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In recent times, we assist to an ever growing diffusion of smart medical sensors and Internet of things 

devices that are heavily changing the way healthcare is approached worldwide. In this context, a com- 

bination of Cloud and IoT architectures is often exploited to make smart healthcare systems capable of 

supporting near realtime applications when processing and performing Artificial Intelligence on the huge 

amount of data produced by wearable sensor networks. Anyway, the response time and the availability 

of cloud based systems, together with security and privacy, still represent critical issues that prevents 

Internet of Medical Things (IoMT) devices and architectures from being a reliable and effective solution to 

the aim. Lately, there is a growing interest towards architectures and approaches that exploit Edge and 

Fog computing as an answer to compensate the weaknesses of the cloud. In this paper, we propose a 

short review about the general use of IoT solutions in health care, starting from early health monitoring 

solutions from wearable sensors up to a discussion about the latest trends in fog/edge computing for 

smart health. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

In recent times, healthcare is increasingly leveraging informa-

tion technologies for delivering smart systems aimed at speeding

up health diagnostics and treatment. Such systems provide intel-

ligent services for health monitoring and medical automation in

different contexts and environments (hospitals, offices, home, on-

the-go...), thus allowing a substantial reduction of physician visit

costs and a general enhancement of patient care quality [3] . 

In this context, the wide diffusion of powerful embedded hard-

ware together with the development of smart medical sensors and

devices for ubiquitous healthcare has made the Internet of Medical

Things (IoMT) drastically change the way healthcare is approached

worldwide, so that the number of healthcare devices using IoT and

wearable technologies is expected to reach 162 million by the end

of 2020 [3] . 

Data captured by wearable, ingestible and embedded sensors,

mobility patterns, device usage patterns allow to track user habits

and can be effectively collected and processed to reveal criti-

cal conditions by using state of the art Artificial Intelligence (AI)

and Machine/Deep Learning (ML/DL) based approaches. Traditional

cloud based architectures for Big Data analysis are able to provide
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ood performance and reliability when supporting non-safety and

atency critical IoT applications [20,23,45] . But when the end user

s a patient with critical and time-sensitive needs, a higher degree

f robustness and accessibility is required, since the occurrence of

isconnection from the core network or bandwidth/latency varia-

ions could have a dramatically negative impact and also lead to

atal consequences in emergency situations [4] . 

A growing interest towards architectures that realize the coop-

ration of Cloud, Fog and Edge computing is lately emerging. The

ain goal is to exploit the full potential of edge nodes and low

evel fog nodes to handle not only functional tasks but also data

rocessing, analysis, correlation and inference [7] . 

Such approaches represent a promising answer towards the im-

lementation of reliable distributed healthcare applications and

ervices, since an intelligent mapping of computational and re-

ource management tasks across the nodes proves to meet the

tringent requirements of IoMT systems [4] . 

In this context, we assist to the spread of “Edge/Fog Health”

olutions that make use of suitable computing paradigms to dis-

ribute health sensors data processing and storage among multiple

odes, located at different levels of proximity to users, as follows: 

• Edge computing occurs directly on the devices to which the sen-

sors are attached or a gateway device that is physically close to

the sensors: examples of edge nodes are wearable devices such

https://doi.org/10.1016/j.patrec.2020.05.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.05.016&domain=pdf
mailto:lgreco@unisa.it
https://doi.org/10.1016/j.patrec.2020.05.016
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as smartphones, smartwatches or portable “ad hoc” embedded

systems like single-board computers, microcontrollers; 
• Fog computing nodes act at a local area network level, so they

can include bigger and more powerful devices such as PCs, local

servers and gateways that may be physically more distant from

the sensors and actuators. 

Both paradigms (increasingly often implemented together)

everage the proximity to the user in order to provide location

ware health services with reduced latency and high availability

12] . Some methods relying on hierarchical computing strategies

ave been proposed to allocate and distribute the inference tasks

f AI and ML methods between the cloud, the fog and the edge

evels (or fog/edge peers), trying to push the (limited) computa-

ional capacities of edge devices to their top [1,5,26,50] . 

A transition from the mobile cloud computing model (MCC),

haracterized by high data transmission costs and limited cover-

ge towards a mobile edge computing model (MEC) [22] with low-

atency and reliable edge ML models is then progressively happen-

ng in the smart healthcare domain. 

