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OBJECTIVE—To determine whether 1) hepatic ceramide and
diacylglycerol concentrations, 2) SCD1 activity, and 3) hepatic
lipogenic index are increased in the human nonalcoholic fatty
liver.

RESEARCH DESIGN AND METHODS—We studied 16 sub-
jects with (n � 8) and without (n � 8) histologically determined
nonalcoholic fatty liver (NAFL� and NAFL�) matched for age,
sex, and BMI. Hepatic concentrations of lipids and fatty acids
were quantitated using ultra-performance liquid chromatography
coupled to mass spectrometry and gas chromatography.

RESULTS—The absolute (nmol/mg) hepatic concentrations of
diacylglycerols but not ceramides were increased in the NAFL�

group compared with the NAFL� group. The livers of the NAFL�

group contained proportionally less long-chain polyunsaturated
fatty acids as compared with the NAFL� group. Liver fat percent
was positively related to hepatic stearoyl-CoA desaturase 1
(SCD1) activity index (r � 0.70, P � 0.003) and the hepatic
lipogenic index (r � 0.54, P � 0.030). Hepatic SCD1 activity
index was positively related to the concentrations of diacylglyc-
erols (r � 0.71, P � 0.002) but not ceramides (r � 0.07, NS).

CONCLUSIONS—We conclude that diacylglycerols but not
ceramides are increased in NAFL. The human fatty liver is also
characterized by depletion of long polyunsaturated fatty acids in
the liver and increases in hepatic SCD1 and lipogenic activities.
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N
onalcoholic fatty liver disease (NAFLD) is char-
acterized by lipid accumulation in the liver
(�10% of liver weight), which cannot be attrib-
uted to alcohol consumption or any other liver

disease (1). NAFLD covers a range from simple nonalco-
holic fatty liver (NAFL) to nonalcoholic steatohepatitis
(NASH) and fibrosis (1). The fatty liver is resistant to the
action of insulin to inhibit hepatic glucose (2,3) and VLDL
(4) production, resulting in hyperglycemia and hypertri-
glyceridemia. The mechanisms underlying insulin resis-

tance in human NAFLD are unclear. While triacylglycerols
themselves are inert, lipid intermediates may act as impor-
tant regulators of both oxidative stress (5) and insulin
signaling (6). In vitro studies as well as studies in animals
suggest that diacylglycerols, which are immediate precur-
sors of triacylglycerols (7), can induce insulin resistance
by activating specific isoforms of protein kinase C (PKC)
(8,9). The concentrations of diacylglycerols have recently
been shown to be increased in human NAFLD compared
with subjects with normal liver histology (10). Ceramides
are another class of reactive lipids that mediate saturated
fat–induced insulin resistance (6). There are no data
comparing ceramide and diacylglycerol concentrations in
the human liver or relating them to hepatic fat content.

Sources of hepatic lipids include dietary chylomicron
remnants, free fatty acids released from either adipose
tissue triacylglycerols or chylomicrons hydrolyzed at a
rate in excess of what can be taken up by tissues (spill-
over), and de novo lipogenesis (11). Increased lipolysis is
a major contributor to hepatic fat accumulation (12–14). In
addition, when estimated using tracer techniques, de novo
lipogenesis has been found to be significantly increased in
subjects with NAFLD compared with normal subjects
(12,15,16). De novo lipogenesis produces saturated fatty
acids (17,18). Stearoyl-CoA desaturase 1 (SCD1) converts
saturated fatty acids to monounsaturated fatty acids,
which are major substrates for synthesis of triacylglycer-
ols and other lipids (19). SCD1 knockout mice are resis-
tant to the development of obesity and hepatic steatosis
(20,21), whereas the activity of SCD1 is significantly in-
creased in the fatty livers of ob/ob mice (20,22). These data
thus suggest that hepatic SCD1 activity may contribute to
lipid accumulation in NAFLD. There are, however, no data
on hepatic SCD1 activity in human NAFLD.

