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Abstract: In this research, a novel sound source localization model is introduced that integrates
a convolutional neural network with a regression model (CNN-R) to estimate the sound source
angle and distance based on the acoustic characteristics of the interaural phase difference (IPD). The
IPD features of the sound signal are firstly extracted from time-frequency domain by short-time
Fourier transform (STFT). Then, the IPD features map is fed to the CNN-R model as an image for
sound source localization. The Pyroomacoustics platform and the multichannel impulse response
database (MIRD) are used to generate both simulated and real room impulse response (RIR) datasets.
The experimental results show that an average accuracy of 98.96% and 98.31% are achieved by the
proposed CNN-R for angle and distance estimations in the simulation scenario at SNR = 30 dB and
RT60 = 0.16 s, respectively. Moreover, in the real environment, the average accuracies of the angle
and distance estimations are 99.85% and 99.38% at SNR = 30 dB and RT60 = 0.16 s, respectively. The
performance obtained in both scenarios is superior to that of existing models, indicating the potential
of the proposed CNN-R model for real-life applications.

Keywords: deep learning; sound source localization; convolutional neural network; regression model

1. Introduction

Localization technologies are widely used in everyday applications, such as navigation,
human–computer interaction, surveillance, rescue, and smart monitoring [1,2]. Global posi-
tioning system (GPS) is the most frequently used technology for outdoor positioning [3,4].
However, GPS accuracy is degraded when it is used in indoor environments due to obsta-
cles blocking the signal’s propagation [5,6]. Consequently, a number of technologies, such
as infrared (IR), Bluetooth, and Wi-Fi, have been developed to address the challenge of in-
door positioning. These technologies have become widely used for indoor localization and
positioning in recent years [7]. The propagation path of radio signals can be line-of-sight
(LOS) or non-line-of-sight (NLOS) in indoor environments [8]. However, the signals of
indoor positioning technologies must be propagated in LOS conditions in order to produce
accurate location estimates [9]. Although IR offers high localization accuracy, its signal can
be easily obscured by obstacles [10]. Bluetooth and Wi-Fi have the advantage of strong
penetrating power, which can penetrate through indoor obstacles [11,12]. Nevertheless,
Bluetooth is disadvantaged by its short range, and Wi-Fi requires high costs of hardware
installation and maintenance [13]. Sound has the advantages of strong penetrating power,
simple construction, and low cost [14]. Additionally, sound includes a tone, timbre, and
other features, which make it more effective than other technologies [15]. For example,
the frequency of sound emitted from different locations can be distinguished efficiently,
and multiple sound sources can be located at the same time. Therefore, sound source
localization (SSL) has attracted much attention in recent years [16–18].

Currently, two types of sound source localization methods are generally used in the
literature. First, the microphone array methods use the microphone array as a receiving
end to determine the direction of the sound source. The microphone arrays can be divided
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into linear arrays, circular arrays, and distributed arrays. Second, human ear analysis
methods identify the sound source via simulating the signal received by the human ear.
It was shown in [19–24] that binaural beamforming-based methods can achieve high
noise reduction and sound sources preservation and localization. Microphone array-based
methods can be further divided into four approaches under different acoustic characteristics
as follows [25–28]:

1. Beamforming: calculate the input signal power, phase, and amplitude of each receiv-
ing point through beamforming technology, and calculate the azimuth angle of the
sound source with the greatest probability.

2. Time difference of arrival (TDOA): the time difference between the signals’ arrival
at two or more receiving points is combined with the spatial information of these
receiving points to infer the azimuth of the sound source [29].

3. High-resolution spectrum estimation (HRSE): the signal at the receiving point is used
to calculate the correlation between the spatial and spectral characteristics to obtain
the azimuth angle of the sound source [30].

4. Neural network (NN): train a NN model using a large amount of data to find audio
patterns for multiple acoustic sources localization [31].

Recently, various deep neural networks (DNNs) were employed for sound source
localization. Chakrabarty et al. [32] proposed a CNN-based supervised learning (CNN-
SL) approach to estimate the direction of arrival (DOA) of multiple speakers. The phase
component of the STFT coefficients of the received microphone signals are directly fed into
the CNN, and the features for DOA estimates are learned during the training process. The
ability of the DOA estimation method to accurately adapt to unseen acoustic conditions
is pretty robust. However, this method is highly dependent on the time-varying source
signal [33]. Yiwere et al. [34] presented a sound source distance estimation (SSDE) approach
by using a convolutional recurrent neural network (CRNN). The CRNN is trained using log-
scaled mel spectrograms extracted from single-channel audio signals as input features. The
transformation of the audio signals to images allows the convolutional layers of the network
to extract distance-dependent features from the audio signals. The experimental results
showed that the CRNN model can achieve a high level of accuracy. Another interesting
research work [35] proposed an indoor sound source regional localization method based on
a convolutional neural network (CNN). The sound source signal is converted into a spectral
map and fed into the CNN for regional localization. The simulation results showed that the
CNN can bring better robustness and generalization with different SNRs. Pang et al. [36]
introduced a binaural sound source localization (SSL) method based on time–frequency
CNN (TF-CNN) with multitask learning to simultaneously localize azimuth and elevation
under various acoustic conditions. The IPD and interaural level difference (ILD) are first
extracted from the received binaural signals, then each or both of them are fed to the SSL
neural network. The experimental results illustrated that the proposed method can achieve
comparable localization performance. Nevertheless, such methods are restricted to certain
ranges or areas.