In this paper, we propose a review about IoMT solutions, fo-

using on health monitoring. We aim to illustrate the evolution

f IoT based health care systems, starting from early monitoring

olutions, that involve edge nodes only for functional tasks, up to

ecent proposals that leverage cooperative edge/fog computing for

mart health. We therefore discuss trends in Edge ML techniques

nd models. 

. A general architecture for IoMT systems 

The use of Fog/Edge computing architectures in the health care

omain typically deals with the design of remote monitoring so-

utions that leverage wearable and field sensor networks for im-

lementing protective, preventive and responsive systems [3] . In

his context, most contributions involve fog nodes acting as local

ervers that collect and process health data to quickly respond to

he service requirements [49] . The scientific community has been

nvestigating for more than ten years solutions for monitoring pa-

ients’ health status with the aim of remotely providing reports to

linicians. 

Early contributions, as in Chen et al. [10] , propose mainly PC

ased systems to remotely monitor patients, for example, using

ata from ECG and accelerometers in order to advise clinicians

bout periods of elevated heart rate and filter expected critical

ituations. Subsequent implementations use micro-controllers and

ingle board computers to gather physiological data from special-

zed sensors (ECG, E-health sensor platform) to be further pro-

essed and analyzed in a PC based environment [39,53] . 

In recent days, the maturity of IoT technologies has paved the

ay to the development of several smarter solutions exploiting

oth network architectures and software platforms domains. Such

olutions aim to address healthcare at different levels: pediatric

nd elderly care, chronic disease supervision, epidemic disease

onitoring, medical cyber-physical systems, private health and fit-

ess management [27] . 

In this work we mainly focus on systems addressing health

onitoring problems, that can be also split in two categories:

tatic remote monitoring, where the patient is supposed to be in a

uilding (home, hospital...), and dynamic monitoring, that assumes

he patient to be monitored on-the-go. 

Actually, a general solution employs a multilevel architecture

19] , shown in a very simplified way in Fig. 1 that could involve: 

• an Edge level , where portable devices (smartphones, smart-

watches, compact embedded systems and compact gateways...)

perform pre-processing and some low level elaborations on

data collected from Wireless Body Sensor Networks (WBSN). 
• a Fog level , where PCs, servers/gateways gather data from field

sensor networks (and edge devices) to perform local processing

and/or storage. 
• a Cloud level , where cloud services are called for high perfor-

mance computing tasks and remote data storage. 

The three levels do not have to be all implemented. For ex-

mple, in static monitoring problems, data from sensors could be

irectly collected by fog devices and be elaborated with optional

upport from cloud services. In the same way, in some dynamic

onitoring scenarios where a fog level could not be implemented,

dge devices would directly interact with cloud services. 

. Review of IoMT monitoring solutions 

In less then ten years, several contributions presenting IoT ar-

hitectures for smart health monitoring have been proposed. For

ur review, we selected a number of studies (reported in Table 1 )

hat we found relevant to illustrate the evolution of IoT based

ealth care systems, starting from early monitoring solutions, that

nvolve edge nodes only for functional tasks, up to recent proposals

hat leverage cooperative edge/fog computing and allow for Edge

L. 

The studies cover different application fields of smart health

ystems (e.g. monitoring of physiological parameters, speech, mo-

ion, posture, skin, environmental conditions and so on), and em-

loy different sets of devices and sensors. We grouped the contri-

utions according to the problems they aim to address. 

.1. Analysis of the physiological parameters 

Several proposals focus on the development of systems aimed

t sensing physiological parameters as health indicators to assess

ritical circumstances leading to accidents (protective systems). 

A first interesting contribution is shown in Magaña Espinoza

t al. [30] where a WBSN is used to monitor heart rate and motion

ate of people within their homes. The edge node is connected to

he internet and allows to send an alert (on smartphone) to family

embers or specialists whenever rapid changes in measured val-

es occur (early detection of falls, tachycardia or bradycardia). In

he same way, Villarrubia et al. [51] propose a system for track-

ng patients at home and monitoring their cardiac function by per-

orming a basic analysis of ECG data. Patients can interact with the

ystem by means of a common TV interface. 

The work of [28] investigates the use of Bluemix cloud tech-

ology to store physiological data, allowing remote access by clin-

cians that can visualize results of their analysis by means of IBM

atson IoT platform, while [2] propose a case study of fever diag-

osis by using an embedded system which continuously monitors

he temperature of the patient. 