To address the above questions, we quantified the full
range of lipids and fatty acids using ultra-performance
liquid chromatography (UPLC) coupled to mass spectrom-
etry (MS) and gas chromatography in the human liver.
These analyses were performed in two groups of subjects
matched for age, sex, and BMI but with either a normal
liver fat content (�10% macrovesicular steatosis) or a
nonalcoholic fatty liver (NAFL) (�20% macrovesicular
steatosis [1]).

RESEARCH DESIGN AND METHODS

The subjects (all Caucasians and Finns) were recruited from patients under-
going laparoscopic gastric bypass surgery based on the following inclusion
criteria: 1) age 18–65 years; 2) no known acute or chronic disease except for
obesity or type 2 diabetes based on history, physical examination, and
standard laboratory tests (blood counts, serum creatinine, thyroid-stimulating
hormone, and electrolyte concentrations), and electrocardiogram; and 3)
alcohol consumption �20 g/day. The nature and potential risks of the study
were explained to all subjects before obtaining their written informed
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consent. The patients had not lost weight before surgery (mean weight change
over 10 months was �1.1 kg). The study protocol was approved by the ethics
committee of the Helsinki University Central Hospital.

On the morning before surgery, blood samples were taken after an
overnight fast for measurement of A1C, fasting serum insulin and C-peptide,
liver enzymes, serum triglyceride, and LDL and HDL cholesterol concentra-
tions. Body weight was recorded to the nearest kilogram using a calibrated
weighting scale with subjects barefoot and wearing light indoor clothing.
Wedge biopsies of the liver were taken at surgery. Approximately one-half of
the liver sample was sent to the pathologist for routine histopathological
assessment, while the rest was immediately frozen and stored in liquid
nitrogen. The fat content of the liver biopsy specimens (percent of hepato-
cytes with macrovesicular and microvesicular steatosis) was determined by
an experienced liver pathologist (J.A.) in a blinded fashion (23). The percent
of macrovesicular steatosis was used as the liver fat percent. One of the
patients had mild (grade 1) necroinflammatory and fibrotic changes, and two
of the patients had mild (grades 1 and 2) fibrotic changes.
Lipidomic analysis. Before analyzing the lipid composition of the liver,
frozen samples (5 mg) were mixed with an IS mixture containing 0.5–1
�g/sample of phosphatidylcholine (PC) (17:0/0:0), ceramide (Cer) (d18:1/17:0),
PC (17:0/17:0), phosphatidylethanolamine (PE) (17:0/17:0), triglycerides (TGs)
(17:0/17:0/17:0), and 200 �l chloroform:methanol (2:1). The tissues were
homogenized with grinding balls in a mixer mill at 25 Hz for 2 min, and 50 �l
of 0.9% NaCl was added. The samples were vortexed for 2 min, and after 30
min standing, they were centrifuged at 10,000 rpm for 3 min. The labeled lipid
standard mixture was added into the separated lipid extracts (1 �g/sample)
before UPLC-MS analysis.

