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Abstract: Neural signal decoding is a critical technology in brain machine interface (BMI) to interpret
movement intention from multi-neural activity collected from paralyzed patients. As a commonly-
used decoding algorithm, the Kalman filter is often applied to derive the movement states from
high-dimensional neural firing observation. However, its performance is limited and less effective
for noisy nonlinear neural systems with high-dimensional measurements. In this paper, we propose
a nonlinear maximum correntropy information filter, aiming at better state estimation in the filtering
process for a noisy high-dimensional measurement system. We reconstruct the measurement model
between the high-dimensional measurements and low-dimensional states using the neural network,
and derive the state estimation using the correntropy criterion to cope with the non-Gaussian noise
and eliminate large initial uncertainty. Moreover, analyses of convergence and robustness are given.
The effectiveness of the proposed algorithm is evaluated by applying it on multiple segments of
neural spiking data from two rats to interpret the movement states when the subjects perform a
two-lever discrimination task. Our results demonstrate better and more robust state estimation
performance when compared with other filters.

Keywords: state-observation model; high-dimensional measurements systems; correntropy

1. Introduction

Brain machine interface (BMI) establishes a direct communication pathway between
the brain and external devices [1–6]. BMI collects the noisy signals from hundreds of
neurons in the brain, and estimates a motor intention from these signals [7,8]. This esti-
mated movement intention can then be used to control the robot to assist motor disabled
people [9–19]. Signal processing algorithms play a key role in BMI. As a commonly-used
state-observation model, the Kalman filter (KF) has been adopted to decode the movement
intents as the state from the high-dimensional observations formed by multiple neural
firing activity [20–23], in which the movement state evolves over time as described by
the linear state model and the observation model reflects how the neuron firing tunes to
movement with Gaussian noise. The implementation of the Kalman filter nicely considers
the gradual change of the continuous brain state, and thus is especially appropriate for
the brain control task where the subject continuously adjusts the brain states to control an
external robot.

However, there are some challenges in applying the state-observation model for
BMI. Firstly, the nervous systems are nonlinear in general [24,25], and the traditional
KF is not fit for nonlinear systems. As the extensions of KF, the extended Kalman filter
(EKF) [26], unscented Kalman filter (UKF) [27,28], and cubature Kalman filter (CKF) [29]
can deal with a nonlinear system. However, these algorithms can only approximate the

Entropy 2021, 23, 743. https://doi.org/10.3390/e23060743 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4659-8955
https://orcid.org/0000-0003-4634-3220
https://orcid.org/0000-0001-9153-2034
https://orcid.org/0000-0002-7432-9904
https://orcid.org/0000-0002-1878-6182
https://doi.org/10.3390/e23060743
https://doi.org/10.3390/e23060743
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060743
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060743?type=check_update&version=2


Entropy 2021, 23, 743 2 of 22

nonlinear function by a finite-order level of its Taylor expansion and lead to an inaccurate
state estimation. Secondly, the motor state is controlled by hundreds of neurons, whose
activity could be highly connected [30–32]. The components of measurements in traditional
KF decoding are assumed to be conditionally independent to update the states, and
some connections among these components, e.g., the neural connectivity, may exist in
the experiments of BMI that cannot be reflected in the traditional KF. Discriminative
Kalman filter (DKF) was applied to decode movement states from high-dimensional neural
firings [19]. DKF computes the posterior of the state-given observation by approximating
only the mean and variance, which may not be accurate for an arbitrary nonlinear system.
The key goal in BMI is to accurately estimate the motor state in real-time through measuring
the noisy activities of many neurons that tune nonlinearly and correlatedly to the states.
Thirdly, the traditional KF may not be an ideal tool for real-time robust decoding to address
the high-dimensional measurement data. This is because the Kalman gain computes
the inverse of a correlation matrix with the same dimension of measurements, and the
high dimensionality brings a heavy computational burden for online applications. In
addition, KF relies strongly on good initial conditions and is not robust to the outliers in
the observation. It brings problems to robust online decoding. In particular, the initial
movement states in BMI cannot always be known, for example, the limb status of paralyzed
patients may not exist. It could be difficult to set the proper initial conditions as well as
the uncertainty reflected in the covariance matrix. For online decoding, the performance
of the Kalman filter could be significantly affected by outliers in the observation, such as
recording noise in neural activity.

We are interested in addressing the nonlinearity and existing connectivity among
high-dimensional observations for robust neural decoding. The neural network (NN) has
demonstrated an arbitrary nonlinear regression ability in modeling [33], and has been
used to decode the motor intention from multiple neuron activities [34–36]. The advantage
of using NN is to allow arbitrary dependence among the neurons and provide a good
method to reduce the dimensionality from high-dimensional neurons to low-dimensional
states. However, a simple multi-layer perception (MLP) network could ignore the time
dynamics in brain states. The recurrent neural network (RNN) model considers the possible
internal dynamics and has been used to decode the letter shapes for classification [37].
The long short-term memory (LSTM) network has been used in the classification of the
motor imagery task based on electroencephalography (EEG) signals [38]. For the brain
control in motor BMI, where we adopt invasive signals to decode continuous motor
intention, the Kalman filter has been a more popular decoder [21,23,39,40]. The information
filter [41] was proposed to address the sensitivity to the initial conditions and reduce the
computational complexity, in which the inverse of the covariance matrix defining the
uncertainty is propagated instead. However, the current information filter is also only
designed for simple linear systems. To address the robustness of the filtering with respect
to the outliers, i.e., heavy-tailed non-Gaussian noises [42], the traditional minimum mean
square error (MMSE) criterion should be reconsidered. As an alternative, the correntropy
theory in information theoretic learning (ITL) is an effective tool, which captures all even-
order statistical information rather than the traditional second-order statistics [43–45]. In
particular, its optimization criterion, called maximum correntropy criterion (MCC), has
been extensively used in robust filters [46–52], mostly for linear systems.

