli (oxPAPC, hypoxia, and 
oxPAPC under hypoxia) in matching samples. Similarly 
to pri-miRNAs, a large fraction (45%) of the ≈500 
miRNAs were expressed in all the cell types, irrespec-
tive of conditions (Figure 2A, Figure III and Table II in 
the Data Supplement). However, a small subgroup of 
nonuniformly expressed miRNAs (from Figure IIIA and 
IIIB in the Data Supplement) were able to distinguish 
the cell types from each other (Figure 2B). Among 
these miRNAs, only 30% to 50% were identified as 
cell-type specific at the level of pri-miRNA transcription 
(Figure IVA in the Data Supplement) and the expres-
sion levels exhibited poor correlation (Figure 2C). This 
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Figure 1. Promoter usage and transcript variant expression of pri-miRNAs is cell-type-dependent.
A, The numbers of pri-miRNAs expressed (false discovery rate [FDR] <0.05) in all cell types and the fraction of differentially expressed pri-
miRNAs (FDR <0.05 and fold change >10 comparing 2 cell types). B, Fraction of DE (FDR <0.05) pri-miRNAs exhibiting multiple transcript 
variants (TVs). C, Heatmap showing transcript variant (TV) expression in log2 (RPKM [reads per kilobase of transcript per million mapped 
reads]) in different cell types and conditions. The contribution of each transcriptional start site (TSS) to the overall transcriptional activity in a 
given locus was determined by subtracting the signal level at the upstream element. D, An MIR23B cluster is shown as an example of cell-type-
specific promoter usage and transcript variant expression, as 3 of the cell types (human umbilical vein endothelial cell [HUVEC], human aortic 
endothelial cell [HAEC], and human aortic smooth muscle cell [HASMC]) express 2 TVs, namely TV2 and TV3, and macrophages (CD14) only 
one of the TVs (TV3). University of California Santa Cruz (UCSC) genome browser shot demonstrating global run-on sequencing (GRO-seq) 
signal around the miRNA locus.49 E, Row normalized expression (Row z-score) of cell-type specific pri-miRNAs separated according to the 
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Figure 2. Majority of expressed miRNAs are shared between cell types and dominated by the expression of few miRNAs.
A, Basally expressed miRNAs. The number of expressed miRNAs (counts per million reads mapped [CPM] >1 and present in all samples of 
a condition) in each cell type in basal conditions and under proatherogenic stimuli (hypoxia, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphorylcholine [oxPAPC], and hypoxia+oxPAPC) is plotted (mean, SD, n=2 for each condition). B, Heatmap for selected cell-type-specific miRNAs. 
Values are plotted as logCPM. ND indicates not detected. C, Spearman correlation between the expression of cell-type specific pri-miRNAs (Continued )
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relation was further supported by the observation that 
only 14% (12/84) of the 84 cell-type exclusive pri-
miRNAs (from Figure 1E) were expressed in a cell-
type specific manner on a mature miRNA level (Figure 
IVB in the Data Supplement). Altogether, our data 
provides evidence that miRNA expression is strongly 
controlled at the level of posttranscriptional regulation. 
This was clearly demonstrated at the level of miRNA 
clusters such as miRNAs arising from MIR3613 host 
gene, namely miR-15a-3p, miR-15a-5p, miR-16-1-3p, 
miR-16-5p, miR-3613-5p, and miR-3613-3p, which 
are transcribed as one pri-miRNA, but results in sev-
eral mature miRNAs with very different expression val-
ues (Figure 2D).

The Functional Annotation of the Mammalian 
Genome project recently published11 that miRNA 
expression levels differ highly and are extremely 
skewed, with about 5 miRNAs being responsible of 
half of the total miRNA expression in a given sample. In 
line with this, 2 to 5 miRNAs were confirmed to be the 
source of roughly 50% of the total miRNA expression 
in the cells (Figure 2E). The number was the lowest in 
HUVECs where only 2 miRNAs, namely miR-126-3p 
and miR-21-5p, contributed to 56% of the total miRNA 
expression in basal conditions and under stimuli. Over-
all, the top 10 miRNAs expressed contributed to 73% 
to 88% of the total miRNA expression and were largely 
invariant to stimulus (Figure 2F, Figure VA and VI in 
the Data Supplement). Thus, a surprisingly small set 
of miRNAs, many of which are ubiquitously expressed, 
account for significant differences in the miRNA pro-
files between different cell types and states. A compar-
ison of the top 10 miRNAs arising from different cell 
types revealed the most similar profiles in the endo-
thelial subtypes, HUVECs and HAECs, and the least 
similarity between the macrophages (CD14) and the 
rest of the cell types (HUVECs, HAECs, and HASMC; 
Figure 2F, Figures VB and VI in the Data Supplement). 
Interestingly, we also observed that the top 10 miRNAs 
were associated with closer proximity to super-enhanc-
ers, suggesting a potential mechanism accounting for 
their high expression level (Figure 2G). To this end, 
miR-21 had a super-enhancer detected in all the cell 
types analyzed here (Figure 2H).