Lipid extracts were analyzed on a Waters Q-Tof Premier mass spectrome-
ter combined with an Acquity UPLC. The column (at 50°C) was an Acquity
UPLC bridged ethyl hybrid C18 1 � 50 mm with 1.7-�m particles. The solvent
system included 1) water (1% 1 mol/l NH4Ac, 0.1% HCOOH) and 2) acetoni-
trile/isopropanol (5:2, 1% 1 mol/l NH4Ac, 0.1% HCOOH). The gradient started
from 65% A/35% B, reached 100% B in 6 min, and remained there for the next
7 min. There was a 5-min reequilibration step before the next run. The flow
rate was 0.200 ml/min, and the injected amount was 1.0 �l. Reserpine was
used as the lock spray reference compound. Lipid profiling was carried out
using ESI� mode, and the data were collected at a mass range of 300–1,200
m/z, with a scan duration of 0.2 s. The data were processed by using MZmine
software (version 6.0 [24]) and the lipid identification was based on an internal
spectral library (25). The relative amounts of all the identified lipids were
quantified by calibrating with corresponding class-specific internal standards
if available. Sphingomyelins and diacylglycerols were calibrated with PC
(17:0/17:0) as an internal standard, while all lysophospholipids were normal-
ized using lysoPC (17:0). Characteristics of the analytical method have been
described in detail in the supplement of our previous study (26). The applied
platform affords broad screening of multiple lipid classes, including triacyl-
glycerols, cholesterol esters, and major phospholipids, from total lipid ex-
tracts within a single sample run. Due to use of ESI� mode in MS analysis, the
platform is not optimal for detection of some negatively charged phospholip-
ids such as phosphatidylserines and phosphatidylinositols. The method does
not cover glycosphingolipids or the low–molecular weight reactive lipids such
as eicosanoids and free fatty acids.
Fatty acid analysis. Frozen liver tissues (5 mg) were spiked with 40–60 �g
standards and homogenized in capped 2-ml microtubes (Sarstedt) at �20°C
with chloroform:methanol (2:1; 400–600 �l) by using zirconium oxide balls in
a mixer mill (25 Hz for 5 min). A total of 100–150 �l NaCl (0.9%) was added
by vortexing, and after 1 h extraction time, the lower layer was separated by
centrifuging at 10,000 rpm for 5 min. A total of 100–200 �l aliquots from the
extracts were evaporated into dryness and used for fatty acid analyses.

The evaporation residues were redissolved into 700 �l petroleum ether
(boiling point 40–60°C) by vortexing. Sodium methoxide (250 �l; 0.5 mol/l
NaOMe in MeOH) and a couple of boiling stones were added, and the mixture
was boiled at 45°C for 5 min (27). The samples were acidified with 500 �l of
15% NaHSO4, 100 �l petroleum ether was added, and the samples were
centrifuged in 2 ml microtubes at 10,000 rpm for 5 min. The petroleum ether
layers were separated into gas chromatography vials, evaporated, and redis-
solved into 100 �l hexane.

Gas chromatographic analysis of fatty acids was performed using the
Agilent 5890 series II gas chromatography, equipped with a 25-m FFAP column
(0.32 mm inner diameter). The injection volume was 2 �l and split ratio was
1:23. Helium was used as carrier gas and the oven temperature program was
from 70°C to 240°C at 7°C/min. The injector and detector (frame ionization
detector) temperatures were 260°C and 300°C, respectively.
Analytical procedures, measurements, and calculations. Plasma glucose
concentrations were measured in duplicate with the glucose oxidase method
using Beckman Glucose Analyzer II (Beckman Instruments, Fullerton, CA)
(28). Serum free insulin concentrations were measured with the Auto-DELFIA

kit (Wallac, Turku, Finland) and C-peptide concentrations by radioimmuno-
assay (29). Serum HDL cholesterol and triacylglycerol concentrations were
measured with the enzymatic kits from Roche Diagnostics using an autoana-
lyzer (Roche Diagnostics Hitachi, Hitachi, Tokyo, Japan). The concentration
of LDL cholesterol was calculated using the Friedewald formula (30). Serum
aspartate transaminase (AST), alanine transaminase (ALT), and � glutamyl-
transferase (�GT) activities were determined, as recommended by the Euro-
pean Committee for Clinical Laboratory Standards.

Desaturase and elongase activities were estimated from product-to-precur-
sor ratios of the percentages of individual fatty acids according to the
following equations: SCD1 � (18:1/18:0), �6 desaturase � (18:3n � 6/18:2n �
6), �5 desaturase � (20:4/20:3), and elongase � (18:0/16:0) (31). Since SCD1
preferentially converts 18:0 to 18:1 rather than 16:0 to 16:1 (19), the 18:1/18:0
index was used to estimate SCD1 activity. The lipogenic index was determined
from the 16:0/18:2n-6 ratio (32).
Statistical analysis. Data are shown as means 	 SE or, for non–normally
distributed data, as median followed by the 25th and 75th percentiles.
Correlation analyses were performed using Spearman’s nonparametric rank
correlation coefficient. The unpaired Student’s t test was used to compare the
NAFL� and NAFL� groups. Calculations were made using GraphPad Prism
version 4.00 for Windows (GraphPad Software, San Diego, CA), SysStat
Statistical Package (SysStat version 10; SysStat, Evanston, IL), and SPSS 16.0
for Windows (SPSS, Chicago, IL). P � 0.05 was considered statistically
significant.

