
fncom-15-755499 November 11, 2021 Time: 13:53 # 1

ORIGINAL RESEARCH
published: 11 November 2021

doi: 10.3389/fncom.2021.755499

Edited by:
Oliver Faust,

Sheffield Hallam University,
United Kingdom

Reviewed by:
Mariofanna Milanova,

University of Arkansas at Little Rock,
United States

Rory Boyle,
Trinity College Dublin, Ireland

*Correspondence:
Seung Wan Kang

seungwkang@imedisync.com

Received: 09 August 2021
Accepted: 25 October 2021

Published: 11 November 2021

Citation:
Kim NH, Yang DW, Choi SH and

Kang SW (2021) Machine Learning
to Predict Brain Amyloid Pathology

in Pre-dementia Alzheimer’s Disease
Using QEEG Features and Genetic

Algorithm Heuristic.
Front. Comput. Neurosci. 15:755499.

doi: 10.3389/fncom.2021.755499

Machine Learning to Predict Brain
Amyloid Pathology in Pre-dementia
Alzheimer’s Disease Using QEEG
Features and Genetic Algorithm
Heuristic
Nam Heon Kim1, Dong Won Yang2, Seong Hye Choi3 and Seung Wan Kang1,4*

1 iMediSync Inc., Seoul, South Korea, 2 Department of Neurology, St. Mary’s Hospital, Seoul, South Korea, 3 Department
of Neurology, Inha University School of Medicine, Incheon, South Korea, 4 National Standard Reference Data Center
for Korean EEG, Seoul National University College of Nursing, Seoul, South Korea

The use of positron emission tomography (PET) as the initial or sole biomarker of
β-amyloid (Aβ) brain pathology may inhibit Alzheimer’s disease (AD) drug development
and clinical use due to cost, access, and tolerability. We developed a qEEG-ML
algorithm to predict Aβ pathology among subjective cognitive decline (SCD) and mild
cognitive impairment (MCI) patients, and validated it using Aβ PET. We compared QEEG
data between patients with MCI and those with SCD with and without PET-confirmed
beta-amyloid plaque. We compared resting-state eyes-closed electroencephalograms
(EEG) patterns between the amyloid positive and negative groups using relative power
measures from 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, O2), divided into eight frequency bands, delta (1–4 Hz), theta
(4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–12 Hz), beta 1 (12–15 Hz), beta 2 (15–
20 Hz), beta 3 (20–30 Hz), and gamma (30–45 Hz) calculated by FFT and denoised
by iSyncBrain R©. The resulting 152 features were analyzed using a genetic algorithm
strategy to identify optimal feature combinations and maximize classification accuracy.
Guided by gene modeling methods, we treated each channel and frequency band
of EEG power as a gene and modeled it with every possible combination within a
given dimension. We then collected the models that showed the best performance and
identified the genes that appeared most frequently in the superior models. By repeating
this process, we converged on a model that approximates the optimum. We found
that the average performance increased as this iterative development of the genetic
algorithm progressed. We ultimately achieved 85.7% sensitivity, 89.3% specificity, and
88.6% accuracy in SCD amyloid positive/negative classification, and 83.3% sensitivity,
85.7% specificity, and 84.6% accuracy in MCI amyloid positive/negative classification.

Keywords: EEG, Alzheimer’s disease (AD), beta-amyloid, machine learning, diagnosis, genetic algorithm, pre-
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INTRODUCTION

Dementia is a fatal disorder characterized by progressive decline
in two or more cognitive abilities including memory, language,
executive and visuospatial functions, personality, and behavior
(Braak and Braak, 1995). Alzheimer’s disease (AD) is the
most common cause (nearly 70%) of dementia worldwide. AD
is accompanied by the accumulation of β−amyloid plaques
and neurofibrillary tangles of hyperphosphorylated tau protein,
causing progressive neurodegeneration in specific brain regions
(Hyman et al., 2012; Kang et al., 2015).

Alzheimer’s disease is difficult to diagnose in its early stages
because the cognitive decline can be subtle. Beta-amyloid is a
well-characterized diagnostic index of AD and its accumulation
can be used to predict progression from mild cognitive
impairment (MCI) to dementia (Schipke et al., 2012). In many
countries, drugs for AD can only be prescribed after beta-
amyloid has been detected (Seubert et al., 2000; van Rossum
et al., 2012). Although cerebrospinal fluid and positron emission
tomography (PET) biomarkers, combined with relatively new
clinical criteria, can help diagnose AD, they are both invasive and
costly (Dubois et al., 2014).