High Similarity of Pri-miRNA Expression 
Changes in Response to Single or Combined 
Treatment
Next, we investigated the effect of different stimuli on the 
expression of pri-miRNAs. Altogether, 569, 430, and 515 
pri-miRNAs were differentially expressed (GRO-seq, FDR 
<0.05) upon hypoxia, oxPAPC, or combined treatment, 
respectively. Altogether a larger fraction of DE pri-miRNA 
was shared between the cell types (shared pri-miRNAs—
hypoxia: 27.5%, OxPAPC: 3.5%, HypoOxP: 20.7% [Fig-
ure 3A and Figure VIIA in the Data Supplement]), compared 
with nascent mRNA expressions where the larger fraction 
was cell-type specific (shared nascent mRNAs—hypoxia: 
16.02%, OxPAPC: 1.37%, HypoOxP: 12.4% [Figure VIIC 
in the Data Supplement]). However, for both pri-miRNAs 
and mRNAs, the single stimulus responsive transcripts 
were also differentially expressed by the other single stim-
ulus and by the hypoxia+oxPAPC combination (Figure 3A, 
Figures VIIB, VIID, VIIIA, and VIIIB in the Data Supple-
ment). This suggests that transcriptional changes in the 
hypoxia+oxPAPC group are provoked by either oxPAPC or 
hypoxia, or that all the treatments have a similar direction 
of effect. To test these options, we extracted stimuli-spe-
cific signatures (Figure 3A and 3B) by assigning the dif-
ferentially expressed pri-miRNAs (GRO-seq, FDR <0.05) 
in each data set into 7 groups: (1–3) oxPAPC, hypoxia, 
and hypoxia+oxPAPC only, which contained pri-miRNAs 
that were upregulated in one group and downregulated 
in the others (or vice versa); (4–6) combinations of the 
3 (oxPAPC and hypoxia/oxPAPC and hypoxia+oxPAPC/
hypoxia and hypoxia+oxPAPC), which contained pri-miR-
NAs that were upregulated in 2 of the groups and down-
regulated in the third (or vice versa); and (7) pri-miRNAs 
similarly expressed under all 3 stimuli (upregulated/down-
regulated in all). In a given data set, one pri-miRNA could 
only be assigned to one group, for example, in oxPAPC-
treated cells, pri-miRNAs belonging to the oxPAPC only 
group were extracted first, then pri-miRNAs belonging to 
combinations and all categories. Additionally, pri-miRNA 
was required to be significantly differentially expressed in 
the treatment group that was under investigation and only 
the direction of expression (up/no change/down) was 
noted in the other treatment groups. The results showed 