RESULTS

Subject characteristics. NAFL� and NAFL� groups
were comparable with respect to age, sex, body weight,
BMI, fasting serum insulin, fasting serum C-peptide, A1C,
fasting serum triacylglycerols, fasting serum LDL choles-
terol, and serum �GT concentrations. Fasting serum HDL
cholesterol concentrations were lower and serum ALT and
serum AST concentrations were higher in the NAFL� than
in the NAFL� group (Table 1).
Lipids, fatty acids, and free fatty acids in the NAFL�

versus the NAFL� group. The concentrations (nmol/mg
liver tissue) of glycerophosphatidic acid, ether-linked
phosphatidylcholines, lysophosphatidylethanolamine,
ether-linked lysophosphatidylethanolamine, and di- and
triacylglycerols were higher the NAFL� than the NAFL�

group (Table 2). The concentrations of ceramides,
sphingomyelins, phosphatidylcholines, phosphatidyleth-

TABLE 1
Clinical characteristics of the NAFL� and NAFL� groups

NAFL� NAFL�

n (women) 8 (4) 8 (5)
Age (years) 45 	 2 41 	 4
Weight (kg) 153 	 10 145 	 7
BMI (kg/m2) 51.8 	 2.4 49.0 	 1.1
Fasting serum insulin (mU/l) 10 (8–18) 14 (10–25)
Fasting serum C-peptide

(nmol/l) 0.86 	 0.17 1.32 	 0.19
A1C (%) 5.4 (5.2–6.2) 5.7 (5.5–6.5)
Fasting serum TGs (mmol/l) 1.80 	 0.26 2.08 	 0.31
Fasting serum HDL

cholesterol (mmol/l) 1.27 (1.13–1.29) 0.95 (0.88–1.10)*
Fasting serum LDL

cholesterol (mmol/l) 2.3 	 0.3 2.4 	 0.3
Serum ALT (U/l) 25 	 4 54 	 7†
Serum AST (U/l) 25 	 2 39 	 4†
Serum �GT (U/l) 28 (17–47) 30 (19–48)
Macrovesicular steatosis (%) 0 (0–2.5) 25 (30–50)‡
Microvesicular steatosis (%) 15 	 6 44 	 5†
Alcohol consumption

(doses/day) 0.09 	 0.04 0.09 	 0.05

Data are means 	 SE or, for non–normally distributed data, medians
(25th and 75th percentiles). *P � 0.05, †P � 0.01, ‡P � 0.001.
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anolamines, and ether-linked phosphatidylethanolamines
were comparable between the groups. The results re-
mained unchanged if the lipid data were normalized to
total phospholipid concentrations (data not shown). Total
hepatic lipid concentration was positively related to liver
fat content (r � 0.53, P � 0.036). The livers of the NAFL�

group contained proportionally more esterified and free
oleate (18:1n-9) and less esterified and free stearate (18:0)
and long polyunsaturated fatty acids (Table 3) than the
NAFL� group. The concentration of oleic (18:1n-9) fatty
acid was higher in the NAFL� group than in the NAFL�

group (0.32 	 0.04 vs. 0.18 	 0.03 nmol/mg tissue, P �
0.007).