This research aims to construct an indoor localization model based on the charac-
teristics of the sound spectrum, which can estimate the azimuth angle and distance of
the indoor speaker. The CNN is used to automatically extract features and increase their
versatility and robustness by training the model to resist noise. Previous works used
classification functions to normalize the output of a CNN to a probability distribution over
the output target. However, the output of classification functions is a discrete value, and
hence, it does not predict the exact value in the case of continuous variables. Unlike the
previous studies, our CNN uses a regression function instead of a classification function
because it is better suited for the continuous variable output. Additionally, this research
uses the Pyroomacoustics [37] platform to quickly construct a virtual three-dimensional
space and generate a room impulse response (RIR) with spatial sound signals. Moreover,
real space signals are synthesized with a multi-channel impulse response database [38].
In addition, the signal dataset is converted into a time-frequency domain signal through
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STFT and then is converted to an IPD feature map to be fed to the CNN model. Finally,
the distribution of output values with the regression model are observed to find the best
configuration of the model through training and evaluate the performance of the model in
different environments.

2. Proposed Methods

The overall flow chart of the proposed sound source localization system is demon-
strated in Figure 1. The sound database signal is firstly convolved with the real and
simulated RIR to obtain a new signal with spatial effect. Then the STFT of the new signal
is obtained, and the IPD features are extracted. Finally, the CNN-R model is trained on
the IPD features to estimate the angle and distance of the sound source. Notably, the IPD
image sets are divided into 70% training set, 10% validation set, and 20% test set.

Real RIR Simulated RIR

Short-Time Fourier Transform

IPD Features Extraction

Real IPD Simulated IPD

Convolutional Neural Network + Regression Model

Estimated Angle Estimated Distance

Building Audio Datasets

Building IPD Datasets

Model Training

Model Testing

Multichannel Impulse Response Database

Figure 1. Flow chart of the proposed system.

2.1. Data Collection

This research uses the CMU_ARCTIC database, which is a speech database in
CMU_ARCTIC speech synthesis databases [39], established by the Language Technologies
Institute of Carnegie Mellon University, USA. This database is mainly used in the research
of speech synthesis. The content of the corpus database was selected by the non-copyright
center of Project Gutenberg, which is about 1150 sentences. An audio of two males and
two females with American English accents were collected. The recording format is 16 bits,
the sampling rate is 32 KHz, and the length of each sentence is 3 seconds. The database has
a total of 4528 audio files.

2.1.1. Simulated Room Database

In this research, we built our own simulated spatial dataset, and the RIR was simulated
by using the Pyroomacoustics Python platform [37]. The length and the width of the
generated space are 5 × 5, 5 × 6, 6 × 6, 7 × 6, and 7 × 7 (m2), and the height is 2.5 m. The
position of the two microphones is (x = (width/2) ± 0.3, y = 1, z = 1). Figure 2 shows an
example of a 5 × 5 space. The microphones are located at (2.2, 1, 1) and (2.8, 1, 1). The
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sound source point is 1 and 2 m from the midpoint of the two microphones. The angle is
distributed from 0° to 180°, where every 15° is a step distance. In total, there are 26 source
points. The sound database adopts the CMU_ARCTIC database. A total of 100 audio files
are taken from the corpus of 4 participants. Convolution operations are performed at each
sampling point to generate spatial sound effects, and we adjust RT60 and SNR to achieve
data diversity.

.
5

4

3

2

1

0
1 2 3 4 5

Microphone

Source point

Figure 2. Simulated space configuration diagram.

2.1.2. Real Room Database

This research uses the real room response database generated by the Multichannel
Impulse Response Database. The database was constructed by the Institute of Communi-
cation Systems and Data Processing at RWTH Aachen University, Germany. These data
can produce a variety of reverberation levels by changing the spatial scene. The database
mainly has three different reverberation levels with reverberation times (RT60) of 0.16 s,
0.36 s, and 0.61 s, respectively [38]. On different grids in space, in the angular range of 90°
to −90°, each 15° step is taken as a measurement point, and each measurement point is 1
m or 2 m away from the microphone array. There are 26 measurement points in total, as
shown in Figure 3.

1m 2m
90°-90°

-45° 45°

0°

Figure 3. Multichannel Impulse Response Database measurement space configuration diagram [38].
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2.2. Data Processing

After the simulation and real space datasets are generated, data processing is still
needed before the data can be fed to the model for training. First, the sound signal is
transformed to the time-frequency domain signals through STFT, then an IPD feature map
is produced by using the Hann window as a sliding window for STFT. The Hann window
size is 2048 sampling points with 512 overlapping sampling points and a sampling rate of
14,400 Hz. IPD is a feature formed by converting two audio signals into frequency spectra
and subtracting each phase. The intensity of the left and right phases can be observed.
Unlike using two spectra for training, one IPD makes training faster. Hann’s window is
used because it shows superior performance in random signals. The conversion formula is
shown in Formula (1):

Ym(ω, k) = Am(ω, k)e
∧
(jϕm(ω,k)), m = l, r (1)

where Am(ω, k) and ϕm(ω, k) are the components of amplitude and phase at frequency ω
and time k, respectively. l and r are the left and right channels, respectively.