Electroencephalograms (EEG) detect electrical activity in the
brain using multiple scalp electrodes. Previous studies have
identified several EEG patterns characteristic of specific brain
diseases (Zhao and He, 2015; Siuly et al., 2016). Several studies
have identified specific EEG patterns that may differentiate
AD (Jeong, 2004) or MCI patients (Jelic et al., 1998, 2000;
Huang et al., 2000; Grunwald et al., 2001) from normal subjects,
although their statistical power was weak due to small sample
sizes. Lehmann et al. (2007) had some success in classifying
AD and normal subjects using an artificial neural network
(ANN) with EEG features (Lehmann et al., 2007). Buscema
et al. (2007) achieved approximately 92% accuracy in AD
and MCI classification using EEG markers as inputs to ANN
(Buscema et al., 2007), while Dauwels et al. (2009) reached 83
and 88% accuracy in classifying pre-dementia and mild AD,
respectively. Stomrud et al. (2010) found that relative theta
power was correlated with CSF tau/beta-amyloid ratio (Stomrud
et al., 2010). Mander et al. (2015) found that non-REM sleep
slow wave activity was correlated with beta-amyloid burden
(Mander et al., 2015). More recently, Babiloni et al. (2017)
achieved 75.5% accuracy in classifying AD patients and normal
subjects based on features such as EEG power ratios, low-
resolution brain electromagnetic tomography (LORETA), and
coherences. Meanwhile, Farina et al. (2020) tried to classify
AD, MCI, and healthy subjects using EEG combined MMSE
score but no benefit was found relative to MMSE score
alone (Farina et al., 2020). Smailovic et al. (2018) investigated
correlations of quantitative EEG and synchronization with CSF
biomarkers. And Michels et al. (2021) investigated EEG-fMRI
and amyloid burden.

Recently, there have been various challenges to find AD
biomarkers using less invasive biomarkers. Shen et al. (2020) used
plasma biomarker to identify amyloid, tau, or neurodegeneration.
Stockmann et al. (2020) designed a panel of structure-based Aβ

plasma biomarkers as a prognostic tool for future progression

from SCD to MCI or AD. Buegler et al. (2020) built digital
biomarker-based prognostic models which predicted the risk to
progress to dementia within 3 years. Those digital biomarker-
based models are reviewed by Cavedoni et al. (2020).

Although previous studies have noted significant differences
in EEG patterns among AD, MCI, and normal subjects,
suggesting the capacity for accurate classification and the
potential of EEG biomarker refinement for neurodegenerative
diseases, none have succeeded in the development of a reliable
EEG biomarker for beta-amyloid plaque accumulation. The
present study describes our application of machine learning
methods to provide high classification accuracy in discriminating
the presence or absence of these plaques in pre-dementia patients.

A genetic algorithm is a search heuristic method inspired by
the theory of natural evolution that has wide applications across
science, industry, and beyond. It is especially suited to solving
complex problems. The search begins with the best answer for
a problem being expressed in a set form of data structure,
which is gradually transformed to produce increasingly useful
answers. It is based on the logic that competition between models
containing various genes will gradually increase the proportion
of genes included in the best models, ultimately leading to a
model that contains only the most suitable genes for maximizing
survival. Genetic algorithms have been shown to produce optimal
combinations of features at relatively low computation costs
(Babatunde et al., 2014).

RESEARCH METHOD

Materials
The present study employed a multicenter cohort design using
EEG data from patients diagnosed with subjective cognitive
decline (SCD) or MCI, each of which was also assessed using
amyloid PET scans. Table 1 presents the distribution of subjects
by institution and diagnosis. We randomly selected 20% of
subjects (N = 28; 7 SCD amyloid positive, 28 SCD amyloid
negative, 6 MCI amyloid positive, and 7 MCI amyloid negative)
to exclude from the model training so they could be used for
later verification. Since the ratio of positive to negative data
was markedly skewed, being approximately 1:2.5, the positive
data were doubled to balance the data set. As an augmentation
method, each of the positive data were divided into the first half

TABLE 1 | Number of subjects by institution, diagnosis, age, and gender.

SCD (+) SCD (−) MCI (+) MCI (−) Total

Institution A 16 69 9 14 108

Institution B 18 77 20 20 135

Age
(mean ± sd)

72.0 ± 5.9 71.3 ± 6.9 74.5 ± 6.1 71.5 ± 6.8 71.8 ± 6.7

Gender (M/F) 18/16 94/52 18/11 15/19 145/98

Total 34 146 29 34 243

SCD (+), SCD (subjective cognitive decline) positive, amyloid PET positive; SCD
(−), SCD positive, amyloid PET negative; MCI (+), MCI (mild cognitive impairment)
positive, amyloid PET positive; MCI (−), MCI negative, amyloid PET negative.
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and the second half and treated as two separate set. We confirmed
the split-half comparisons of each channel of each EEG data
set was over 0.90.