In this paper, we propose a nonlinear maximum correntropy information filter (NM-
CIF) to robustly estimate the state from noisy high-dimensional measurements for the
nonlinear systems. We utilize the universal nonlinear approximator neural network to
preprocess the high-dimensional measurements, which allows dependence among the
measurements to be considered. We introduce correntropy as the optimization criterion
to improve the robustness of the filter with respect to heavy-tailed non-Gaussian noises.
The uncertainty of the state estimation is derived and propagated over time to reduce the
computational burden and the sensitivity to the initial conditions. The preferred informa-
tion matrix and the proof of the robustness of the algorithm are given, and the convergence
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speed is analyzed theoretically. The proposed algorithm is applied to real neural recording
from two rats while the subjects were manually controlling a two-lever discrimination task.
The two-dimensional movement states are estimated from multiple neuronal activities. The
performance, convergence time, the sensitivity to the bad initial conditions, and robustness
to heavy-tailed noise of the proposed algorithm are compared with those of the traditional
Kalman filter and neural network decoder. We also use the mean square error in 2D to
evaluate the movement estimation compared with the ground truth.

Our contribution is to propose a new methodology to better estimate the state in the
filtering process for the noisy high-dimensional measurement systems. The neural network
is utilized to construct the nonlinear measurement model between the high-dimensional
measurements and low-dimensional states. The correntropy criterion is considered in
deriving the state to cope with the non-Gaussian noise and eliminate uncertainty. The
rest of this paper is organized as follows. In Section 2, the NMCIF is introduced. In
Section 3, the detailed derivation of NMCIF is given, and the robustness and convergence
of the algorithm are analyzed. In Section 4, the real data application on the two-lever
discrimination task of rats is used to validate the effectiveness of the proposed algorithm
compared with other filters. In Section 5, the discussion and conclusion are given.

2. Nonlinear Maximum Correntropy Information Filter

In general, the state-observation model is written as dynamic systems:

xk = F(xk−1) + qk−1, (1)

yk = H(xk) + ζk, (2)

where xk denotes the n-dimensional state at time k. In our application, it is the 2-dimensional
position. F denotes the state transition function. In our application, it is a linear function F
estimated from the training data by least square [53]. qk denotes the process noise with
mean qk and covariance matrix Qk, which is estimated by the residue of the state transition
approximation. yk denotes the m-dimensional measurements. In our application, it is a
high-dimensional vector formed by multiple neural firing activities considering the firing
history. H is the nonlinear observation model. In our application, it is estimated from
the state vector to each dimension of the neural activity independently. In the linear case,
each row of H describes how the neural activity weighted tunes the movement states. ζk
denotes the measurement noise, which is estimated by the residue of using the observation
model. For a nonlinear system with high-dimensional correlated observation, such as the
most experiments of BMI, the noisy measurements would be collected from hundreds of
neurons, and there exists heavy connectivity among neurons.

The commonly-used second-order statistics method, the MMSE criterion, may not be
optimal as the nonlinear system generally does not have Gaussian distributed noise [42].
Correntropy is a key concept in ITL, which measures the similarity between two random
variables considering all the even order statistics. Assuming X and Y are two random
variables, the correntropy is defined as:

V(X, Y) = E[κ(X, Y)] =
∫

κ(x, y)dFXY(x, y), (3)

where E represents the expectation operator, FXY(x, y) denotes the joint distribution func-
tion with respect to the two random variables, and κ(·, ·) is a shift-invariant Mercer kernel.
Gaussian kernel is simple and has been successfully applied in a heavy-tailed noise envi-
ronment [44,46,47], and we chose the Gaussian kernel to eliminate this noise, i.e.,

κ(x, y) = Gσ(e) = exp
(
− e2

2σ2

)
, (4)
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where e = x− y, and σ > 0 is the kernel bandwidth. Taking the Taylor series expansion
of the Gaussian kernel, it is noted that the correntropy contains not only the second-order
moment but also all higher even order statistical information. In particular, when the kernel
bandwidth σ is 20 times larger than the values chosen based on Silverman’s rule [44], the
second-order moment plays a key role in correntropy.

In this section, we propose a new method for the state-observation model estimation.
Let Wk be defined as the information matrix of process noise, which is the inverse of the
covariance matrix Wk = Q−1

k . We propose the NMCIF.
The prior mean xk and corresponding information matrix χk are firstly computed as:

xk = Fx̂k−1, (5)

χk = Wk−1 −Wk−1F(χ̂k−1 + FTWk−1F)−1FTWk−1. (6)

and the posterior mean x̂k is recursively calculated by the fixed-point iterative methods [54] as:

x̂(t)k = xk + K̃(t−1)
k (g(yk)− xk), (7)

where g(·) denotes the nonlinear preprocess on the observation that deducts the dimen-
sionality of original observation into the new observation with the same dimension as the
state, such that:

g(yk) = xk + rk. (8)

Superscript (t) stands for the fixed-point iteration index and the iterative process stops when:∥∥∥x̂(t)k − x̂(t−1)
k

∥∥∥∥∥∥x̂(t−1)
k

∥∥∥ 6 ω, (9)

with ω being a small positive value, or the iterative index reaches a preset value. K̃(t−1)
k

stands for the Kalman gain as:

K̃(t−1)
k =

(
χ̃
(t−1)
k + Ṽ(t−1)

k

)−1
Ṽ(t−1)

k . (10)

Here χ̃
(t−1)
k is the revised prior information matrix denoted as in Equation (12) and Ṽ(t−1)

k
is denoted as in Equation (13).

In our application, we use multi-layer perception as a universal approximator to take
the high-dimensional neural firing as input and output for the preprocessed states as the
observation. Then, the observation model is an identity matrix. rk denotes the neural
network approximation residue with mean rk and covariance matrix Rk. Since the neural
network could consider the bias, we then assume the process noise and measurement noise
have zero means. Vk is defined by Vk = R−1

k .
The corresponding information matrix χ̂k of the posterior is updated as:

χ̂k = χ̃
(t−1)
k + Ṽ(t−1)

k , (11)

where for each iteration t,
χ̃
(t−1)
k = Sχ,kC(t−1)

χ,k ST
χ,k, (12)

Ṽ(t−1)
k = SV,kC(t−1)

V,k ST
V,k, (13)

C(t−1)
χ,k = diag

(
Gσ

(
e(t−1)

k,1

)
, . . . , Gσ

(
e(t−1)

k,n

))
, (14)

C(t−1)
V,k = diag

(
Gσ

(
e(t−1)

k,n+1

)
, . . . , Gσ

(
e(t−1)

k,2n

))
, (15)

e(t−1)
k,i = dk,i −mk,i x̂

(t−1)
k , (16)
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where dk,i denotes the i-th element of Dk, mk,i denotes the i-th row of Mk, and

Dk = Sk

[
xk

g(yk)

]
, Mk = Sk

[
In
In

]
, ek = Skδk. Here we take Dk as the transformed

observation, Mk is the new observation model, and ek is the noise term. Sk can be ob-
tained by making Cholesky decomposition on the inverse of covariance of the noise term

δk =

[
−(xk − xk)

rk

]
, and denoted as Sk =

[
Sχ,k 0

0 SV,k

]
.