The IPD features are obtained based on the phase difference between the two receiving
ends, and its formula can be expressed as follows:

ϕ(ω, k) = ∠
Yl(ω, k)
Yr(ω, k)

(2)

where Yl(ω, k) and Yr(ω, k) are the left and right receiving signals. The IPD can be obtained
by subtracting its phase components. In other words, the IPD is computed as the difference
of the phase angles, and phase unwrapping is used on the phase image. Figure 4 is an
example of the actual output of the IPD.
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Figure 4. An example of the actual output of IPD where the color map represents the angle (°).

The dataset of the simulated IPD includes 400 audio records, 5 spatial sizes (5 × 5,
5 × 6, 6× 6, 7× 6, and 7× 7 m2), 26 sampling points, 5 SNR (0, 5, 10, 20, and 30 dB), 3 RT60
(0.16, 0.36, and 0.61 s), and a total of 780,000 images. The dataset of Real IPD includes:
400 audio records, 1 spatial size (6 × 6 m2), 26 sampling points, 5 SNR (0, 5, 10, 20, and
30 dB), 3 RT60 (0.16, 0.36, and 0.61 s), and a total of 156,000 images. The nature of the noise
is independent Gaussian white noise added to each channel, and it is computed as follows:

SNR = 10 log10

(
SignalPower
NoisePower

)
dB (3)
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2.3. The Proposed CNN-R Architecture

The proposed model is composed of two architectures, including CNN and regression
architecture. First, the resolution of the original data is reduced from 1395 × 906 to 32 × 32
before training. The CNN is constructed by two convolutional layers. The first layer has
128 kernels and the size of the kernel is 77, the padding is same, and the stride is 1. The
second convolutional layer has 16 kernels of the size, 7 × 7, the padding is the same, and
the stride is 1. The ReLu activation function is used after each convolutional layer. The
feature map output by the last layer of CNN is flattened by the fully connected (FC) layer
and then is used to train the model. The regression model has three layers in total. The
number of kernels in the first and second layers is 512, and the number of kernels in the
third layer is set to 1 to generate the final output. The activation function used between
each layer is linear. Figure 5 shows the overall architecture of the proposed CNN-R model
used in this research. Additionally, Table 1 shows the experimental training setting.

Input data

1395  906

Resize

32  32

Conv2D

(128,kernel size(7,7))

ReLu ReLu Linear

Conv2D

(16,kernel size(7,7))

FC Layer

Dense 512

Dense 1

CNN Regression

Figure 5. The architecture of CNN-R.

Table 1. The settings of the training option used in the single acoustic environment.

Hyperparameters Configurations

Optimizer Adam
Loss Function MAE
Learning Rate 0.001

Decay 10−3

Execution Environment GPU
Batch Size 64

The proposed CNN-R architecture is kept as small as possible to avoid overfitting.
The simpler architecture is less likely to overfit [40]. The choice and numbers of layers were
decided by trial and error. The main criteria were accuracy and MAE. When the accuracy
and MAE are not improving on the validation dataset during the training stage, the training
process is interrupted after a certain number of epochs, and then the structure of the model
is modified. This process is repeated until the new structure produces satisfactory results.
In the CNN part, the model started with one convolutional layer and one ReLu layer;
however, the results were not satisfactory. Hence, we added one more convolutional layer
followed by the ReLu layer, and the results were impressive. Additionally, the regression
part, including Dense and the linear activation function, were used because the output of
the FC layer is a 1D continuous variable output. Finally, a Dense layer was used to produce
the value of angle and distance.
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3. Experimental Results

The generated IPD dataset was divided into three parts: training, validation, and
testing. We used the validation dataset to monitor the performance of our model during
the training and adjust the model hyperparameters to find the optimal configuration. All
the experiments were performed using a PC with Intel Core i7-7700, CPU 3.6 GHz, and
32 GB of RAM. The GPU was NVIDIA GeForce RTX 2070 with 8 GB of memory. The model
was implemented in Python with TensorFlow.

3.1. Performance Evaluation Metrics

In this study, the regression model is used to evaluate the overall performance by
comparing the difference between the predicted value and the actual value. According
to the distribution of output values, the precision and accuracy (Acc.) are interpreted
as follows:

1. High precision and high accuracy: the distribution of predicted values is concentrated
and close to the target value.

2. High precision and low accuracy: the distribution of the predicted values is concen-
trated, but far from the target value.

3. Low precision and high accuracy: the distribution of the predicted values is more
scattered, but around the target value.

4. Low precision and low accuracy: the distribution of the predicted values is more
scattered and far from the target value.