Diagnostic Criteria for Subjective Cognitive Decline
and Mild Cognitive Impairment
The SCD inclusion criteria were (1) persistent subjective
complaints of cognitive decline, (2) ≥ 60 years of age, (3) at least
6 years of primary school, (4) a memory test score below the
normative mean by 0–1.5 standard deviations (SD), and deficits
of ≤1.5 SD on the other cognitive tests used, and (5) informed
consent of the participant. Individuals showing a deficit of >1.5
SD on any cognitive test were excluded because of the possibility
of MCI. This is commonly used standard in Korean Alzheimer’s
disease society (Ho and Yang, 2020).

We defined MCI using Petersen’s criteria, which presumes
MCI in patients with objective memory impairment for their
age, but normal performance in activities of daily living (ADL)
(Petersen, 2004).

Diagnostic Criteria for Amyloid Positron Emission
Tomography Result
Amyloid PET scans were performed to detect amyloid beta
(Aβ) plaques in the brain. Cortical Aβ was quantified using
the standardized uptake value ratio (SUVR) normalized to the
cerebellar gray matter. 18F-florbetaben PET images were acquired
and processed by the precedent method. Individual 3D T1-
weighted magnetic resonance (MR) images were preprocessed
and co-registered into the corresponding PET images. The
MR images normalized to a standardized stereotaxic space
were divided into three probabilistic tissue maps composed of
gray matter, white matter, and cerebrospinal fluid. A volume-
based template of the 90 regions-of-interest was aligned to
the individual MR image. The SUVR was calculated using
whole voxels of 18F-florbetaben PET images referenced to the
cerebellum. The global SUVR was estimated by averaging 90
regional uptake values.

Electroencephalograms Recordings
All subjects were instructed to relax with their eyes closed
and to refrain from movement and talking. EEG data were
recorded (bandpass: 0.1–45.5 Hz; Natus Nicolet EEG v32, Nihon
Kohden JE921A, and Grass AS40) in the resting-state, eyes-closed
condition from 19 scalp electrodes positioned over the whole
head according to the International 10–20 System (Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, O2). A linked-ear reference electrode was noted if present,
but not deemed mandatory for the present study, to respect
standard internal protocols of the several clinical recording units.
In each case, a ground electrode was located between the Afz and
Fz electrodes. Electrode impedance was kept below 10 kOhm.
All recorded artifact-free EEG data were re-referenced offline
to a common average to harmonize the EEG data collected
using different reference electrodes. All data were digitalized
in continuous recording mode (approximately 3 min of EEG;
sampling rate: 200 or 250 Hz, to avoid aliasing).

Feature Generation
In each case, the relative power was used for the features. First, the
power spectral density of the EEG rhythms was computed using
an FFT analysis with 0.25 Hz of frequency resolution using the
iSyncBrain R© AI-driven auto-analysis system. Then, the signal was
decomposed into the following frequency bands: delta (1–4 Hz),
theta (4–8 Hz), alpha 1 (8–10 Hz), alpha 2 (10–12 Hz), beta 1 (12–
15 Hz), beta 2 (15–20 Hz), beta 3 (20–30 Hz), and gamma (30–
45 Hz). For each channel and frequency band, the average power
during the recoding was calculated and treated as a feature. This
yielded 152 features in total (19 channels× 8 frequency bands).

Feature Selections
To successfully predict amyloid positive or negative cases, among
the many features associated with amyloid-positive EEG data, we
selected those in which the change was most noticeable in the
channel, frequency. In many previous machine learning studies,
features were selected using various statistical analysis methods to
identify those showing significant differences between the target
group and the control group. Firstly, we conducted paired t-test
to find statistically different features between amyloid positive
and negative group. Additionally, the present study adopted a
kind of exhaustive approach combined with a heuristic genetic
search algorithm.

We attempted to exhaustively classify based on every
combination of features. Thus, if we used one feature for
classification, there were 152 cases. If we used a two-dimensional
combination of features exhaustively, there were 11,476 cases
(152× 151/2), while a three-dimensional combination of features
would yield 573,800 cases (152× 151× 150/3× 2). We calculated
the accuracy, sensitivity, and specificity for every case. However,
there would be 21,374,050 (152 × 151 × 150 × 149/4 × 3 × 2)
cases in a four-dimensional combination, and 632,671,880
(152 × 151 × 150 × 149 × 148/5 × 4 × 3 × 2) cases in a five-
dimensional combination. To reduce the computation time this
would demand, we used a genetic algorithm search heuristic to
reduce the number of features.