Figure 2 Continued. and the corresponding expression of mature miRNA in normoxia. Paired Student t test (2-tailed) was used to calculate 
the correlation’s P value. D, Endothelial cell specific MIR3613 host gene cluster expression detected using global run-on sequencing (GRO-
seq) and miR-seq. Cluster miRNAs are transcribed as one pri-miRNA but result in several mature miRNAs with different expression values. 
Average expression of all treatments in log2 (RPKM [reads per kilobase of transcript per million mapped reads]; left) and log2 (fold change 
[FC]) comparing different stimuli to the control (right) are shown. E, The number of miRNAs that contribute to at least 50% of the total miRNA 
expression in each cell type/condition (mean, SD, n=2). F, Percentage of top 10 miRNAs expressed in each cell type. The values represent 
averages of all treatments and basal conditions for each cell type. G, Violin plot showing the distance in log10 (base pair) between the mature 
microRNA location and the closest super-enhancer’s peak. Cell-type-specific mature miRNAs are the top 10 miRNAs in Figure 3F, while Others 
are all the microRNAs considered expressed (>1 CPM in at least 2 samples. The violin plots were created using the vioplot package [version 
0.3.2] in R [version 3.5.2]). H, University of California Santa Cruz (UCSC) genome browser shot images of MIR21. Normalized tag counts 
are shown for H3K27ac ChIP-Seq tracks. Black bars represent the super-enhancer position for each cell type. HAEC indicates human aortic 
endothelial cell; HASMC, human aortic smooth muscle cell; HUVEC, human umbilical vein endothelial cell; PTRH2, peptidyl-TRNA hydrolase 2; 
RPS6KB1, ribosomal protein S6 kinase B1; TUBD1, tubulin delta 1; and VMP1, vacuole membrane protein 1.
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that the majority of the pri-miRNAs were expressed simi-
larly under all stimuli, and only ≈11% of the pri-miRNAs 
were found to respond stimuli specifically (Figure 3B and 
3C, Figure VIIIC in the Data Supplement). Taken together, 
our results suggest that hypoxia, oxPAPC, and combined 

treatment exhibit surprisingly similar directions of effect 
on pri-miRNA expressions and thus likely involve similar 
regulatory mechanisms.

To further analyze the commonalities in the tran-
scriptional mechanisms due to hypoxia and oxPAPC, we 

Figure 3. High similarity of primary microRNA (pri-miRNA) expression changes in response to single or combined treatment.
A, Overlap of differentially expressed pri-miRNAs under all stimuli (top) and for all cell types (bottom) studied. B, Prevalence of the assigned 
miRNA groups is shown. Differentially expressed pri-miRNAs (global run-on sequencing [GRO-seq], FDR <0.05) in each data set have been 
assigned to one of the 7 groups. Each miRNA has been assigned to a group and each miRNA can only be present in one of the groups. C, 
Log2FC of the pri-miRNA expression under the studied stimuli compared with the control. Heatmaps were generated using Graphpad Prism 
8. D, Enrichment analysis showing a selection of over-represented and under-represented motifs at the transcriptional start site (TSS) of 
transcripts regulated at least 2-fold by each stimulus. The plots were generated using CiiiDER.44 ARNT indicates aryl hydrocarbon receptor 
nuclear translocator; EGR1, early growth response 1; HAEC, human aortic endothelial cell; HASMC, human aortic smooth muscle cell; HIF1A, 
hypoxia-inducible factor 1 subunit alpha; HUVEC, human umbilical vein endothelial cell; KLF, Krüppel-like factor; oxPAPC, oxidized 1-palmitoyl-
2-arachidonoyl-sn-glycero-3-phosphorylcholine; and TV, transcript variant.
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analyzed the de novo motif enrichment at the TSS of reg-
ulated transcripts (fold change >2 in at least one com-
parison in at least one cell type) for each stimulus. We 
identified 679, 140, and 172 enriched motifs for hypoxia, 
oxPAPC and hypoxia+oxPAPC, respectively. On the con-
trary, 1329 and 361 motifs for hypoxia, oxPAPC, and 
hypoxia+oxPAPC, respectively, were depleted compared 
with the background. In line with the pri-miNA expres-
sion profiles, most of the enriched motifs contributing to 
the combined response were shared between hypoxia 
and oxPAPC stimuli separately (Figure 3D, Table III in the 
Data Supplement). Indeed, only 2 motifs were specific in 
hypoxia+oxPAPC, suggesting that most motifs were also 
enriched in the single stimulus responsive TSSs. Among 
the top enriched motifs in hypoxia+oxPAPC, we identified 
previously validated signal responsive TFs (transcription 
factors) such as ARNT (aryl hydrocarbon receptor nuclear 
translocator) mediating the hypoxia response57 or Zfp148 
(zinc-finger protein 148) and ERG-1 (early growth 
response 1) mediating the response to oxidative stress,17,58 
as well as many members of the KLF (Krüppel-like fac-
tor) family of TFs that have been shown to contribute to 
proatherogenic gene expression changes.59 A comparison 
of the single stimuli demonstrated that only 1 motif was 
specific to oxPAPC, whereas hypoxia exhibited a larger set 
of stimulus-specific motifs. To provide further evidence of 
the involvement of the predicted TFs in the regulation of 
miRNAs, we used TransmiR v2.0.60,61 that makes use of lit-
erature-curated TF–miRNA regulation data. This allowed 
confirmation of the KLFs, HIF1a (hypoxia-inducible factor 
1 subunit alpha)/ARNT, and EGR1 in the regulation of 
miRNAs (Figure IX in the Data Supplement). Altogether, 
we present evidence that there is high similarity in the pri-
miRNA responses to the proatherogenic stimuli between 
the cell types, which could be partly due to the sharing 
of many TFs that mediate the responses to hypoxia and 
oxidative stress.