Figure 6 illustrates the relationship between precision and accuracy with respect to
the distribution of the predicted values. In this research, the mean absolute error (MAE) is
used to measure the accuracy. MAE calculates the difference between the predicted value
and the actual value. The formula is shown in (4):

MAE =
1
N

N

∑
i=1
|yi − ŷi| (4)

High Accuracy

(1) (2)

(3) (4)

Low Accuracy

Lo
w

 P
re

ci
sio

n
Hi

gh
 P

re
ci

sio
n

Figure 6. Performance evaluation criteria where yellow dots are the predicted values. (1) is high
accuracy and high precision, which is the best scenario. (2) is low accuracy and high precision. (3) is
high accuracy and low precision. (4) is low accuracy and low precision, which is the worst scenario.

Because the output of the regression model is a continuous value, this research uses
the formula in (5) to evaluate the accuracy of the proposed CNN-R:

Accuracy =
N f ine

NT
(5)
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where NT is the total times of experiments, N f ine is the number of the error which is less
than the unit scale divided by 2. In this research, the angle estimation unit scale is 15°
and the distance unit scale is 1 meter; therefore, the angle is 7.5° (15/2) and the distance
estimation is 0.5 meter (1/2) as the baseline value. When the predicted value is less than
the baseline value, it is considered to be a correct value. In this research, the experiments
are mainly divided into two parts as follows:

1. Experiment 1 in a simulated environment consists of two parts: (i) a single acoustic
environment is used to train the model for angle and distance estimation, and (ii) a
multiple acoustic environment is used to train the model for angle and distance esti-
mation.

2. Experiment 2 uses a real spatial sound dataset to train the model for angle and
distance estimation.

3.2. Experiment 1
3.2.1. Model Performance in a Single Acoustic Environment

In the experiment, the goal is to show the ability of the proposed CNN-R architecture
to make correct predictions in different room dimensions under the same RT60. The use
of different room dimensions is to avoid data overfitting and validate the performance of
CNN-R. Additionally, the same RT60 is used to avoid environmental parameter changes.
The experimental results show that the proposed CNN-R can be generalized and used in
multiple acoustic environments. Table 2 shows the single acoustic environment configura-
tion. The training set room includes 5 × 5, 6 × 5, 6 × 7, and 7 × 7 (m2). The SNRs are 0
dB and 5 dB, respectively. The RT60 is 0.16 s. On the other hand, the testing set room is
6 × 6 (m2). The SNRs are 10 dB, 20 dB, and 30 dB, respectively. The RT60 is 0.16 s.

Table 2. A single acoustic environment configuration.

Training Set Test Set

Room size (m2) 5 × 5, 6 × 5, 6 × 7 ,7 × 7 6 × 6
SNR (dB) 0, 5 10, 20, 30
RT60 (s) 0.16 0.16

Tables 3 and 4 show the model performance for angle and distance estimation in the
single acoustic environment under three SNR scenarios, respectively.

Table 3. Performance of angle estimation by CNN-R in a single acoustic environment.

SNR = 10 dB SNR = 20 dB SNR = 30 dB

Angle (°) Acc. (%) MAE (°) Acc. (%) MAE (°) Acc. (%) MAE (°)

0 71.00 15.67 90.50 4.28 99.00 1.68
15 87.50 3.13 98.00 1.43 100.00 0.91
30 83.50 5.01 94.00 2.08 97.00 1.66
45 88.50 4.32 97.00 1.60 100.00 0.67
60 99.00 1.02 100.00 0.54 100.00 0.57
75 100.00 0.53 100.00 0.32 100.00 0.34
90 100.00 0.47 100.00 0.22 100.00 0.18

105 99.50 0.69 100.00 0.43 100.00 0.53
120 100.00 0.72 100.00 0.40 100.00 0.40
135 85.50 5.27 97.50 1.49 99.50 0.52
150 82.00 4.59 91.50 2.46 97.50 1.62
165 94.50 2.95 99.50 0.86 100.00 0.56
180 80.00 7.85 97.00 1.53 99.50 0.81

Average 90.08 4.02 97.31 1.36 99.42 0.8
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Table 4. Performance of distance estimation by CNN-R in a single acoustic environment.

SNR = 10 dB SNR = 20 dB SNR = 30 dB

Distance (m) Acc. (%) MAE (m) Acc. (%) MAE (m) Acc. (%) MAE (m)

1 87.08 0.25 95.69 0.18 96.92 0.17
2 94.15 0.21 96.08 0.18 95.31 0.19

Average 90.62 0.23 95.88 0.18 96.12 0.18

Figure 7 shows the average of accuracy and MAE for the angle and distance estimation
in the single acoustic environment under SNR = 10 dB, 20 dB, 30 dB, and RT60 = 0.16 s. In
the single acoustic environment, the accuracy of the angle and distance estimation increases
as the SNR increases. When the SNR is greater than 20 dB, the angle and distance accuracy
can reach 99.42% and 96.12%, respectively. Additionally, the MAE is reduced to 0.8° and
0.18 m, and the RMSE is reduced to 1.32° and 0.14 m. The accuracy of the angle estimation
model in each SNR is better than the distance estimation model.
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Figure 7. The average accuracy and MAE of (a) angle and (b) distance estimation by CNN-R in a
single acoustic environment, where SNR = 10 dB, 20 dB, 30 dB, and RT60 = 0.16 s.