Note that when the kernel bandwidth becomes increasingly larger, the performance
of the algorithm will behave like the corresponding nonlinear information filter (NIF).
Especially, if σ → ∞, then Cχ,k → I and CV,k → I, the proposed algorithm will reduce
to the NIF. Thus, the NIF algorithm is a special case of the proposed algorithm, and is
summarized as follows:

xk = Fx̂k−1, (17)

χk = Wk−1 −Wk−1F(χ̂k−1 + FTWk−1F)−1FTWk−1, (18)

Kk = (χk + Vk)
−1Vk, (19)

x̂k = xk + Kk(g(yk)− xk), (20)

χ̂k = χk + Vk. (21)

3. Algorithm Derivation and Analysis
3.1. Derivation of Estimation on the Mean of Posterior

Next, we give a derivation process with respect to the nonlinear maximum correntropy
information filter.

The mean of the prior state xk and the corresponding information matrix are com-
puted the same as Equations (5) and (6). By Equations (1), (8) and (17), we can build the
following equation: [

xk
g(yk)

]
=

[
In
In

]
xk + δk, (22)

where In is an n× n identity matrix, and δk =

[
−(xk − xk)

rk

]
.

We can easily obtain the inverse of covariance of the noise term in Equation (22) as the
following equation: (

E
[
δkδT

k

])−1
=

[
χk 0
0 Vk

]
=

[
Sχ,kST

χ,k 0
0 SV,kST

V,k

]
= SkST

k ,
(23)

where Sk is the Cholesky decomposition of
(
E
[
δkδT

k
])−1.

Left multiplying both sides of Equation (22) by Sk yields:

Dk = Mkxk + ek, (24)

where Dk = Sk

[
xk

g(yk)

]
, Mk = Sk

[
In
In

]
, ek = Skδk.

The correntropy-based cost function is introduced as:

J(xk) =
1

2n

2n

∑
i=1

Gσ(dk,i −mk,ixk), (25)

where dk,i denotes the i-th component of Dk, mk,i denotes the i-th row of Mk, and n is the
dimension of the state.
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By the similar derivation in [55], the fixed-point iterative method would be adopted as:

x̂(t)k =
(

MT
k C(t−1)

k Mk

)−1
MT

k C(t−1)
k Dk, (26)

where superscript (t) stands for the fixed-point iteration index, and C(t−1)
k =

[
C(t−1)

χ,k 0

0 C(t−1)
V,k

]
,

and the diagonal elements are defined in Equations (14) and (15). In fact, Equation (26) can be further
written as Equation (7) (the detailed derivation can be seen in Appendix A).

3.2. Derivation of Information Matrix

After the iterative process stops, the estimation error information matrix χ̂k also needs
to update. According to [56], the influence function (IF), defined as an n by 1 matrix, can be
used to derive the error covariance matrix of an estimator under an assumed probability
distribution, and there is a relationship between the influence function and the asymptotic
covariance matrix of the estimation error P̂k as follows:

P̂k = E
[
IF · IFT

]
, (27)

where E is the expectation operator. The detailed derivation can be seen in Appendix B.
The IF can be computed as:

IF(e, mT , A0, T) =
ϕ(e)

EA0 [ϕ
′(e)]

[
MT

k Mk

]−1
mT

k,i, i = 1, . . . , 2n, (28)

where ϕ(e) = Gσ(e)e, EA0 [ϕ
′(e)] is the expectation of the first derivative of ϕ(e) at distribu-

tion A0, and A0 is the target distribution of e. mT
k,i is the transposition of the i-th row of Mk,

and Mk is denoted in Equation (24). The detailed derivation can be seen in Appendix C.
Thus the corresponding information matrix is written as:

χ̂k =

{
EA0 [ϕ

′(e)]
}2

EA0 [ϕ
2(e)]

MT
k Mk. (29)

Here we prove EA0 [ϕ
′(e)] and EA0

[
ϕ2(e)

]
as constants in Equations (A29) and (A30) of

Appendix D, then substituting into Equation (29) yields:

χ̂k =
σ3(σ2 + 2θ2)

√
σ2 + 2θ2

θ2(σ2 + θ2)3 MT
k Mk, (30)

where σ is the kernel bandwidth, and θ is the variance of the distribution A0. Note that
the information matrix in Equation (30) can only hold in an asymptotic sense and can be
used for the state with a high dimension. However, for the state with a small dimension,
especially in the derivation of our algorithm, Equation (30) may not be a good choice.
Equation (26) can be referred to as the iterative reweighted least squares (IRLS) method.
Thus, assuming the iteration terminates at t = T, the final estimate is x̂(T)k and the associated
covariance P̂k can be obtained by:

P̂k =
(

MT
k C(t−1)

k Mk

)−1
. (31)
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Thus, the information matrix is computed as:

χ̂k = MT
k C(t−1)

k Mk

= ST
χ,kC(t−1)

χ,k Sχ,k + ST
V,kC(t−1)

V,k SV,k

= χ̃
(t−1)
k + Ṽ(t−1)

k

. (32)

We can see that the information matrix in Equation (30) is equivalent to the least
squares (LS) method, i.e., MT

k Mk, multiplied by a constant scalar being smaller than
one. The information matrix in Equation (32) implies that each row is multiplied by a
different scalar depending on the residual error ek,i as in Equation (16). The outlier could
be eliminated by multiplying a smaller scalar in calculating the information matrix. Thus
compared to Equation (30), using Equation (32) may be relatively better in the small
dimension case, especially in the proposed algorithm. Unless otherwise specified, the
proposed algorithm uses the information matrix in Equation (32).

3.3. Robustness Analysis

According to [56], the influence function (IF) can also be used to measure quantitatively
the robustness of an estimator, i.e., the infinitesimal robustness. If an estimator is infinitesi-
mally robust, the corresponding IF needs to satisfy continuity and boundedness [57]. We
show the IF satisfies continuity in Equation (28). Next, we will give the proof with respect
to the boundedness of IF. According to Equation (28), EA0 [ϕ

′(e)] is a constant (please see in
Appendix D) and

(
MT

k Mk
)
mT

k,i is a known matrix, and we can see that the boundedness of
IF depends on ϕ(e).