In [46] a real time IoT based ECG telemetry is proposed. This

s one of the first studies where quality assessment algorithms are

mplemented directly on an android smartphone allowing a real-

ime evaluation. The authors demonstrate the effectiveness of the

ethod under different physical activities. 

Static monitoring can leverage the use of field sensors that al-

ow to gather contextual data for multimodal activity recognition

asks. An interesting study is proposed in Pham et al. [41] where

nvironmental sensors, an optitrack camera, and smartwatch em-

edded sensors are used to collect video, motion and audio sig-

als jointly with specialized wearables for physiological parameters

athering. This is actually a cooperative fog to cloud architecture,

here data preprocessing, indoor localization and activity recogni-

ion algorithms are performed by means of a home gateway while

 private cloud is used for storing data to be accessed remotely. 
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Table 1 

Overview of the surveyed contributions. 

Study Objectives Sensors Fog/edge computing devices Notes on methodology 

Orha and Oniga [39] Automatic recording of the 

main physiological 

parameters of the human 

body by the use of an 

Arduino microcontroller. 

Specialized sensors Arduino microcontroller, PC Data transferred to a PC for 

processing. 

Yakut et al. [53] Measuring ECG signal by using 

E-Health Sensor Platform 

connected to a Raspberry Pi. 

E-health sensor platform Raspberry Pi Raspberry Pi saves data to a 

text file to be further 

processed in a Matlab 

computer environment. 

Magaña Espinoza et al. 

[30] 

Detecting and alerting 

professionals about persons 

falling to the ground; 

event-based monitoring to 

report tachycardia and 

bradycardia 

Heart rate sensor and triple 

axis accelerometer 

LCP2148 ARM7 

microcontroller 

Encryption scheme for 

wireless sensors 

communication. Mobile 

application and web page 

for easy access and push 

notifications of abnormal 

events. 

Villarrubia et al. [51] Tracking and monitoring 

patients carrying a Holter 

within their homes 

Triple axis accelerometer, ecg 

sensor 

Raspberry Pi, Arduino Multi-agent system based on 

the PANGEA platform. 

Indoor tracking by using 

accelerometers and wifi

networks. 

Kaur and Jasuja [28] Monitoring pulse rate, body 

temperature 

Temperature sensors and heart 

rate sensor 

Raspberry Pi Remote health monitoring by 

using Bluemix cloud. 

Azimi et al. [4,5] Classifying abnormalities in 

ECG signals 

ECG sensors Linux based PCs or GPU 

dedicated hardware (NVIDIA 

Jetson TK1) 

Partitioning of a linear 

machine learning method 

(linear SVM) and distributed 

deploying of a deep learning 

algorithm 

Alwan and Rao [2] Measuring body temperature Temperature sensors Raspberry Pi, Arduino Data exchanged between 

Arduino and Raspberry Pi 

units by means of ZigBee 

Satija et al. [46] ECG monitoring with signal 

quality assessment 

ECG sensors Arduino, Android phone ECG signal quality assessment 

based on Discrete Fourier 

Transform based filtering. 

ECG signals collected during 

various physical activities. 

Mathur et al. [32] Monitoring temperature and 

gait to predict the health of 

the residual limb in lower 

limb amputee 

Movement sensors, two 

thermistors 

Raspberry Pi, Arduino uno, 

Android mobile device 

Gaussian processes for 

machine learning used to 

predict the residual limb 

skin temperature of the 

amputee (MATLAB offline) 

Muhammad et al. [36] , 

[37] ] 

Voice pathology detection Microphone, body 

temperature, 

electrocardiogram, ambient 

humidity 

Smartphone Data captured by IoT devices 

sent by bluetooth to the 

phone app. Feature 

extraction and classification 

(ELM) performed in cloud. 

Local binary pattern on a 

Mel-spectrum 

representation of the voice 

signal. 

Dubey et al. [18] Speech monitoring of patient 

with Parkinson’s disease 

(PD) and ECG monitoring 

Smartwatch microphone Intel Edison Dynamic Time Warping (DTW) 

is adopted for mining 

patterns in ECG time series. 

Clinical speech processing 

by means of average 

magnitude function for 

estimating pitch 

Monteiro et al. [35] Teletreatment of patients with 

Parkinson’s disease through 

speech analysis 

Smartwatch microphone Intel Edison Acoustic features extracted by 

Intel Edison are sent to the 

cloud for classification. 