3.2.2. Model Performance in a Multiple Acoustic Environment

Table 5 shows the multiple acoustic environment configuration. The training set room
includes 5× 5, 6× 5, 6× 7, and 7× 7 (m2). The SNRs are 0 dB, 5 dB, and 10 dB, respectively.
The RT60 are set to 0.16 s, 0.36 s, and 0.61 s, respectively. In order to be different from the
training environment, the testing set room is 6 × 6 (m2). The SNRs are set to 10 dB, 20 dB,
and 30 dB, respectively. The RT60 are 0.16 s, 0.36 s, and 0.61 s, respectively, which are the
same as the training set.

Table 5. A multiple acoustic environment configuration.

Training Set Testing Set

Room size (m2) 5 × 5, 6 × 5, 6 × 7, 7 × 7 6 × 6
SNR (dB) 0, 5, 10 10, 20, 30
RT60 (s) 0.16, 0.36, 0.61 0.16, 0.36, 0.61

Table 6 shows the model performance for angle estimation in the multiple acoustic
environment under SNR = 10, 20, 30 dB, and three RT60 scenarios. Table 7 shows the model
performance for distance estimation in the multiple acoustic environment under SNR = 10,
20, and 30 dB, and three RT60 scenarios.
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Table 6. Performance of angle estimation by CNN-R in a multiple acoustic environment at SNRs of
10, 20, and 30 dB, respectively.

RT60 = 0.16 s RT60 = 0.36 s RT60 = 0.61 s

Angle (°) SNR Acc. (%) MAE (°) Acc. (%) MAE (°) Acc. (%) MAE (°)

0
10 80.50 05.32 85.00 04.32 59.50 10.69
20 93.00 02.66 97.50 02.69 81.50 05.57
30 99.00 02.39 99.50 02.02 87.00 04.29

15
10 96.00 02.82 80.00 05.17 31.50 17.70
20 97.50 02.67 82.50 04.38 35.50 18.60
30 99.50 02.15 93.50 03.88 44.00 15.74

30
10 91.00 03.24 58.00 08.55 44.50 21.34
20 96.50 02.47 61.00 08.31 48.50 24.91
30 96.00 02.19 63.50 06.54 48.50 25.24

45
10 89.50 03.45 79.50 06.06 45.00 19.54
20 96.50 02.16 93.50 03.16 58.50 14.38
30 99.50 01.56 95.50 02.56 65.00 12.35

60
10 86.50 03.90 80.00 04.92 60.50 08.24
20 98.00 02.17 94.50 03.63 63.50 07.24
30 100.0 01.56 97.00 03.43 60.50 06.92

75
10 95.50 03.10 80.59 05.05 71.00 05.89
20 100.0 01.57 98.00 02.24 81.00 04.80
30 100.0 01.16 96.50 02.00 81.00 04.74

90
10 100.0 00.85 99.50 00.95 100.0 00.78
20 100.0 00.52 100.0 00.50 100.0 00.52
30 100.0 00.51 100.0 00.44 100.0 00.41

105
10 98.50 01.66 84.50 04.14 58.00 09.04
20 99.50 01.02 97.50 01.79 61.50 08.28
30 100.0 01.06 99.50 01.59 71.50 06.19

120
10 87.00 03.73 76.50 07.40 43.00 14.05
20 98.00 01.81 84.00 04.59 49.50 10.04
30 99.50 01.37 95.50 02.56 51.50 08.14

135
10 83.50 03.80 64.00 09.93 29.00 32.05
20 95.00 02.19 79.00 07.12 44.50 24.60
30 99.50 01.38 81.00 04.95 49.50 19.69

150
10 93.50 02.97 88.50 03.45 58.00 11.81
20 95.50 02.46 94.00 02.50 61.50 11.39
30 99.50 01.99 97.00 02.07 65.00 10.48

165
10 98.00 02.62 77.00 05.04 60.50 13.61
20 100.0 01.84 75.50 05.01 45.50 10.05
30 100.0 01.79 81.00 04.76 51.50 07.10

180
10 72.00 06.42 69.00 08.39 33.50 22.87
20 98.50 02.31 85.00 04.27 52.00 17.15
30 94.00 02.85 87.50 03.80 56.50 13.37

Average
10 90.12 03.37 78.62 05.64 53.38 14.43
20 97.54 01.99 87.85 03.86 60.23 12.12
30 98.96 01.69 91.31 03.12 63.96 10.36
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Table 7. Performance of distance estimation by CNN-R in a multiple acoustic environment at SNRs
of 10, 20, and 30 dB, respectively.