Theorem 1. The function ϕ(e) is bounded in the interval (−∞,+∞).

Proof of Theorem 1.

ϕ(e) = e× exp
(
− e2

2σ2

)
=

e

exp
(

e2

2σ2

) , (33)

where e is the error and σ is the kernel bandwidth. Note that ϕ(e) is a continuous and
odd function according to the boundedness theorem [58], thus it satisfies the boundedness
in any closed intervals, i.e., if ∃τ > 0, and ϕ(e) is bounded in the interval [−τ, τ]. In the
interval [τ,+∞], according to the L’ Hospital’s rule [59], we have:

lim
e→+∞

ϕ(e) = lim
e→+∞

e

exp
(

e2

2σ2

) = lim
e→+∞

σ2

e exp
(

e2

2σ2

) = 0. (34)

Consequently, ϕ(e) is bounded in the interval [τ,+∞), and it is bounded in the interval
(−∞,−τ] due to the odd characteristic of the function ϕ(e). This completes the proof. The
IF in Equation (28) satisfies continuity and boundedness, and the proposed algorithm can
be regarded as infinitesimally robust.

3.4. Convergence Analysis

In Section 3.1, we adopt a fixed-point iterative algorithm to obtain the posterior
estimation in Equation (26). In fact, the convergence of the fixed-point iteration is impacted
by the kernel bandwidth σ. According to the Banach Fixed-Point Theorem [60], the
sufficient condition with respect to the choice of the kernel bandwidth to ensure the
convergence of the fixed-point iteration is the same as in NMCIF [55,61].
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Here we focus on discussing the convergence rate of the fixed-point iteration. For the
sake of this discussion, Equation (26) can be written in an equivalent form as:

xk =

(
2n

∑
i=1

Gσ(ek,i)m
T
k,imk,i

)−1 2n

∑
i=1

Gσ(ek,i)dk,im
T
k,i, (35)

where ek,i, mk,i, and dk,i are defined as in Equation (24). Thus Equation (35) forms a fixed
point equation as xk = f (xk). Here we use ∇xk f (xk) to denote the n× n Jacobian matrix of
f (xk) with respect to xk, that is:

∇xk f (xk) =

[
∂

∂xk,1
f (xk)...

∂

∂xk,n
f (xk)

]
, (36)

with
∂

∂xk,j
f (xk) =−N−1

mm

(
1
σ2

2n

∑
i=1

[
ek,imk,ijGσ(ek,i)m

T
k,imk,i

])
f (xk)

+ N−1
mm

(
1
σ2

2n

∑
i=1

[
ek,imk,ijGσ(ek,i)m

T
k,idk,i

])
,

(37)

where Nmm =
2n
∑

i=1
Gσ(ek,i)mT

k,imk,i and mk,ij is the j-th element of mk,i.

It is obvious that Gσ(ek,i) 6 1, and according to the first sufficient condition ‖ f (xk)‖1 6 β
in [55] and Equation (37), we have:∥∥∥∥∥ ∂

∂xk,j
f (xk)

∥∥∥∥∥
1

6
∥∥∥−N−1

mm

∥∥∥
1

∥∥∥∥∥ 1
σ2

2n

∑
i=1

[
ek,imk,ijGσ(ek,i)m

T
k,imk,i

]∥∥∥∥∥
1

‖ f (xk)‖1

+
∥∥∥N−1

mm

∥∥∥
1

∥∥∥∥∥ 1
σ2

2n

∑
i=1

[
ek,imk,ijGσ(ek,i)m

T
k,idk,i

]∥∥∥∥∥
1

6
1
σ2 β

∥∥∥−N−1
mm

∥∥∥
1

2n

∑
i=1

∥∥∥ek,imk,ijm
T
k,imk,i

∥∥∥
1

+
1
σ2

∥∥∥N−1
mm

∥∥∥
1

2n

∑
i=1

∥∥∥ek,imk,ijm
T
k,idk,i

∥∥∥
1
,

(38)

where ‖.‖1 denotes a 1-norm of a vector or an induced norm of a matrix. We can see since
β, N−1

mm, ek,i, mk,i, and dk,i are bounded, it is evident that if we choose a large enough kernel
bandwidth σ, the gradient vector is close to zero with a limited bounded 1-norm. Then the
gradient at the optimal point is zero in practice and the algorithm is at least quadratically
convergent. In particular, if σ → ∞, we have Gσ(ek,i) → 1, then the fixed-point iteration
method changes to the MMSE solution (i.e., the NIF in Section 2), which has a zero gradient
vector in the optimal solution and converges in just one step. Consequently, when the
kernel bandwidth σ decreases, the gradient of the fixed-point method at the optimal
solution will increase, and the order of convergence will decrease from the super-linear to
linear order of convergence [62]. Moreover, the robustness of the algorithm increases with
a smaller kernel bandwidth.

By the above analysis, we can obtain that the smaller the kernel bandwidth, the more
robust the algorithm is and the slower the convergence rate. However the kernel bandwidth
has a low bound value to guarantee the convergence of the fixed-point method. On the
other hand, when the kernel bandwidth becomes increasingly larger, the convergence rate
increases, and the performance of the algorithm will behave like the corresponding NIF.
Especially, if σ → ∞, then Ck → I, the proposed algorithm will reduce to the NIF and
converge in just one step.
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4. Neural Decoding Using Nonlinear Maximum Correntropy Information Filter

In this section, we apply the proposed nonlinear maximum correntropy information
filter to decode the two-dimensional movement intention from high-dimensional neural ob-
servations, and make comparisons with the Kalman filter and multi-layer
perception network.

4.1. Experiment and Data Collection

The BMI experiment paradigm of the rats’ two-lever discrimination task was de-
signed and conducted in the Hong Kong University of Science and Technology. All animal
handling procedures were approved by the Animal Care Committee of the Hong Kong
University of Science and Technology. Two 16-channel microelectrode arrays were im-
planted in the primary motor cortex (M1) and medial prefrontal cortex (mPFC) respectively
on the left hemisphere. The raw data of neural extracellular potential was recorded by a
multi-channel acquisition processor (Plexon Inc, Dallas, Texas) with a 40-kHz frequency.
The recorded potential was filtered by a 4-pole Butterworth high pass filter at 500 Hz
and the action potentials were detected with an artificially set threshold (about 4 times of
standard deviation of the filtered potential) in an online recording system. The spike trains
were binned by a 100-ms time window without overlap for each channel. The count of
spikes in the 100-ms window was assigned as firing rates.