MicroRNA Target Genes Are Associated With 
Atherosclerosis-Related Functions
Most studies comparing atherosclerosis-associated 
changes in miRNA expression profiles have been per-
formed at the level of bulk tissue, leaving the cell of origin 
of the differential signals unclear. To address this knowl-
edge gap and to analyze the relevance of our miRNAs in 
the disease context, we collected information of the dif-
ferentially expressed miRNAs from all published studies 
conducted in human atherosclerotic plaques to date62–66 
and analyzed their miRNA expression level and stimulus 
response in each of the 3 cell types (Figure 4A). Impor-
tantly, a highly cell type-specific expression pattern of the 
mature miRNAs was observed as exemplified by macro-
phage-specific expression of miR-223-3/5p and endo-
thelial-specific expression of miR-99a-5p, miR-126-3p, 
miR-146a-3p, and miR-196a/b-5p. Furthermore, >85% 

(45/52) of the pri-miRNAs were found differentially 
expressed (FDR <0.05) in at least one condition sup-
porting the disease relevance of our findings. These 
findings suggest that several of the disease-relevant 
miRNAs respond to proatherogenic stimulus at tran-
scriptional level and their expression can be assigned to 
one cell type predicting the potential cell type of action.

Although the mature miRNA profiles in different cell 
types or under proatherogenic stimuli did not show dras-
tic differences (Figure III in the Data Supplement), the 
miRNA functions could differ as the target gene pools are 
not the same between the cell types, with about 5% of 
the mRNAs being exclusively expressed in one cell type 
or exhibiting over 8-fold difference in expression level 
(Figure XA and XB in the Data Supplement). To study 
the biological effects of the expressed miRNAs further 
in all cell types under proatherogenic stimuli, we used the 
IPA MicroRNA Target Filter that relies on experimentally 
validated and predicted mRNA targets. Inspection of the 
results of the Diseases and Functions section revealed 
several changes in the cellular functions that indicate 
the entering and maintenance of a proatherogenic state, 
such as increased endothelial activation, vascular perme-
ability and cellular movement, and migration of the cells 
(Figure 4B). In addition to the prodisease changes, the 
overall results showed clear indications of changes that 
would, in the plaque environment, increase the vulner-
ability of the plaque and the susceptibility to adverse 
cardiac events, such as increased smooth muscle cell 
death and decreased proliferation, increased neovascu-
larization, and increased platelet activation and thrombus 
formation.67 Overall, there was a high similarity in the 
directionality of the effect (z-score) for the majority of 
the functions, suggesting that the majority of the effects 
mediated by the target mRNAs are concordant between 
the cell types. However, activation of the cell migration, 
vascularization, and inhibition of apoptosis was more pre-
dominant in endothelial cells compared with HASMCs 
and CD14+ macrophages. Cell-type-specificity was also 
evident from the target mRNA changes, as shown for the 
atherosclerosis signaling molecules in Figure XC in the 
Data Supplement. A schematic of the possible interac-
tions of the different cell types and signaling molecules 
within the plaque environment is provided in Figure 4C. 
The full table of miRNAs and their predicted targets can 
be found in the Table IV in the Data Supplement.

miR-100-5p Promotes Atherogenesis-
Associated Cellular Events by Regulating the 
HIPPO Pathway and Inflammation
To find miRNAs with significant effects on target gene 
expression and the genes most affected by the miRNA 
function, we filtered the data based on target numbers 
and by targeting miRNAs, respectively. The miRNAs 
with the highest target numbers in the data and genes 
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with the highest number of miRNAs targeting them 
are summarized in Figure XI in the Data Supplement. 
For HUVECs, HAECs, and HASMCs, the miRNA lists 
mostly consist of miRNAs which are downregulated, 

and thus their targets are upregulated. For CD14+ the 
trend is the opposite. Overall, the miRNAs on the lists 
are very lowly expressed in the cells, and therefore, 
may not have strong biological effects, as argonaute 