RT60 = 0.16 s RT60 = 0.36 s RT60 = 0.61 s

Distance (m) SNR Acc. (%) MAE Acc. (%) MAE Acc. (%) MAE

1
10 86.00 00.26 84.31 00.29 76.46 00.34
20 96.77 00.17 94.77 00.20 85.08 00.27
30 98.46 00.16 98.38 00.16 89.08 00.24

2
10 92.00 00.24 92.62 00.23 85.92 00.26
20 95.92 00.19 96.38 00.18 85.69 00.26
30 98.15 00.18 97.69 00.18 82.31 00.30

Average
10 89.00 00.25 88.46 00.26 81.19 00.30
20 96.35 00.18 95.58 00.19 85.38 00.27
30 98.31 00.17 98.04 00.17 85.69 00.27

Figures 8 and 9 show the model performance for the angle and distance estimation in
the multiple acoustic environments under SNR = 10 dB, 20 dB, 30 dB, and RT60 = 0.16 s,
0.36 s, 0.61 s, respectively. In the multiple acoustic environment, two acoustic spaces,
RT60 = 0.36 s and RT60 = 0.61 s, were added. The overall accuracy increases with the
increase of SNR and the decrease of RT60. When RT60 = 0.61 s, the performance of angle
estimation is not satisfactory, and the average accuracy is 61.19%. However, if RT60 is
reduced to 0.36 s, the accuracy can be greatly increased by about 20%. Moreover, MAE
and RMSE drop sharply at RT60 = 0.16 s. Nevertheless, the best performance for angle
estimation is achieved when SNR = 30 dB, MAE = 1.96, and RMSE = 1.64, where the
accuracy is 98.96%.

87.38
97.92 99.85

4.55 1.18 0.48

0

20

40

60

80

100

10 20 30

A
C

C
 
&

 
M

A
E

SNR

The Average ACC and MAE of Angle 

Estimation under RT60=0.16s

ACC

MAE

78.62
87.85 91.31

5.64 3.86 3.12

0

20

40

60

80

100

10 20 30

A
C

C
 
&

 
M

A
E

SNR

The Average ACC and MAE of Angle 

Estimation under RT60=0.36s

ACC

MAE

59.38 60.23 63.96

14.43 12.12 10.36

0

20

40

60

80

100

10 20 30

A
C

C
 
&

 
M

A
E

SNR

The Average ACC and MAE of Angle 

Estimation under RT60=0.61s

ACC

MAE

(a) (b) (c)

Figure 8. The average ACC and MAE of angle estimation by CNN-R in a multiple acoustic en-
vironment where SNR = 10 dB, 20 dB, and 30 dB, and (a) RT60 = 0.16 s, (b) RT60 = 0.36 s, and
(c) RT60 = 0.61 s.
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Figure 9. The average ACC and MAE of distance estimation by CNN-R in a multiple acoustic
environment where SNR = 10 dB, 20 dB, and 30 dB, and (a) RT60 = 0.16 s, (b) RT60 = 0.36 s, and (c)
RT60 = 0.61 s.

3.3. Experiment 2
The Model Performance in a Real Acoustic Environment.

Table 8 shows the real acoustic environment configuration. The training set room is
6 × 6 (m2). SNR are 0 dB, 5 dB, and 10 dB. The RT60 are 0.16 s, 0.36 s, and 0.61 s. The test
set room is 6 × 6 (m2). The SNR are 10 dB, 20 dB, and 30 dB. The RT60 are 0.16 s, 0.36 s,
and 0.61 s, which is similar to the training set.

Table 8. The real acoustic environment configuration.

Training Set Test Set

Room size (m2) 6 × 6 6 × 6
SNR (dB) 0, 5, 10 10, 20, 30
RT60 (s) 0.16, 0.36, 0.61 0.16, 0.36, 0.61

Table 9 shows the model performance for distance estimation in the real acoustic envi-
ronment under SNR = 10, 20, and 30 dB, and RT60 = 0.16 s, 0.36 s, and 0.61 s, respectively.

Table 10 shows the model performance for angle estimation in the real acoustic envi-
ronment under SNR = 10, 20, and 30 dB, and RT60 = 0.16 s, 0.36 s, and 0.61 s, respectively.

Table 9. Performance of distance estimation by CNN-R in a real acoustic environment at SNRs of 10,
20, and 30 dB, respectively.

RT60 = 0.16 s RT60 = 0.36 s RT60 = 0.61 s

Distance (m) SNR Acc. (%) MAE (°) Acc. (%) MAE (°) Acc. (%) MAE (°)

1
10 88.08 00.25 95.31 00.20 94.62 00.21
20 98.54 00.15 99.31 00.14 99.23 00.14
30 99.92 00.14 99.92 00.13 99.85 00.13

2
10 90.23 00.25 89.46 00.24 92.23 00.23
20 97.62 00.17 97.85 00.16 97.31 00.16
30 98.85 00.15 99.69 00.14 99.15 00.15

Average
10 89.15 00.25 92.38 00.22 93.42 00.22
20 98.08 00.16 98.58 00.15 98.27 00.15
30 99.38 00.14 99.81 00.13 99.50 00.14
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Table 10. Performance of angle estimation by CNN-R in a real acoustic environment at SNRs of 10,
20, and 30 dB, and RT60 = 0.16 s, 0.36 s, and 0.61 s.