The rats were trained to perform the two-lever discrimination task. In this task, the
rats were required to distinguish two audio tones, which were randomly given by the
computer at the trial start. The rats needed to use their right paw to press the corresponding
lever and hold it for over 500 ms within a 6-second try-out time to get a water reward.
With the high pitch (10 kHz), the rats needed to reach the high lever which was 10 cm high.
While with the low tone (1.5 kHz), the rats turned to the low lever which wa spositioned
6 cm lower than the high lever. After successfully holding, the water was provided by
a pump with a short feedback tone which had the same frequency as the start cue. The
behavioral events and their timing information were recorded by the behavioral chamber
(Lafayettee Instrument, Lafayettee, USA), and synchronized through the Plexon digital
input with neural spike activity. There are totally 51 trials of a high lever press and 80 trials
of a low lever press in rat A, as well as 72 trials of a high lever press and 128 trials of a low
lever press in rat B.

To model the above procedure, we only consider the total successful trials, and the
two-dimensional states are denoted as xk. To label the behavioral data, all successful
trials are segmented from start to 500 ms after the start, and from 500 ms before the press
to the press onset. All segments are connected to represent the behavioral process and
smoothed by a sigmoid function. After the feedback, the rats spend 200 ms returning
rest state and it is smoothed by a sigmoid function as well. To label the behavioral data,
the 500 ms before the start cue is set as the rest state with [0,0], and holding a high lever
and low lever are set as [1,1] and [1,−1] respectively. We use the current time step of
the neural firing rates as the 32-dimensional measurements, which are denoted as yk to
decode the behavioral state. Figure 1c shows one segment of spike rasters over time in
five channels. And the corresponding behavioral states in 2D are shown in Figure 1a,b
respectively. Following the above design, the state equations and measurement equations
can be written as Equations (1) and (8). The state transition F in Equation (1) is obtained by
the least square approach, the nonlinear relationship g(·) in Equation (8) is approximated
by a multi-layer perception network, and the mean and covariance of the process noise qk
in Equation (1) and measurement noise rk in Equation (8) are estimated from the residual
errors. Next according to the above model, we apply the proposed algorithm to estimate
the two-dimensional states xk from the high-dimensional measurements yk and compare
it with the KF and neural network decoding performance. Note that the neural network
takes in the current neural firing rates with the past 400 ms firing rates history and outputs
the 2-dimensional movement intention. The number of hidden PE is set as 10. The weights
are initialized 20 times and trained by the steepest gradient-descent back propagation
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method, which minimizes the mean square error between the output and the ground truth
movement. We use 60% of the training data for weight training and 40% for testing. We
use the 2D-mean square error between the movement estimation and the ground truth as
the criterion to evaluate the decoding performance.
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Figure 1. The 2−D behavioral states (a,b) and corresponding spike rasters in five channels of M1 (c).

4.2. Results

Figure 2a,b show a segment of decoded 2-D movements, xk,1 and xk,2 using KF, with
NMCIF and NN presented for comparison. We can see that the curve of NMCIF (the magenta
solid curve) is closer to the ground truth (the red dotted curve) than that of KF (the blue solid
curve). This is because the proposed method adopts the nonlinear process of observation into
the same dimension of the states instead of the linear model, which considers interactions
among recorded neurons. Moreover, from the 210th time step to the 220th time step, the
320th time step to the 330th time step, and the 350th time step to the 400th time step in xk,2 of
Figure 2, we can see that the curve of NMCIF (the magenta solid curve) is smoother than
that of NN (the green solid curve) due to the consideation of the time dynamic nature of the
state. Table 1 shows the statistical 2D-MSEs of the algorithms between the true values and
estimation values across 10 data segments with each rat. Please note that here for the NN,
we use a MLP network to approximate the nonlinearity. We can also use RNN, where the
results of RNN is 0.3555± 0.0959 and 0.3984± 0.0735. In terms of the averaged performance,
the 2D-MSE of NMCIF in rat_A decreases by 57.62% and 6.91% compared with those of KF
and NN, and the 2D-MSE of NMCIF in rat_B decreases by 25.89% and 5.17%. The results
show that the proposed algorithm is superior to the KF and NN.
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Figure 2. The reconstruction of 2−D movements over time by different models. The X−axis is the
time, the Y−axis is the first (a) and the second (b) dimension of the movement. The red dotted curve
is the ground truth, the blue solid curve is the Kalman filter, the magenta solid curve is the nonlinear
maximum correntropy information filter, and the green solid curve is the neural network.

Table 1. Statistical decoding performances across 10 segments of test data with Different rats.

Method 2D-MSE of xk in Rat_A 2D-MSE of xk in Rat_B

KF 0.5783 ± 0.1074 0.5558 ± 0.0653
NN 0.2633 ± 0.0787 0.4119 ± 0.0588

NMCIF 0.2451 ± 0.0684 0.3906 ± 0.0491

We then discuss convergence and sensitivity of the proposed algorithm with the
presence of large deviated state initials.

From Section 3.4, we know that the kernel bandwidth plays a key role on the perfor-
mance of NMCIF. Figure 3 shows the relationships between performance and the kernel
bandwidth. We can see that if the kernel bandwidth is too small, the proposed algorithm
plays a worse performance, even diverges. If the kernel bandwidth is too large, the per-
formance of NMCIF (the magenta solid curve) is similar to the performance of NIF (the
black solid curve). With a proper kernel bandwidth, the NMCIF outperforms the NIF. In
particular, when the kernel bandwidth σ = 2, the NMCIF has its best performance. Figure 4
shows the relationship between the fixed-point iteration number and the kernel bandwidth.
As one can see, the larger the kernel bandwidth is, the less the iteration number.
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Figure 3. The relationship between the performance and kernel bandwidth.
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Figure 4. The relationship between the iteration number and kernel bandwidth.