Fatty acid composition of hepatic TGs in relation to
liver fat content. Correlation coefficients between each
of the 136 individual TGs (expressed relative to total
hepatic TG) and histological liver fat content were calcu-
lated. These correlation coefficients were then plotted
against the number of double bonds in the respective TGs.
An inverse relationship was observed (r � �0.57, P �
0.0001, Fig. 1), implying that the TGs that were positively
associated with liver fat content had only a few double
bonds, whereas those TGs negatively related to liver fat
content had many double bonds.
Hepatic desaturase and elongase activities in rela-
tion to liver fat content. The SCD1 activity index, as
estimated from the 18:1n-9–to–18:0 fatty acid ratio in the
liver was 1.6-fold higher in the NAFL� (5.7 	 0.4) than in
the NAFL� (3.7 	 0.4, P � 0.004) group. Liver fat percent
was positively related to hepatic SCD1 activity index (r �
0.70, P � 0.003, Fig. 2). The activities of �5 and �6
desaturases in the liver were comparable between the
groups (data not shown). The elongase activity index
(18:0/16:0) was lower in the NAFL� (0.23 	 0.02) than in
the NAFL� (0.33 	 0.02, P � 0.005) group and was
inversely related to the percent liver fat (r � �0.78, P �
0.0004, Fig. 2). The hepatic lipogenic index (16:0/18:2n-6)
was positively related to liver fat content (r � 0.54, P �
0.030, Fig. 2) but unrelated to hepatic SCD1 activity index
(r � 0.28, NS).

The proportional amounts of long polyunsaturated fatty
acids, such as 20:3n-6 and 22:6n-3, were strongly inversely
related to SCD1 (r � �0.94, P � 0.0001, and r � �0.82,
P � 0.0001) and positively to elongase (r � 0.83, P �
0.0001, and r � 0.86, P � 0.0001) activity indexes in the
liver.
The relationships between hepatic concentrations of
diacylglycerols, TGs, ceramides, and SCD1 activity
index. The hepatic concentrations of diacylglycerols were
positively related to those of TGs (r � 0.58, P � 0.018) and
to liver fat percent (r � 0.62, P � 0.0097, Fig. 3). Hepatic
SCD1 activity index was positively related to the concen-
tration of diacylglycerols (r � 0.71, P � 0.002) and TGs
(r � 0.66, P � 0.005) but unrelated to those of ceramides
(r � 0.07, NS) in the liver. The subjects (n � 3) with mild
inflammatory or fibrotic changes fell on the same regres-
sion lines as others (data not shown).

TABLE 2
Absolute (nmol/mg tissue) lipid concentrations of the livers of
the NAFL� and NAFL� groups

NAFL� NAFL�

Ceramides 0.089 	 0.007 0.104 	 0.009
SM 0.725 	 0.043 0.889 	 0.091
GPA 0.158 	 0.020 0.297 	 0.037*
PC 11.47 	 1.14 14.57 	 1.77
PC(e) 0.087 	 0.011 0.163 	 0.032†
PE 2.439 	 0.227 2.543 	 0.259
PE(e) 0.766 	 0.049 1.046 	 0.211
lyso(tot) 0.069 	 0.005 0.189 	 0.046†

lysoPC 0.032 	 0.003 0.034 	 0.004
lysoPE 0.033 	 0.004 0.139 	 0.041†
lysoPE(e) 0.004 	 0.0006 0.016 	 0.004†

Diacylglycerol 0.014 	 0.003 0.055 	 0.015†
TGs 49.07 	 8.57 92.65 	 14.99†

Data are means 	 SE. *P � 0.01, †P � 0.05. GPA, glycerophos-
phatidic acid; lysoPE(e), ether-linked lysoPE; lyso(tot), lysoPC
and lysoPE; PC(e), ether-linked PC; PE(e), ether-linked PE; SM,
sphingomyelin.