RT60 = 0.16 s RT60 = 0.36 s RT60 = 0.61 s

Angle (°) SNR Acc. (%) MAE (°) Acc. (%) MAE (°) Acc. (%) MAE (°)

0
10 88.00 04.05 91.50 04.03 79.00 10.15
20 98.50 01.66 99.50 01.28 97.00 02.62
30 100.0 00.79 99.50 00.77 99.50 01.53

15
10 80.00 04.62 89.00 05.08 92.50 03.40
20 95.00 02.36 95.00 02.48 99.00 01.36
30 99.00 01.29 99.50 01.08 99.50 00.97

30
10 95.00 02.35 81.00 10.36 77.50 12.64
20 99.50 00.56 97.50 01.81 95.00 02.08
30 100.0 00.37 100.0 00.44 99.00 00.55

45
10 87.00 04.49 91.50 03.08 80.50 07.85
20 99.50 00.64 99.50 00.46 97.50 00.78
30 100.0 00.32 100.0 00.27 100.0 00.30

60
10 86.00 05.87 86.00 06.12 83.00 07.33
20 99.50 00.54 99.50 00.46 98.50 00.88
30 100.0 00.28 100.0 00.29 100.0 00.27

75
10 100.0 01.46 78.50 10.97 82.50 07.85
20 100.0 00.38 98.00 01.52 99.00 00.90
30 100.0 00.32 96.50 00.40 100.0 00.35

90
10 88.00 04.29 85.00 05.03 72.50 12.51
20 99.50 00.81 99.00 00.77 93.50 02.50
30 100.0 00.38 100.0 00.40 99.00 00.54

105
10 86.00 05.98 78.50 11.36 61.50 16.93
20 98.50 00.82 97.50 01.49 95.50 01.78
30 100.0 00.28 100.0 00.26 100.0 00.32

120
10 93.00 02.74 86.00 04.12 78.00 10.82
20 98.50 00.58 98.00 01.45 96.50 01.65
30 100.0 00.21 100.0 00.23 100.0 00.29

135
10 85.50 05.80 87.50 05.43 82.50 06.41
20 98.50 00.81 98.00 01.04 98.50 01.17
30 100.0 00.26 100.0 00.40 100.0 00.48

150
10 82.50 08.74 91.00 02.90 78.50 09.86
20 94.00 02.92 100.0 00.55 92.50 02.60
30 99.00 00.55 100.0 00.29 99.50 00.38

165
10 92.00 02.87 91.00 03.02 77.50 09.77
20 99.50 00.91 99.50 01.01 97.00 01.41
30 100.0 00.53 99.50 00.68 100.0 00.59

180
10 76.50 05.84 81.50 05.99 82.00 09.24
20 92.50 02.37 99.00 01.02 97.50 01.61
30 100.0 00.72 100.0 00.45 100.0 01.12

Average
10 87.38 04.55 86.00 06.02 79.04 09.06
20 97.92 01.18 98.46 01.18 96.69 01.64
30 98.85 00.48 99.85 00.46 99.73 00.59

Table 11 shows the average Acc and MAE of the proposed model for angle and
distance estimation in real acoustic environments, where SNR = 10 dB, 20 dB, and 30 dB,
and RT60 = 0.16 s, 0.36 s, and 0.61 s, respectively. In a real acoustic environment, the angle
estimation accuracy increases and the error decreases as SNR increases and RT60 decreases.
Moreover, when the SNR is greater than 20 dB, the accuracy obtained is higher than 96%,
and the MAE is less than 1.7°. The accuracy of distance estimation is also improved with
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the increase in SNR. Overall, the accuracy is higher than 95% when SNR = 20 dB and 30 dB.
The Acc. and MAE of each RT60 are stable when SNR is greater than 20 dB. Table 12 shows
the accuracy of CNN-R for angle and distance estimation compared to other methods based
on the multi-channel impulse response database [38].

Table 11. The average Acc. and MAE of angle and distance estimation by CNN-R in a real acoustic
environment where SNR = 10 dB, 20 dB, and 30 dB, and RT60 = 0.16 s, 0.36 s, and 0.61 s, respectively.

Angle Distance

RT60 (s) SNR (dB) Acc. (%) MAE (°) SNR (dB) Acc. (%) MAE (m)

0.16
10 87.38 04.55 10 89.15 00.28
20 97.92 01.18 20 98.08 00.16
30 99.85 00.48 30 99.38 00.14

0.36
10 86.00 06.02 10 92.38 00.22
20 98.46 01.18 20 98.58 00.15
30 99.85 00.46 30 99.81 00.13

0.61
10 79.04 09.60 10 93.42 00.22
20 96.69 01.64 20 98.27 00.15
30 99.73 00.59 30 99.50 00.14

Table 12. Comparative results of angle and distance estimation based on the multi-channel impulse
response database in a real acoustic environment at SNR = 30 dB and RT60 = 0.16 s.

Method Average Angle (0–180°) Acc. Average Distance (1–2 m) Acc.