Figure 4. MicroRNA (miRNA) target genes are associated with atherosclerosis-related functions.
A, Heatmap of row-normalized expression of miRNAs found deregulated in human atherosclerotic plaques62–66 (left) and the log2 fold 
change [FC] of those miRNAs compared with normoxia in global run-on sequencing (GRO-seq; right). B, Diseases and functions from IPA’s 
Comparison Analysis for miRNA targets in oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine [oxPAPC]-treated cells under 
hypoxia. The heatmaps were generated using Graphpad Prism 8. C, Mechanistic summary of the proatherogenic functions of the miRNA 
target genes in the various cell types and their possible interaction with each other in the plaque environment. D, Selected canonical pathways 
from IPA’s Comparison Analysis for targets of miR-21-5p, miR-22-3p, miR-100-5p, miR-34a-5p, and miR-92a-3p in oxPAPC-treated cells 
under hypoxia. Heatmaps were generated using Graphpad Prism 8. FDR indicates false discovery rate; HAEC, human aortic endothelial cell; 
HASMC, human aortic smooth muscle cell; HUVEC, human umbilical vein endothelial cell; IL, interleukin; INF, interferon; PDGF, platelet-derived 
growth factor;  TF, transcription factor; and TGF, transforming growth factor.
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(AGO)-loading has been suggested to be dominated 
by the most abundant miRNAs. Indeed, by selecting 
the 5 of the most highly expressed miRNAs, namely 
miR-21-5p, miR-100-5p, miR-22-5p, miR-34a-5p, 
and miR-92a-3p, it was possible to largely recapitulate 
the predicted functional effects on the cell types (Fig-
ure 4D and Figure XD in the Data Supplement). Here, 
HIPPO signaling was found to be repressed by miRNA 
target prediction with the strongest effect detected in 
endothelial cells. A recent study suggests that YAP/
TAZ activation in endothelial cells plays a causal role in 
the initiation and progression of atherosclerosis,68 and 
the overexpression of miR-100-5p has been associ-
ated with vulnerable plaque phenotypes.65,69,70 However, 
since the target mRNA predictions are solely based 
on bioinformatic predictions with limited accuracy, 
we sought to experimentally modulate miR-100-5p 
expression to validate the predicted miRNA-mediated 
effects on the YAP/TAZ pathway (Figure 5A, Figures 
XIIA and XIII in the Data Supplement). The results 
confirmed that in HUVECs the overexpression of miR-
100-5p introduces a trend towards increased nuclear 
TAZ levels in proatherogenic conditions, whereas miR-
100-5p silencing reduced the nuclear TAZ levels. The 
opposite was true for miR-100-5p silencing. However, 
in HASMCs, the trend was opposite, with the over-
expression of miR-100-5p leading to a decrease in 
nuclear TAZ level and an increase in phosphorylated 
TAZ.

The evolutionary conserved HIPPO pathway is a key 
regulator of cell fate in response to biochemical and 
biophysical cues.68,71,72 In addition to controlling organ 
development and growth as well as tissue homeosta-
sis, the HIPPO pathway regulates metabolic processes 
at the cellular and organismal levels in both physio-
logical processes and metabolic disease states, also 
in atherosclerosis. Silencing of the HIPPO signaling 
pathway leads to dephosphorylation and subsequent 
activation of the Yes-associated protein and Transcrip-
tional Co-Activator With PDZ-Binding Motif (YAP and 
TAZ) further towards proproliferative and proinflamma-
tory responses in cells, which promote atherogenesis. 
Thus, we next sought to investigate if the effect of 
miR-100-5p on the HIPPO pathway was dependent 
on stimulus or the cell type. To achieve this, we ana-
lyzed effects of miR-100-5p activation or inhibition on 
target mRNA expression in HUVECs and HASMCs 
under a control conditions and hypoxia+oxPAPC com-
bination stimulus. Based on miRWalk-database,47,48 the 
miR-100-5p was predicted to regulate the expression 
of several regulators of the HIPPO-YAP/TAZ cascade, 
including the pathway regulators AJUBA, BMPR2, 
LATS2, PPP2R2D, PRKCZ, and SMAD7. The results 
demonstrated highly similar regulation of the target 
mRNAs upon control conditions, whereas combina-
tion treatment revealed cell-type specific regulation 