Figure 5 shows the comparison between the KF and proposed NMCIF to exhibit the
advantage of the information type filter when the initial condition is largely uncertain. The
initial covariance matrix in KF is set to 1, but the initial information matrix in NMCIF is
set to a small positive value (10−6). Figure 5a,b show the estimation values of xk,1 and xk,2
in different algorithms compared with the ground truth on a segment of the data when
the initial estimation value deviates greatly from the initial true value. As one can see,
the NMCIF (the magenta solid curve) can converge quickly to the neighborhood of the
ground truth (the red dotted curve), and KF (the blue solid curve) converges slowly. Table 2
summarizes the statistical decoding error over 10 segments of data with large deviated
initial values. In terms of the averaged performance, the 2D-MSE of xk by NMCIF in rat_A
and rat_B decrease by 33.84% and 26.00% respectively compared with that of KF. It is
obvious that NMCIF is superior to KF when the initial estimation value deviates greatly
from the initial true values.
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Figure 5. The reconstruction of 2−D movements with the initial value deviates greatly from the truth.
The X−axis is the time, the Y−axis is the first (a) and the second (b) dimension of the movement.
The red dotted curve is ground truth, the blue solid curve is the Kalman filter, and the magenta solid
curve is the nonlinear maximum correntropy information filter.

Table 2. Statistical decoding performances across 10 segments of test data with large deviated
initial values.

Method 2D-MSE of xk in Rat_A 2D-MSE of xk in Rat_B

KF 2.8686 ± 0.2112 1.8142 ± 0.1218
NMCIF 1.8978 ± 0.0661 1.3425 ± 0.0477

As our algorithm demonstrates the best performance over KF and NN for neural
decoding, here we further discuss the robustness of the proposed algorithm with the
presence of large noise, which is generally seen in the online recorded neural activity [63].
Here 3.3% of time instances are added randomly with large noise, which corresponds to
rk in Equation (8). Figure 6a,b show one segment of movement decoding using nonlinear
information filter and the proposed method. In these figures, the red dotted curve denotes
the ground truth and the blue asterisks denote the timing with large noise. The performance
of NIF and NMCIF are presented for comparison. From the 410th time step to the 420th
time step and the 460th time step to the 470th time step in Figure 6a and the 440th time
step to the 450th time step in Figure 6b, we can see that the curve of NMCIF (the magenta
solid curve) is smoother than that of NIF (the black solid curve) because of the usage of
correntropy against the heavy-tailed non-Gaussian noise. The statistical 2D-MSEs of xk by
NIF and NMCIF across 10 data segments are summarized in Table 3, respectively. Note
that NMCIF_A denotes the NMCIF using the information matrix in Equation (30), and
NMCIF_B denotes the NMCIF using the information matrix in Equation (32). In terms
of the averaged performance, the 2D-MSE of NMCIF_B in rat_A and rat_B decrease by
29.54% and 8.97% respectively compared with that of NIF. Therefore, NMCIF exhibits
better performance than NIF in non-Gaussian noise. The 2D-MSE of NMCIF_B is less than
that of NMCIF_A, which indicates that the information matrix in Equation (32) may be
relatively better in NMCIF.
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Figure 6. The reconstruction of 2−D movements affected by noisy observation. The X−axis is the
time, The Y−axis is the first (a) and the second (b) dimension of the movement. The red dotted curve
is ground truth, the black solid curve is the nonlinear information filter, and the magenta solid curve
is the nonlinear maximum correntropy information filter.

Table 3. Statistical decoding performances across 10 segments of test data affected by non-
Gaussian noise.

Method 2D-MSE of xk in Rat_A 2D-MSE of xk in Rat_B

NIF 0.4113 ± 0.1165 0.4962 ± 0.0456
NMCIF_A 0.2933 ± 0.0630 0.4548 ± 0.0453
NMCIF_B 0.2898 ± 0.0637 0.4517 ± 0.0437

5. Discussion and Conclusions

BMI records and decodes the neural signals to predict movement intents with the goal
of helping better the lives of motor-impaired patients by restoring motor functions. As a
widely-used decoding algorithm, KF is usually adopted to estimate the motor as the states
from neural activity observations with the linear assumption and Gaussian noise. However,
the nervous systems are nonlinear in general, and the observations are high-dimensional
because recordings are collected from hundreds of neurons and could be very noisy,
and the initial movement states of disabled patients cannot always be known. All these
factors would result in the performance degradation of the KF. In this paper, we propose a
nonlinear maximum correntropy information filter to derive a state in the filtering process
from the noisy high-dimensional measurements. A nonlinear model is used to preprocess
the high-dimensional neural observations into the same dimensionality as the states, which
allows the connectivity among neurons to be considered. The correntropy criterion is
adopted to address the presence of the non-Gaussian noise. The information matrix of
the state is derived with less sensitivity to the state’s initial conditions. We provide an
analysis of the convergence condition and robustness. The proposed algorithm is applied
to decode the movements from real neural data collected from rats performing a two-lever
discrimination task. The 2D reconstruction error (2D-MSE) of NMCIF in rat_A decreases
by 57.62% and 6.91% compared with those of KF and NN, and the 2D-MSE of NMCIF in
rat_B decreases by 25.89% and 5.17%. The results demonstrate that the nonlinear model
considering the connection of neural activities contributes to better estimation performance.
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When the initial estimation value deviates greatly from the initial true value, the 2D-MSEs
of NMCIF in rat_A and rat_B decrease by 33.84% and 26.00% respectively compared with
those of KF. These exhibit the superiority of the information matrix type filter. Moreover,
the 2D-MSEs of NMCIF in rat_A and rat_B decrease by 29.54% and 8.97% respectively
compared with those of NIF in the presence of heavy-tailed non-Gaussian noise showing
the proposed algorithm’s superiority to the NIF. These results confirm the effectiveness of
the proposed algorithm, which potentially improves the decoding performance for BMI. In
our study, the NN used as the nonlinear approximator is not limited to MLP but can also be
RNN etc., as RNN is usually used in speech recognition and natural language processing.
In the area of motor intention estimation, it has been recently used to classify the letter
shapes using invasive brain signals [37]. However, the training of MLP is much simpler
than the backpropagation through time in RNN. Our method follows the combination of
the neural network and simple state-observation model. It inherits a simple explanation
on state dynamics and observation model, which is correspondingly the neural tuning
property and neural connectivity. On the other hand, the neural tuning property generally
changes over time [64,65], the performance of static decoder may decrease if we use the
fixed observation model. Thus considering the adaptation in the neural system, the neural
network in our method allows the introduction of adaptive nonlinear models [66,67] to
replace the stationary observation model. Our study currently uses invasive recordings on
rat’s single neuron spikes. The rat is an ideal subject for estimating motor intention and
is widely used in many papers [68–70], and the Kalman filter has been used in rats [39],
monkeys [40], and human subjects [71]. We plan to utilize our algorithm on non-human
primates and patients in the future. As more electrodes could be implanted in such subjects,
the recorded neural signals would build higher dimensional observations. We would
expect the superiority of the proposed algorithm to be clearer on these data.
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Appendix A. Derivation Process from Equation (26) to Equation (7)