Pham et al. [41] Collecting physiological, 

motion and audio signals for 

daily health monitoring at 

home 

Environmental sensors 

(Passive infrared, grid-eye 

thermopile array), optitrack 

camera, wearable (ECG and 

breath - smart shirt), 

smartwatch sensors 

Arduino Mega Data from the environmental 

sensors and wearable 

sensors processed by a 

home gateway 

(pre-processing, indoor 

localization and activity 

recognition algorithms) 

Physiological data with 

contextual information sent 

to the private cloud for 

storing and local/remote 

access. 

( continued on next page ) 
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Table 1 ( continued ) 

Study Objectives Sensors Fog/edge computing devices Notes on methodology 

Sood and Mahajan [48] Detecting and controlling the 

spread of Chikungunya virus 

Wearable and environmental 

sensors 

Not provided Fog layer for realtime 

processing and analysis of 

data collected from sensors. 

Cloud services used for 

storing and deeper analysis. 

Sareen et al. [47] Preventing Zika virus outbreak Mosquito sensors Mobile phone, fog servers Data collected and processed 

by Fog servers. Depth 

analysis performed in cloud. 

Hegde et al. [24] COVID-19 pre-screening, fever 

and cyanosis non-contact 

detection 

Raspberry Pi Camera v2, FLIR 

Lepton 3.5 Radiometry 

Long-Wave Infrared Camera 

Raspberry Pi 4, Google Coral 

USB accelerator 

Real-time detection and 

segmentation of forehead 

and lip regions using 

PoseNet. Temperature 

estimation from infrared 

camera image and cyanosis 

assessed from lips’ image in 

the visible spectrum. 

Greco et al. [21] Detecting anomalies in 

physiological parameters in 

real time 

Accelerometers, gyroscopes 

and magnetometers 

Raspberry Pi 3 Edge stream computing 

architecture with distributed 

implementation of HTM 

algorithm for anomaly 

detection 

Abdellatif et al. [1] Analysis of 

electroencephalography 

(EEG data) 

EEG sensors Not provided Data compression achieved 

with stacked autoencoders; 

edge-based feature 

extraction (five 

discriminative frequency 

features are manually 

selected); event detection at 

the edge (simple 

classification rule compared 

with different ML 

techniques). 

Yeh [56] Securing IoT based 

communication through BSN 

architecture 

Generic wearable sensor Local processing unit 

(handheld device) and fog 

server 

Robust crypto primitives to 

ensure transmission 

confidentiality and entity 

authentication among smart 

objects. 

Uddin [50] Wearable sensor based activity 

prediction 

ECG sensor, magnetometer, 

accelerometer, gyroscope 

Local fog server with GPU Recurrent neural network 

LSTM used for activity 

recognition 

Liu et al. [9] Food recognition for dietary 

assessment 

Smartphone camera Smartphone Image pre-processing and 

segmentation on mobile 

device. CNN classification on 

cloud. 

Dai et al. [15] On device inference app for 

skin cancer detection 

Smartphone camera Apple Iphone CNN pre-trained model 

running on iOS device (Core 

ML framework) allowing to 

classify skin lesions without 

cloud support. 

Queralta et al. [43] Fall detection system with 

cardiovascular or diabetes 

monitoring 

ECG, EEG, EMG, blood pressure Edge gateway Raspberri Pi 3 LSTM RNN for fall detection 

implemented on Edge Node 

Ram et al. [44] Multimodal activity 

recognition 

ECG sensors, accelerometers, 

gyroscopes magnetometers 

on chest, ankles and arms 

(movement tracking) 

PC server Random Forest and Support 

Vector Machines for activity 

prediction 

Abdel-Basset et al. [6] Decision making model for 

detecting and monitoring 

patients with type-2 

diabetes 

Blood pressure, heart rate, 

respiratory rate, motion 

activity, glucose recognition 

not provided Hybrid technique based on 

type-2 neutrosophic with 

VIKOR method for predicting 

type-2 diabetes risks 

Devarajan et al. [17] Monitoring, predicting and 

controlling the risk of 

remote diabetic patients in 

real-time based on 

physiological conditions 

Glucose level, ECG, 

smartphone embedded for 

physical activities 

Smartphone J48Graft decision tree 

classifier to discover the risk 

level of a diabetic patient 

(hypoglycaemia, normal, 

pre-diabetes and 

hyperglycaemia) from blood 

glucose level, body weight, 

physical activities and diet. 