of LATS2 (HUVEC only), AJUBA (HASMC only), and 
SMAD7 (HASMC only; Figure 5B). In addition, the 
effect of miR-100-5p on the SMAD7 expression was 
only evident upon combined treatment in HASMCs. 
Interestingly, the effect of miR-100-5p on LATS2 
and AJUBA expression was opposite to what would 
be expected from the canonical miRNA regulation 
under the combination stimulus, suggesting that the 
effect was indirect. Altogether, this suggests that miR-
100-5p displays both cell-type and treatment-specific 
control of the HIPPO pathway regulators.

The HIPPO pathway and miR-100-5p have both 
been shown to exhibit extensive crosstalk with path-
ways involved in proliferation, angiogenesis, and inflam-
mation.73–75 To provide an unbiased view of the cell-type 
specific effects of miR-100-5p, we performed RNA-
Seq profiling in HUVECs and HASMCs transfected 
with miR-100-5p mimic under hypoxia+oxPAPC stimu-
lus (Figure XIIB and Table V in the Data Supplement). 
To determine the biological pathways of the genes 
affected by the overexpression of miR-100-5p, we per-
formed a Gene Set Enrichment Analysis of the genes 
ranked by FDR and the effect direction (Walk statistic 
rank; Table VI in the Data Supplement). The top biologi-
cal pathway, epithelial to mesenchymal transition, was 
highly enriched among the upregulated genes in both 
cell types. However, the hallmark gene sets related to 
hypoxia, TNFα (tumor necrosis factor-alpha)  signaling 
via NFκb (nuclear factor kappa B subunit 1), and IFNγ 
(interferon gamma)  response exhibited positive enrich-
ment in HASMCs, while a negative enrichment was seen 
in HUVECs (Figure 5C). This signifies that miR-100-5p 
could have an opposite effect on these 2 signaling 
pathways, with the upregulated genes in HASMCs and 
downregulated genes in HUVECs showing gene set 
enrichment. In contrast, only HUVECs demonstrated 
significant (FDR <0.1) positive enrichment for genes 
associated with proliferation (Mitotic spindle) and neg-
ative enrichment for mTORC (mechanistic target of 
rapamycin kinase) signaling and ROS (reactive oxygen 
species) pathway whereas in HASMCs genes related 
to TGF-β (transforming growth factor beta 1) signaling 
and apoptosis were positively enriched (Figure 5C and 
Figure XIIC in the Data Supplement). Our results sug-
gest that complex networks of miRNA-mRNA interac-
tions could exert opposing roles in different cell types 
of the same tissue. Importantly, we provide the first evi-
dence of the participation miR-100-5p in the regula-
tion of the HIPPO pathway in endothelial cells and its 
antagonistic role in inflammatory signaling in vascular 
cell types.

DISCUSSION
In this study, the mechanisms and signaling pathways 
associated with proatherogenic stimulus were studied 
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Figure 5. miR-100-5p promotes atherogenesis-associated cellular events by regulating the HIPPO pathway and inflammation.
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smooth muscle cell [HASMC]), and for cytoplasmic phosphorylated TAZ (pTAZ) and nuclear TAZ ratio from miR-100-5p inhibitor and mimic transfected 
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in disease-associated cell types by obtaining and inte-
grating different levels of next-generation sequencing 
data, with a special focus on the miRNA expression and 
function under proatherogenic stimuli. First, we ana-
lyzed the pri-miRNA expression levels and TSS usage 
in HAECs, HUVECs, HASMCs, and CD14+ macro-
phages. In line with several previous studies,21,76,77 our 
results provide strong evidence that the transcription of 
pri-miRNA and the TSS usage is largely cell-type spe-
cific. In addition, we demonstrate that the TSS usage is 
poorly affected by stimuli, further suggesting that the 
TSS activation is performed through cell-type specific 
regulatory elements that largely preexist before the 
stimulus.78