In this part, we derive Equation (26) to Equation (7). According to Equations (24) and (26),
the following equations can be:

Mk = Sk

[
In
In

]
=

[
Sχ,k 0

0 SV,k

][
In
In

]
=

[
Sχ,k
SV,k

]
, (A1)

C(t−1)
k =

[
C(t−1)

χ,k 0

0 C(t−1)
V,k

]
, (A2)
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Dk = Sk

[
xk

g(yk)

]
=

[
Sχ,kxk

SV,kg(yk)

]
, (A3)

(
MT

k C(t−1)
k Mk

)−1
=
[
ST

χ,kC(t−1)
χ,k Sχ,k + ST

V,kC(t−1)
V,k SV,k

]−1
. (A4)

Using the following matrix inversion lemma:(
A + BD−1C

)−1
= A−1 −A−1B(D + CA−1B)−1CA−1, (A5)

ST
χ,kC(t−1)

χ,k Sχ,k → A, In → B,

In → C, ST
V,kC(t−1)

V,k SV,k → D−1.
(A6)

Equation (A4) can also be written as:(
MT

k C(t−1)
k Mk

)−1
=S−1

χ,k

(
C(t−1)

χ,k

)−1(
ST

χ,k

)−1
− S−1

χ,k

(
C(t−1)

χ,k

)−1(
ST

χ,k

)−1

×
(

S−1
V,k

(
C(t−1)

V,k

)−1(
ST

V,k

)−1
+ S−1

χ,k

(
C(t−1)

χ,k

)−1(
ST

χ,k

)−1
)−1

× S−1
χ,k

(
C(t−1)

χ,k

)−1(
ST

χ,k

)−1
.

(A7)

By Equations (A1)∼ (A3), we have:

MT
k C(t−1)

k Dk = ST
χ,kC(t−1)

χ,k Sχ,kxk + ST
V,kC(t−1)

V,k SV,kg(yk). (A8)

By substituting Equations (A7) and (A8) into Equation (26), we have Equation (7).

Appendix B. The Relationship of the Influence Function and Asymptotic
Covariance Matrix

Following [57], we derive the relationship of the IF to the asymptotic covariance matrix
of the estimation error vector. Using a form of Taylor expansion involving the derivative of
the functional to express the estimator T(A) yields:

T(A) = T(A0) + T′(A− A0) + rem(A− A0), (A9)

where rem(A − A0) is a remainder term. According to the von Mises expansion and
assuming the IF exists, Equation (A9) can be written as:

T(A) = T(A0) +
∫

IF(e, A0)d(A− A0) + rem(A− A0). (A10)

Since the Fisher consistency at A0, obtained by
∫

IF(e, A0)d(A0) = 0, we have:

T(A) = T(A0) +
∫

IF(e, A0)dA + rem(A− A0). (A11)

For A = Fm(e) with Fm(e) being the empirical distribution function, obtained by

Fm(e) = (1/m)
m
∑

i=1
u(e− ei) with u(·) being the unit step function, the integral term in

Equation (A11) can be written in linear term as:

∫
IF(e, A0)dFm =

1
m

m

∑
i=1

IF(ei, A0). (A12)
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Then, we have:

√
m(T(Fm)− T(A0)) =

1√
m

m

∑
i=1

IFi(e, A0) +
√

mrem(Fm − A0). (A13)

If the remainder term converges in probability to zero, then by virtue of the central
limit theorem and Slutsky’s lemma, the probability distribution of

√
m(T(Fm)− T(A0))

tends to N(0, Λk), with an asymptotic covariance matrix given by:

P̂k = E
[
IF · IFT

]
. (A14)

Appendix C. The Derivation of Influence Function

For the sake of this discuss, we omit the time step k. From Equation (24), we can obtain
the residual vector e = D−Mx. Consider a ε-contamination model A = (1− ε)A0 + ε∆e,
where A0 is the target distribution, ∆e is the probability mass at e, and ε is the contaminating
ratio, and define the cumulative probability distribution of the residual vector as A0(e). In
general, the state estimate based on correntropy can be obtained by solving Equation (26),
which can be written in an equivalent form as:

2n

∑
i=1

λ(ei, mT
i , x) =

2n

∑
i=1

Gσ(ei)eimT
i = 0. (A15)

Let T(A) be an estimator based on correntropy (i.e., state estimate x̂k at the distribution
A), which is written in a functional form of A. If each λ(ei, mT

i , x) in Equation (A15) is
left-multiplied by probability mass 1

2n , and from the Glivenko–Cantelli theorem [72],
Equation (A15) asymptotically tends to:∫

λ
(

e, mT , T(A)
)

dA = 0, (A16)

where e and mT are generalizations of ei and mT
i . According to [56], the asymptotic IF of

T(A) is defined as:

IF(e, mT , A0, T) =
∂T(A)

∂ε

∣∣∣∣
ε=0

= lim
∆ε→0

T((1− ε)A0 + ε∆e)− T(A0)

ε
. (A17)

To derive the expression of IF, we substitute the ε-contamination model A = (1−
ε)A0 + ε∆e into Equation (A16) to yield:∫

λ
(

e, mT , T(A)
)

dA

=
∫

λ
(

e, mT , T(A)
)

d((1− ε)A0 + ε∆e)

=
∫

λ
(

e, mT , T(A)
)

dA0 + ε
∫

λ
(

e, mT , T(A)
)

d(∆e− A0) = 0.