Priyadarshini et al. 

[42] 

Prediction of Stress Types, 

Diabetes and Hypertension 

Attacks 

(simulated) EDA, HR, 

SpO2,temperature, 

3-dimensional accelerometer 

data, PGC, DBP, 2-h serum 

insulin, body mass index 

(BMI), diabetes, pedigree 

function, SBP, DBP, total 

cholesterol (TC), HDL, LDL, 

PGC and HR 

PC server Deep learning model to detect 

a person’s mental state with 

an early detection for type-2 

diabetes from sensors’ 

captured data 
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Fig. 1. A three tier based architecture for IoMT systems. 
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On the same line, fog architectures for activity recognition are

presented in Uddin [50] and Ram et al. [44] . In particular, Ud-

din [50] present a solution for recognizing twelve different hu-

man activities using wearable sensors and a LSTM recurrent neural

network running on local fog server with GPU acceleration, while

[44] employ additional sensors for movement tracking and investi-

gate the use of support vector machines (SVM) and random forest

(RF) classifiers for activity prediction. 

Recent proposals in physiological data analysis from wearable

sensors start investigating the application of edge ML techniques.

The work of [21] addresses the problem of detecting anomalies in

physiological parameters by means of an edge stream computing

architecture. Here, a distributed implementation of the HTM algo-

rithm [38] , running on edge nodes only, is adopted for the infer-

ence. Queralta et al. [43] also propose a fall detection solution rely-

ing on a LSTM recurrent neural network implemented at the edge

level. 

The work of [1] discusses the Multi Access Edge Computing ap-

proach with a case study on electroencephalography (EEG) data.

The authors individuate the main functions to be implemented at

the edge side to meet the application requirements (data compres-

sion, feature extraction and classification) and compare the accu-

racy of some traditional classifiers (Random Forests, Naive Bayes,

k-Nearest Neigh-bors, and classification/regression trees). 

Another interesting approach for classifying abnormalities in

ECG signals has been proposed by Azimi et al. [4,5] . The solution,

named Hierarchical Computing Architecture for Healthcare (HiCH),

implements a variant of the MAPE-K model introduced by IBM

[25] to distribute the computations through the three layers (edge,

fog and cloud). The model is composed of four main comput-

ing elements: the monitor element that implements a bridge be-

tween the sensors and the edge, where pre-processing, aggregation

and data storage take place; the analyze element that includes the

cloud machines responsible for heavy computation tasks (model

training); the plan element, located at the edge and periodically

updated by the analyze component, is responsible for running the

trained model and provide a local decision, thus conferring a high

availability to the whole system. This approach has been tested in

two cases: the partitioning of a linear machine learning method
linear SVM) [4] and the deploying of a deep learning (nonlinear)

lgorithm [5] . 

.2. Rehabilitation systems 

The use of protective IoMT solutions is effective also in post-

perative situations where health tracking is aimed at detecting

nfections or complications in rehabilitation systems [3] . Mathur

t al. [32] propose a solution to predict the health status of the

esidual limb in lower limb amputee by monitoring temperature

nd gait; here, a combination of edge devices (including an An-

roid mobile) is used to capture and send data to a fog station that

erforms ML based prediction. In the same direction, Villeneuve

t al. [52] contribute with a study on the estimation of simplified

uman limb kinematics based on measurements from two low-

ower accelerometers placed on the forearm. 

Some proposals following the MCC paradigm have addressed

oice pathology and speech monitoring. Muhammad et al. [36] ,

37] ] discuss a voice pathology detection system that analyzes data

athered from smartphone microphone and wearable sensors and

xploits an extreme learning based machine classification in the

loud. The works in Dubey et al. [18] and Monteiro et al. [35] use

 fog architecture to implement a speech monitoring system for

he tele-treatment of patients with Parkinson’s disease. Audio sig-

als are captured from a smartwatch microphone and sent to a

og node for acoustic feature extraction, while classification is per-

ormed in the cloud. 

.3. Skin pathologies and dietary assessment 

With the diffusion of mobile deep learning frameworks, whose

oal is to execute DL inference directly on smartphones [55] , some

nteresting solutions are beginning to appear in the smart health

are field. For example, Dai et al. [15] propose a solution for skin

ancer detection that uses a pretrained CNN model running on a

obile device and performs a classification of skin lesions without

loud support. Liu et al. [9] discuss a solution where visual food

ecognition is performed for dietary assessment. In this work, im-
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ge pre-processing and segmentation is executed on device while

NN classification is done in the cloud. 