In our study, we also demonstrate that the correla-
tion between pri-miRNA and mature miRNA expression 
was low for the cell types and stimulus, suggesting that 
miRNA expression is further regulated in a posttran-
scriptional manner. This is in line with a recent study 
based on metabolic labeling of nascent RNAs demon-
strating that many pri-miRNAs indeed fail to generate 
mature miRNAs.79 Likely reason for this is the extensive 
regulation of miRNA biogenesis that influence miRNA 
processing and turnover. Interestingly, previous stud-
ies have shown miRNA processing to play a stronger 
role over expression in determining the level of mature 
miRNAs. The microprocessor complex transforms pri-
miRNA into pre-miRNA and the efficiency seems to 
be determined by motifs within the pri-miRNA (such 
as the GC dinucleotide motif within the miR-100 pri-
miRNA), in addition to secondary structural features, as 
well as microprocessor cofactors.80 Moreover, acces-
sory proteins can bind and regulate the pri-miRNA or 
the microprocessor complex, and other regulators such 
as noncoding RNAs are also involved in the regula-
tion.81 Alternatively, mature miRNA levels can also be 
regulated during the nuclear export and at the level of 
cytoplasmatic processing,80 nuclear import, and subcel-
lular localization5,82,83 and by the availability of the pro-
teins participating in their biogenesis and stability such 
as DICER and AGO.84 However, we chose 1-hour dif-
ference between GRO-Seq and miRNA-Seq based on 
previous studies showing that mRNA level temporally 
lag behind the corresponding changes in transcription 
rates by ≈15 to 30 minutes85 thus allowing enough time 
for processing to occur. Still, we cannot exclude the 
possibility that the short time difference chosen partly 
contributes to the poor correlation observed between 
pri-miRNA and miRNA levels. Our analysis also demon-
strates that the highest expressed miRNAs are found 
close to super-enhancers, which could contribute to 
the higher expression levels. Supporting this, a recent 
report has suggested that super-enhancers enable 
nascent pri-miRNA transcription, and facilitate Dro-
sha/DGCR8 recruitment and pri-miRNA processing 
to boost cell-specific miRNA production.86 Moreover, 

miRNA decay constitutes another mechanism by which 
the levels or miRNA are regulated. A recent study based 
on a pulse-chase approach on metabolic RNA labeling 
enabled the study of the heterogeneity of miRNAs half-
lives. miRNA decay is achieved by modifying the miRNA 
ends, either by adding or trimming the nucleotides, as 
well as through interaction with the target mRNAs. 
Interestingly, miR-100 was classified as a fast decaying 
miRNA, which would make it possible to act in specific 
cellular responses that require a rapid change in the 
level of miRNA.87 Since microprocessor regulation and 
miRNA decay are affected by physiological processes, 
future studies focused on the pri-miRNA regulation in 
atherogenesis are needed.

Our analysis identified several cell-type-selective 
miRNAs such as miR-142 and mir-223 for macro-
phages, miR-126-3p and miR-126-5p for vascular 
endothelial cells, and miR-143 and miR-145 for vas-
cular smooth muscle cells, which have previously been 
shown to regulate essential functions and differentiation 
of these cell types.51,88–91 Still, the majority of the miRNA 
expression was dominated by a few miRNAs that were 
largely shared between the cell types. This is in line with 
previous studies demonstrating that on average 5 miR-
NAs contribute to half of the total miRNA expression in 
a given sample.11 Given that the most abundant miRNAs 
have been suggested to dominate posttranscriptional 
target gene regulation by AGO proteins, these miRNAs 
may also play critical roles in disease pathogenesis.92,93 
Indeed, miR-21 and miR-22 have been shown to be 
increased in several pathologies, such as cancer and 
cardiac hypertrophy, respectively.94,95