(A18)

Taking the differentiation of Equation (A18) with respect to ε yields:

∂

∂ε

∫
λ
(

e, mT , T(A)
)

dA0 +
∫

λ
(

e, mT , T(A)
)

d(∆e− A0)

+ ε
d
dε

∫
λ
(

e, mT , T(A)
)

d(∆e− A0) = 0.
(A19)
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Calculating Equation (A19) at ε = 0, and assuming T(A) at the distribution A0 follows
the Fisher consistency and regularity conditions, obtained by

∫
λ
(
e, mT , T(A0)

)
dA0 = 0,

and utilizing the interchangeability of differentiation and integration theorem, we have:∫
∂

∂ε
λ
(

e, mT , T(A)
)

dA0

∣∣∣∣
ε=0

+
∫

λ
(

e, mT , T(A)
)

d(∆e)
∣∣∣
ε=0

= 0. (A20)

Utilizing the shifting property of the ∆e yields:∫
∂

∂ε
λ
(

e, mT , T(A)
)

dA0

∣∣∣∣
ε=0

+ λ
(

e, mT , T(A0)
)
= 0. (A21)

Assuming λ(·) is continuous and measurable and λ′(·) is measurable, we have:∫
∂

∂ε
λ
(

e, mT , T(A)
)

dA0

∣∣∣∣
ε=0

+ λ
(

e, mT , T(A0)
)

=
∫

∂λ
(
e, mT , T(A)

)
∂T(A)

∣∣∣∣∣
T(A0)

· ∂T(A)

∂ε

∣∣∣∣
ε=0

dA0 + λ
(

e, mT , T(A0)
)
= 0.

(A22)

Since T(A) is x̂k at the distribution A, we have:

IF(e, mT , A0, T) =
∂T(A)

∂ε

∣∣∣∣
ε=0

= −

∫ ∂λ
(
e, mT , T(A)

)
∂T(A)

∣∣∣∣∣
T(A0)

dA0

−1

λ
(

e, mT , T(A0)
)

= −

∫ ∂λ
(
e, mT , x

)
∂x

∣∣∣∣∣
T(A0)

dA0

−1

λ
(

e, mT , T(A0)
)

.

(A23)

Taking the differentiation of λ
(
e, mT , x

)
in Equation (A23) with respect to x yields:

∂λ(e, mT , xk)

∂xk
=

∂ϕ(e)
∂xk

mT =
∂ϕ(e)

∂e
∂e

∂xk
mT = −ϕ′(e)mTm. (A24)

where ϕ(e) = Gσ(e)e.
By substituting Equations (24), (A15), and (A24) into Equation (A23) yields:

IF(e, mT , A0, T) =
[∫

ϕ′(e)mTmdA0

]−1

T(A0)
ϕ(e)mT . (A25)

The integral in Equation (A25) can be regarded as computing the ensemble average of
the function of the term ϕ′(e) for every

(
mT

i mi
)
, i = 1, . . . , 2n, and it can be factored out as:∫

ϕ′(e)mTmdA0 = EA0

[
ϕ′(e)

]
MTM. (A26)
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Then, we have:

IF(e, mT , A0, T) =
ϕ(e)

EA0 [ϕ
′(e)]

[
MTM

]−1
mT . (A27)

Since EA0 [ϕ
′(e)] is a constant (please see in Appendix D) and

(
MTM

)
mT is a known

matrix, the IF in Equation (A27) is proportional to ϕ(e). IF can evaluate the influence of
each elements of the vector ek in Equation (24), i.e.,

IF(e, mT , A0, T) =
ϕ(dk,i −mk,ixk)

EA0 [ϕ
′(e)]

[
MT

k Mk

]−1
mT

k,i, i = 1, . . . , 2n. (A28)

Appendix D. The Solution of EA0 [ϕ
′(e)] and EA0

[
ϕ2(e)

]
Assume the distribution A0 obeying a Gaussian distribution with zero mean and

variance θ, we have:

EA0

[
ϕ′(e)

]
=
∫ +∞

−∞
ϕ′(e)dA0

=
∫ +∞

−∞

(
exp

(
− e2

2σ2

)
− e2

σ2 exp
(
− e2

2σ2

))
dA0

=
∫ +∞

−∞
exp

(
− e2

2σ2

)
1√
2πθ

exp
(
− e2

2θ2

)
de

−
∫ +∞

−∞

e2

σ2 exp
(
− e2

2σ2

)
1√
2πθ

exp
(
− e2

2θ2

)
de

=
1√
2πθ

∫ +∞

−∞
exp

− e2

2 σ2θ2

σ2+θ2

de− 1√
2πθσ2

∫ +∞

−∞
e2 exp

− e2

2 σ2θ2

σ2+θ2

de

=
σ√

σ2 + θ2
+

1√
2πθσ2

σ2θ2

σ2 + θ2

∫ +∞

−∞
ed exp

− e2

2 σ2θ2

σ2+θ2


=

σ√
σ2 + θ2

+
θ√

2π(σ2 + θ2)

 e · exp

− e2

2 σ2θ2

σ2+θ2

∣∣∣∣∣∣
+∞

−∞

−
∫ +∞

−∞
exp

− e2

2 σ2θ2

σ2+θ2

de


=

σ√
σ2 + θ2

+
θ√

2π(σ2 + θ2)

(
−
√

2πσθ√
σ2 + θ2

)

=
σ3

(σ2 + θ2)
√

σ2 + θ2

. (A29)
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EA0

[
ϕ2(e)

]
=
∫ +∞

−∞
ϕ2(e)dA0

=
∫ +∞

−∞

(
e2 exp

(
− e2

σ2

))
dA0

=
∫ +∞

−∞
e2 exp

(
− e2

σ2

)
1√
2πθ

exp
(
− e2

2θ2

)
de

=
1√
2πθ

∫ +∞

−∞
e2 exp

− e2

2 σ2θ2

σ2+2θ2

de

= − 1√
2πθ

σ2θ2

σ2 + 2θ2

∫ +∞

−∞
ed exp

− e2

2 σ2θ2

σ2+2θ2


= − σ2θ√

2π(σ2 + 2θ2)

 e · exp

− e2

2 σ2θ2

σ2+2θ2

∣∣∣∣∣∣
+∞

−∞

−
∫ +∞

−∞
exp

− e2

2 σ2θ2

σ2+2θ2

de


= − σ2θ√

2π(σ2 + 2θ2)

(
−
√

2πσθ√
σ2 + 2θ2

)

=
σ3θ2

(σ2 + 2θ2)
√

σ2 + 2θ2

. (A30)
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