TABLE 3
Proportional hepatic fatty acid composition of the NAFL� and
NAFL� groups

NAFL� NAFL�

14:0 1.54 	 0.19 1.87 	 0.26
14:1n-9 0.28 	 0.04 0.21 	 0.02
16:0 27.6 	 1.08 29.6 	 1.11
16:1n-7 3.57 	 0.32 3.89 	 0.25
18:0 8.91 	 0.50 6.86 	 0.37*
18:1n-9 31.7 	 1.53 38.5 	 1.20*
18:1n-7 2.68 	 0.14 2.771 	 0.18
18:2n-6 12.9 	 0.85 10.8 	 0.94
18:3n-6 0.15 	 0.03 0.12 	 0.02
18:3n-3 0.90 	 0.07 1.00 	 0.07
20:3n-6 0.95 	 0.10 0.45 	 0.08*
20:4n-6 4.56 	 0.47 2.15 	 0.35†
20:5n-3 0.56 	 0.07 0.20 	 0.03†
22:5n-3 0.66 	 0.10 0.28 	 0.05*
22:6n-3 3.19 	 0.44 1.37 	 0.25*
16:0 FFA 41.3 	 1.22 39.5 	 0.63
18:0 FFA 37.9 	 1.96 30.7 	 1.79‡
18:1 FFA 14.1 	 1.88 22.1 	 1.66*
18:2 FFA 6.73 	 0.94 7.78 	 0.27
16:0 FFA (�g/mg) 0.55 	 0.08 0.58 	 0.05
18:0 FFA (�g/mg) 0.49 	 0.07 0.45 	 0.05
18:1 FFA (�g/mg) 0.18 	 0.03 0.32 	 0.04*
18:2 FFA (�g/mg) 0.08 	 0.01 0.11 	 0.01‡

Data are means 	 SE. *P � 0.01, †P � 0.05, ‡P � 0.001.
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FIG. 1. Correlation coefficients between each of the 136 individual TG
(expressed relative to total hepatic TG) and histological liver fat
contents were calculated. These correlation coefficients (Spearman’s
�) were then plotted against the number of double bonds in the
respective TGs. An inverse relationship was observed, implying that
the TGs that were positively associated with liver fat content had only
a few double bonds, whereas those TGs negatively related to liver fat
content had many double bonds. r � �0.57; P < 0.0001.
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DISCUSSION

Studies characterizing the human fatty liver are few be-
cause of methodological and ethical limitations to sample
human liver tissue. In the present study, we analyzed the
lipidome of the human liver of subjects with either normal
or increased liver fat content due to nonalcoholic causes.
We found that hepatic concentrations of diacylglycerols
but not ceramides increase with increasing liver fat con-
tent. In addition, SCD1 activity index, as estimated from
the product-to-precursor ratio, and lipogenic activities
were increased, whereas long polyunsaturated fatty acids
were depleted in fatty livers.

The final step in triacylglycerol synthesis is catalyzed by
diacylglycerol acyltransferases (DGATs), which produce
triacylglycerols from diacylglycerols (7). By definition, the
concentrations of triacylglycerols in the human fatty liver

are increased (1,10,33,34), which may explain the increase
in their direct precursors, diacylglycerols (35). Consistent
with this, the hepatic concentrations of diacylglycerols
were positively related to those of triacylglycerols. In
addition, we found hepatic diacylglycerol concentrations
to be directly related to liver fat content, as determined by
histology. Diacylglycerols are well-known allosteric acti-
vators of PKC, an enzyme which has been linked to insulin
resistance in a variety of rodent models (36,37) as well as
in the human liver (36). In mice, liver-specific overexpres-
sion of DGATs results in accumulation of triacylglycerols
in the liver, whereas the concentrations of diacylglycerols
and the activity of PKC remain unchanged (38). These
mice do not exhibit any signs of hepatic insulin resistance
(38). On the other hand, suppression of DGAT2 in mice
decreases diacylglycerol concentrations and PKC activa-
tion and increases hepatic insulin sensitivity (39). These
data together with the present findings would imply that
diacylglycerols may contribute to hepatic insulin resis-
tance, which is tightly related to liver fat content in
humans (2,3,14).