CNN-SL [32] 90.25% 88.85%
CRNN [34] 87.37% 85.64%
CNN [35] 98.51% 98.09%

TF-CNN [36] 95.18% 94.66%
CNN-R 99.85% 99.38%

The training–validation loss curves for the proposed CNN-R in a single acoustic
environment, multiple acoustic environment, and real acoustic environment are shown
in Figure 10. Unlike the single acoustic environment and multiple acoustic environment,
the loss in real acoustic environment gradually reduces and slowly converges as the
number of epochs increases. Moreover, note in Figure 10c that the training loss curve and
validation loss curve behave similarly, which implies that the proposed CNN-R model can
be generalized and does not suffer from overfitting.

Single Acoustic Environment Multiple Acoustic Environment Real Acoustic Environment

(a) (b) (c)

Figure 10. The training–validation loss curves of CNN-R, where (a) is the performance of CNN-R in a single acoustic
environment. (b) is the performance of CNN-R in a multiple acoustic environment. (c) is the performance of CNN-R in a
real acoustic environment.
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4. Discussion

This research aims to establish a general sound localization model. The results of a
single acoustic environment in Experiment 1 show that under different room conditions,
the test model can still effectively estimate the angle and distance in a single acoustic
environment, and it will be more accurate as the SNR increases. In the multiple acoustic
environments, good estimation performance can also be obtained under different room
conditions. When RT60 = 0.61 s, the accuracy is relatively insufficient. However, as the SNR
increases, the accuracy can be effectively improved. The model proposed in this research
has the best performance in the simulated room where the RT60 is less than 0.36 s and the
SNR is greater than 20 dB. In addition, in the real acoustic environment of Experiment 2,
the overall accuracy is enhanced significantly, verifying the practicability of our proposed
model in a real acoustic environment. The experimental results show that the MAE of the
model for the angle estimation is smaller than the distance estimation, which means that
the error between the predicted value and the actual value is small. Nonetheless, the RMSE
of the model for angle estimation is greater than the distance estimation, which means
that a small number of predicted values has large variations; hence, the model for angle
estimation has high accuracy. However, the precision is low. On the other hand, the model
performance for distance estimation has high accuracy and high precision.

Comparing the results of the proposed CNN-R in the multiple acoustic environment in
Experiment 1 with the results in the real acoustic environment in Experiment 2, it can clearly
be seen that under the same environmental acoustic parameters, the accuracy of the model
trained in the real environment is higher than that of the simulated acoustic environment.
The reason for this result is that when generating simulated room sound effects, the only
parameters we can adjust are SNR and RT60. However, in the real environment, the
parameters that affect sound propagation are more complex. Therefore, the model trained
with the simulation dataset has insufficient features, which affects the learning of the model,
resulting in a decrease in accuracy. The experimental results show that the accuracy of the
distance estimation is better than that of the angle estimation. The reason is that there are
13 target values for the angle estimation and only 2 target values for the distance estimation,
which increases the complexity of the angle estimation model weight training and makes
the weight distribution uneven.

Taking Tables 3 and 4 as an example, when SNR = 10 dB, the accuracy of the angle
estimation is between 71% and 100%. The accuracy close to 90° is higher, and the accuracy
close to 0° or 180° decreases on both sides. The accuracy of the distance estimation is
distributed between 87.08% and 94.15%, and the distribution of the accuracy of the distance
estimation is more concentrated than that of the angle estimation. Moreover, the Acc. is
low and MAE is high due to the small number of training samples in the single acoustic
environment compared to the multiple acoustic environment. Additionally, in general, the
accuracy drops significantly when the value of RT60 increases, except when the angle is
90 degrees in the multiple acoustic environment. One limitation of the proposed model
might be the offline design. Future work will focus on improving the proposed model for
real-time positioning. Additionally, the proposed model still needs further enhancement
for multiple sound source localization.

5. Conclusions and Future Works

In this paper, an original sound source localization model was developed by combin-
ing a convolutional neural network and a regression model (CNN-R). Simulated and real
sound datasets were generated to perform the experiments. Initially, the sound signals
were transformed into time-frequency signals through STFT, and then IPD feature maps
were calculated from the time-frequency signals. These were then fed into the CNN-R
model for a series of experiments. The evaluation metrics of Acc., MAE, and RMSE were
used to evaluate the performance of the proposed model. The experimental results in the
simulated acoustic scenarios showed that the proposed model can effectively estimate the
angles and distances in a single or multiple acoustic environments under different spatial
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conditions. When SNR is greater than 10 dB and RT60 is less than 0.61s, the accuracy of
the angle and distance estimations can reach, on average, more than 95%. Additionally,
when SNR = 30 dB and RT60 = 0.16 s, the accuracies of the angle and distance estimations
can reach 98.96% and 98.31%, respectively. On the other hand, the experimental results in
the real acoustic scenarios showed that when the SNR is greater than 20 dB, the accuracy
of the angle and distance estimation exceeds 96%. Furthermore, when SNR = 30 dB and
RT60 = 0.16 s, the accuracies of the angle and distance estimations reach 99.85% and 99.38%,
respectively. In comparison to the existing methods, the experimental results also showed
that the proposed CNN-R outperforms the existing methods in terms of the angle and
distance estimation accuracies. Future work will study the combination of other acoustic
features, such as ILD, to make the features richer. Moreover, the impact of more acoustic
environments on the accuracy will also be investigated.
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