To our knowledge, this is the first study to charac-
terize the combined response to hypoxia and oxidized 
lipids in the main cell types representative of atheroscle-
rosis. To our surprise, most of the pri-miRNAs and the 
direction of regulation were the same for the single and 
combined stimulus. These results suggest that hypoxia, 
oxPAPC, and combined treatment have a similar direc-
tion of effect on pri-miRNA regulation in a given cell 
type and are, thus, likely to involve similar transcriptional 
regulatory mechanisms. By analyzing the motifs around 
the TSSs of those pri-miRNAs under different stimuli, we 
were able to identify stimulus-specific motifs and show 
that the combination of stimuli is solely the result of the 
interaction between the 2 stimuli-specific responses. 
Among the top enriched motifs, ARNT, also known as 
HIF1-β (hypoxia-inducible factor 1, beta subunit) , par-
ticipates in the hypoxia response by binding to HIF1α . 
Although it is extensively known that HIF1-β is constitu-
tively expressed, some studies have revealed that it can 
be upregulated by hypoxia in a cell-type specific man-
ner.57 In addition, ARNT has been shown to be involved 
in the oxidative stress response through the activation 
of NRF2 (nuclear factor erythroid 2-related factor 2)96 
and recent studies have shown significant crosstalk 
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between the NRF2 and HIF1α signaling pathways.97–99 
Another enriched motif, the Zfp148 transcription fac-
tor, has been demonstrated to promote cell prolifera-
tion under oxidative stress conditions and its deficiency 
confers protection against atherosclerosis in vivo.58 
Moreover, oxPAPC has also been shown to induce an 
atherogenic EGR-1 expression in vivo, contributing to an 
atherosclerosis progression.17 Under combined hypoxia 
and oxPAPC, several members of the KLF family were 
also among the top enriched motifs. Particularly, KLF2, 
4, 6, and 11 have been shown to participate in different 
biological functions involved in cardiovascular diseases, 
such as regulation of inflammation, angiogenesis, and 
thrombosis in endothelial and smooth muscle cells.59,100 
Still, direct experimental validation of the transcription 
factors binding near the miRNA TSS are still needed to 
validate our findings.

By analyzing the target genes of the miRNAs, we 
identified the HIPPO pathway as one of the main targets 
of the 5 most highly expressed miRNAs. To confirm this 
prediction, we silenced and overexpressed miR-100-5p 
in HUVECs and HASMCs. Our data demonstrates that 
miR-100-5p exerts a highly cell and stimulus-specific 
regulation of the HIPPO pathway. This was exempli-
fied by the nuclear localization of TAZ upon miR-100-5p 
overexpression in HUVECs but not in HASMCs and the 
HASMC-specific regulation of SMAD7 (mothers against 
decapentaplegic homolog 7) under combination treat-
ment. Recent evidence positions SMAD7 as a central 
coordinator of crosstalk between HIPPO- and TGF-β 
signaling101,102 where SMAD7 has been shown to sup-
press the TGF-β signaling. This provides one poten-
tial mechanism that could explain the cell type-specific 
upregulation of TGF-β pathway hallmark genes in 
HASMCs that warrants further research.

Importantly, a recent study demonstrated exten-
sive crosstalk between mTORC and HIPPO pathways 
by showing that when the HIPPO pathway is active, 
mTORC1 signaling is turned off and vice versa.102 
In line with the cell-type-specific regulation of the 
HIPPO pathway, the genes related to mTORC path-
way were only enriched among the miR-100 down-
regulated genes in HUVECs. Repression of mTORC 
signaling has been further mechanistically linked to 
an anti-inflammatory reaction to atherosclerotic stimuli 
in HUVECs under miR-100 overexpression.70 To this 
end, we also demonstrate a significant representa-
tion of TNFα-, IFNβ-, and hypoxia-pathway mediators 
among the downregulated genes in HUVECs whereas 
the opposite was seen in HASMCs. Our findings could 
also provide a partial explanation to the different func-
tional effects previously reported for miR-100, where 
inhibition of miR-100 had a significant stimulatory 
effect on HASMC migration whereas no effect was 
seen in HUVECs.75 In summary, our study identifies 

miR-100-5p as a prominent player mediating the cell-
type specific regulation of inflammation and hypoxia 
associated genes. Still, we acknowledge that our work 
is limited to in vitro experiments, and we cannot directly 
infer mechanisms of atherogenesis from our results. 
Future analysis and perturbation of cell-type specific 
miRNA expression in the tissue context is hoped to 
address these limitations.

Altogether, our work reveals a greater complexity in 
miRNA regulation than previously known and provides 
a resource for investigations on cell-type specific differ-
ences in miRNA transcription in the vascular wall. This 
information could be used to further characterize the 
atherosclerosis relevant regulatory networks and serve 
as the basis for future development of cell-targeted 
therapeutics.104,105
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