.4. Epidemic diseases treatment and location aware solutions 

IoMT systems are becoming a viable solution also in diagnosis

nd treatment of epidemic diseases. In these contexts, real time

peration, mobility, location awareness and smart data fusion from

ifferent sensors (environment, location, bio sensors...) are actually

 matter. Such systems prove to be effective when diagnosing virus

nfections in an initial state so that proper treatment can be given

n time to enable fast recovery. An interesting case is presented

n Sood and Mahajan [48] where a solution to diagnose and pre-

ent the outbreak of Chikungunya is discussed. A fog-based system

nalyzes user’s health symptoms and surrounding environmental

onditions for diagnosing the presence of the virus; it’s also able

o send alert messages to make users aware of infected and risk-

rone areas. Sareen et al. [47] also propose a system to prevent and

ontrol the spread of Zika virus disease by implementing a MCC

aradigm; the goal is to diagnose the possibly infected users and

epresent them together with mosquito-dense sites and breeding

ites on the Google map to help the government healthcare au-

horities to control risk-prone areas. In both cases, a fog layer is

sed for processing and a preliminary analysis while cloud services

re used for storage, deep analysis and remote access. The recent

OVID-19 pandemic has raised a dramatic need for rapid screen-

ng tools to evaluate, in contactless conditions (at least 1 m away),

he presence of the main symptoms of infection (fever, cyanosis,

iredness...), so that some IoT prototypes, based on low cost hard-

are, are beginning to appear. For instance, the AutoTriage system,

resented in Hegde et al. [24] , is able to run in real-time DL al-

orithms at the edge level to detect forehead and lip regions, al-

owing to estimate the temperature of the forehead-eye area by

n infrared camera, while cyanosis is assessed from lips region in

he visible spectrum. In a similar way, Maghdid et al. [31] pro-

ose a design study for predicting COVID-19 disease by applying

ultimodal AI approaches on smartphone embedded sensors read-

ngs. The possibility to share information about the location allows

mart IoT devices to maximize the safety of their human owners.

l-Hamadi and Chen [11] discuss a trust-based approach for infor-

ation sharing in a IoMT framework where data from sensors are

sed to derive a health loss risk for a user entering a given location

t a given time, according to her vulnerabilities. The authors focus

n an architecture where there is a centralized cloud collecting and

nalyzing sensing reports submitted by individual IoT devices. 

IoT based health tracking is also increasingly adopted to support

edical treatment and provide on-time medication or rehabilita-

ion. In this field, the effects of edge to cloud computing have been

valuated by Masip-Bruin et al. [8] that discuss a breath assistance

ystem for Chronic Obstructive Pulmonary Disease (COPD). In the

roposed scenario, a COPD patient carries a portable oxygen con-

entrator (POC) with a smart mechanism aimed at adjusting and

ailoring the oxygen doses to the patients’ real-time context and

eeds. This would ensure a therapy tuned to patients’ activity by

ontinuously collecting and processing contextual information. 

.5. Diabetes treatment 

An increasing number of IoMT solutions are also appearing in

iabetes treatment where many commercial wearable and portable

onitoring devices such as blood glucose monitors, insulin pens,

ontinuous glucose monitors, insulin pumps, and closed-loop ar-

ificial pancreas systems are capable of wireless communication

ith smartphones or tablets, that act as edge nodes and provide

asic analytic services without cloud support [29] . Several recent
ontributions in this field are focused on the definition of mod-

ls to predict the onset of the disease. For example, Abdel-Basset

t al. [6] discuss a novel technique to predict type-2 diabetes risks,

hile [17] use a J48Graft decision tree classifier, implemented on

 smartphone, to discover the risk level of diabetic patients. Fi-

ally, a deep learning model to predict diabetes, stress types and

ypertension attacks from wearable sensor data is discussed in

riyadarshini et al. [42] , where a fog architecture is also proposed. 