Ceramides are sphingolipids that appear to mediate
saturated fat–induced insulin resistance (6). Lipidomic
analyses of livers of ob/ob mice have shown a strong
association between hepatic ceramide content and the
degree of steatosis (25). The relationships between he-
patic ceramide concentrations and inflammatory changes
were not analyzed in the latter study (25). In humans, we
have previously found adipose tissue to be inflamed and
contain more ceramides in subjects with high liver fat
content compared with weight-matched subjects with low
liver fat content without inflammation in adipose tissue
(40). In the present study, we did not find hepatic ceramide

0 20 40 60 80

2

3

4

5

6

7

8

r=0.70
p=0.003

A
H

ep
at

ic
 S

C
D

1 
ac

tiv
ity

(1
8:

1n
-9

 / 
18

:0
)

0 20 40 60 80

0.1

0.2

0.3

0.4

0.5
r=-0.78
p=0.0004

B

H
ep

at
ic

 e
lo

ng
as

e 
ac

tiv
ity

(1
8:

0 
/ 1

6:
0)

0 20 40 60 80

1

2

3

4

5

r=0.54
p=0.030

C

Liver fat  (%)

H
ep

at
ic

 li
po

ge
ni

c 
in

de
x

(1
6:

0 
/ 1

8:
2n

-6
)

FIG. 2. The relationships between liver fat content and hepatic SCD1
activity index (A), hepatic elongase activity index (B), and hepatic
lipogenic index (C).
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concentrations to be related to liver fat content in human
livers lacking significant inflammatory and fibrotic
changes. These data do not exclude the possibility that
ceramides contribute to hepatic insulin resistance in non-
alcoholic steatohepatitis. Also, the present negative find-
ings regarding ceramides need to be confirmed in larger
groups of patients.

The concentrations of both diacylglycerols and cer-
amides in myocytes have been shown to increase as a
consequence of silencing of SCD1 by siRNA (41). This
raises the possibility that metabolism of these bioactive
lipids may be regulated by SCD1. In the present study, we
found the SCD1 activity index to be positively related to
diacylglycerol but not ceramide concentrations. This is
consistent with monounsaturated fatty acids, products of
SCD1, being necessary for normal rates of synthesis
of triacylglycerols (42,43). Hepatic RNA levels and activity
of SCD1 are increased in obese (22) and lipoatrophic (44)
mice with hepatic steatosis. In humans, SCD1 activity is
considerable higher in skeletal muscle of obese compared
with lean subjects (45). The present data suggest that, in
the human liver, SCD1 activity increases with increasing
liver fat content. Direct measurements of SCD1 activity
would be helpful in this respect but could not be per-
formed because of limited sample size.

It has recently been shown that short-term high-carbohy-
drate compared with high-fat feeding activates hepatic SCD1,
as estimated from the composition of VLDL-TG fatty acids
and de novo lipogenesis in healthy subjects with normal
serum ALT concentrations (46). De novo lipogenesis is
significantly increased in subjects with NAFLD compared
with healthy controls (12,15,16), possibly as a consequence
of an increase in sterol regulatory element–binding protein
1c (47–49), a key transcriptional activator of lipogenic genes,
including SCD1 (50). In the present study, hepatic lipogenic
index, estimated from the 16:0/18:2n-6 ratio (32), was posi-
tively related to liver fat content but not to SCD1 activity
index. In contrast, the proportional amounts of long polyun-
saturated fatty acids in the liver were strongly inversely
related to hepatic SCD1 activity index and liver fat content.
This is consistent with the ability of polyunsaturated fatty
acids to suppress expression of both sterol regulatory
element–binding protein 1c (51,52) and SCD1 (53) and
activate genes involved in hepatic fatty acid oxidation (31).
Subjects with NAFLD have been shown to consume less
polyunsaturated fat than normal control subjects in some
(54,55) but not all (56) cross-sectional studies.

Taken together, these data would suggest that depletion
of long polyunsaturated fatty acids derived from essential
fatty acids characterizes hepatic fat accumulation. These
changes are associated with increases in both the hepatic
lipogenic and SCD1 activity indexes. A recent pilot study
suggested that prolonged supplementation of n-3 polyun-
saturated fatty acids reduces liver fat in subjects with
NAFLD (57), suggesting that polyunsaturated fatty acids
could be beneficial in treating NAFLD.
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