. Discussion and trends 

In the previous section, we have provided an overview of the

ost relevant IoT applications and solutions in literature that use

 combination of edge, fog and cloud computing for addressing

ealth care problems. The aforementioned studies have confirmed

hat a wide range of AI and ML based approaches can be effec-

ively adopted for decision making, anomaly detection, predictive

isk monitoring, treatment support and so on. Most cases still of-

oad deep analysis tasks to the cloud, due to limited resources

n edge low power devices, but an increasing trend towards so-

utions implementing a functional cooperation between edge, fog

nd cloud services can be actually observed. Many applications us-

ng ML/DL techniques such as multimodal activity prediction or

ecognition, pre-incident monitoring (fall detection and preven-

ion), disease treatment (medical automation) and emergency care

equire the inference to be performed as close as possible to the

ensor nodes to reduce latency, meet the requirement of realtime

peration and minimize energy consumption. In static monitoring,

og architectures with GPU enhanced local servers seem to be the

ost adopted solution for addressing high demanding ML infer-

nce tasks. In dynamic monitoring problems, where a small sized

ow power computing node is employed, other optimization strate-

ies come into play. On one hand, edge stream-computing tech-

iques that aim at parallelizing the inference process between dif-

erent edge peers can be a concrete answer; on the other, the

doption of DL lightweight models, optimized for running infer-

nce on embedded devices, allows to achieve very interesting re-

ults [14] . In this context, the advent of deep learning mobile

rameworks has been accompanied by the proliferation of studies

bout strategies and techniques to transform and adapt DL models

or running in constrained resource conditions. Such transforma-

ions range from model compression and quantization up to ap-

roximation and pruning aimed at obtaining networks with a very

mall footprint without penalizing performance [34] . A different

atter concerns on-line or active learning systems, where training

erformed at the edge level could suffer from: 

• biased training samples - performing at a local level, the edge

device is able to capture polarized samples (about the same

user or case) that can lead to overfitting when updating/re-

training the model; 
• unsufficient computational power - re-training can be computa-

tionally very expensive also if compressed/lightweight models

are employed. This often leads to offloading the retraining stage

to the cloud. 

To address such issues, a number of interesting works dis-

ussing the suitability of AI methods for the IoT concept are be-

ng proposed [33] . Leveraging early studies about distributed deep

etworks training [16] , some proposals investigate P2P approaches

s in Chung and Yoo [13] , where the authors discuss a distributed

earning system with each edge node implementing a common

eural network and exchanging weights with other peer nodes.

n the same line, distributed approaches to deep networks train-

ng and collaborative machine learning at the edge level are also

idely discussed by Park et al. [40] , where both theoretical and

echnical enablers for decentralized edge training are investigated.
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In addition to other features, these approaches can be beneficial

for facing the problems deriving from changes in data distribution

over time that, particularly in health applications, could negatively

affect the performance of the whole system. Covariate shift, for ex-

ample, can be efficiently faced when segmentation of deep net-

works on the edge [54] is introduced. In this case, in fact, only the

device containing the first layers of the network has to be modi-

fied in order to correct the shift. We strongly expect these findings

about edge ML to flourish in health care applications within the

next few years, triggering further investigations in different set-

tings. 

5. Concluding remarks 

IoT solutions for healthcare are evolving from simple architec-

tures to collect, transmit and visualize data acquired by field and

wearable sensor networks towards complex smart systems able to

provide analytics, recognize activities and making decisions. In this

transition, AI and machine learning techniques play an important

role but their implementation require computational capacity that

is often available only by means of cloud services. Actually, with

the exponential growth of the data produced by the sensors, a

cloud centric vision of the ML processing presents several weak-

nesses for different reasons. The quality of the service is strongly

influenced by the quality of the internet connection, which also

poses an availability problem. In particular, where a real time per-

formance must be ensured, as in early-detection, risk prevention

or activity recognition, the response time must be low to allow

healthcare providers to proactively react to possible degradation of

health conditions. Data storage and security are also critical issues

when dealing with health related services, due to the large amount

of personal data to be managed. After all, the choice of a fully lo-

cal management is still impracticable due to limitations in process-

ing power and storage, especially in the case of dynamic monitor-

ing. Some proposals that try to map a proper computing model

to the IoT tiers are being introduced to meet the requirements of

IoMT systems. They aim at distributing the DL workload between

the cloud and fog nodes, often relegating the model training to

the cloud and moving the decision making to the edge. The inter-

est towards these approaches is well motivated by the diffusion of

compact GPU embedded hardware which allows the deployment

of powerful and effective fog nodes. In cases where the DL training

phase is still computationally unmanageable by the fog/edge node,

DNN partitioning and distributed training represents a promising

trend at present. 
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