From classifications using a two-dimensional combination
and three-dimensional combination of features, we collected the
best combinations that showed the highest accuracy, and then
identified the features that were frequently included in those
“good models.” We assumed that the more frequently a feature
is found in a “good model,” the more important the feature
is to the desired output. Thus, we used the “good features” to
build a four-dimensional combination with them, rather than
using all 152 features. We then repeated this process using five-
dimensional models. Figure 1 represents the schematic plot of
feature selection with genetic algorithm heuristic.

Machine Learning Models
The significant feature sets obtained by the feature selection
procedure were then entered into representative machine
learning models, SVM, and the accuracy was calculated by
fivefold cross-validation. The feature set that showed more than
75% of accuracy in the above verification was used in the
production of this model as an important feature set.
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FIGURE 1 | Schematic plot of feature selection with genetic algorithm. First, we make models using all three-dimensional combinations of features. Then we
compute the accuracy of each model and identify the genes (EEG features) frequently present in the highest-performing model. We only use the best-performing
genes to create a generation of models that are one dimension higher.

Evaluation of Models
We input the test data (13 positive and 35 negative cases) which
had been set aside for further validation. The final performance
of each model was determined by the result of the test validation.
The models with the highest accuracy were selected as the final
model candidates.

RESULTS

Feature Selection
Group differences in EEG between amyloid positive and negative
were calculated by t-test. Figures 2, 3 illustrate group differences
calculated by t-test in EEG absolute power, and relative power
respectively.

EEG power of amyloid positive group was stronger than
amyloid negative group in following frequency bands and
channels:

absolute power—delta F3, F7, Fz, Cz, C4,Pz, relative power—
delta Fp2, F3, Fz, F4, F7, C3, Cz, C4, Pz, P4, T6, O1, and beta1 Fp1,
Fp2, F3, Fz, F4, C3. On the other hand, EEG power of amyloid
positive group was weaker in following regions: absolute power—
gamma C3, T4, relative power—alpha Fp1, F3, Fz, C3, Cz, C4, Pz,
T6, and gamma Fp2, F7, F8, C4, T3, T4.

Meanwhile, most highly evaluated features selected by genetic
algorithm were as follows: Absolute power -delta F4, Fz, C4, Pz,
alpha1 Fp1, Fp2, beta2, C3, T5, P3, beta3 C3, T5, gamma F7,
F3, C3, T5 and relative power—delta C3, C4, F7, Cz, T6, P3,
Pz, P4, O1 theta T4, P3, alpha1 F3, T4, T5, Fz, F4, F7, alpha2
F3, Fz, F4, O1, O2, beta1 F4, C3, C4, O1, O2, beta2 F3, F7 and
gamma F8, C4, O2.

Every 5-dimentional models were built combining 5 of
those features. We performance of each model and choose
20 models which showed high accuracy both in cross
validation and test data.

Figure 4 shows the average performance of created models
with different number of features. We confirmed that as the
dimensions of features increased, we could decrease the number
of features considered good and thereby improve the average
performance of the models. The best models attained over 80%
accuracy. We identified the features that were most frequently
included in these models, and used them to create higher-
dimension models.

Multi-Model Ensembles and Weighting
The above-described process yielded multiple models with
different features, each of which achieved over 80% accuracy. To
make the final model more flexible and build a scoring system, we
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FIGURE 2 | Topomap showing group difference in EEG absolute power between amyloid positive and negative.

FIGURE 3 | Topomap showing group difference in EEG relative power between amyloid positive and negative.
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FIGURE 4 | Model performances with different number of features.

TABLE 2 | A schematic for composition of multiple sub-models and the scoring system.

Unknown
data

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Average
score

Predicted
result

1 0 0 0 0 0 1 0 1 0 0 0.2 Negative

2 0 0 0 0 1 0 0 0 0 0 0.1 Negative

3 0 0 0 0 0 0 0 0 0 0 0 Negative

4 1 1 1 1 1 0 1 0 1 1 0.8 Positive

5 1 0 0 0 0 0 0 0 0 0 0.1 Negative

6 0 0 0 0 0 0 0 0 0 0 0 Negative

7 1 1 1 1 1 1 1 1 1 1 1 Positive

8 0 0 0 0 0 0 0 0 0 0 0 Negative

9 0 1 1 1 1 1 0 1 1 1 0.8 Positive

10 1 0 0 1 1 1 0 1 1 1 0.7 Positive

11 0 0 0 0 0 0 0 0 0 0 0 Negative

12 1 1 1 1 1 1 0 1 1 1 0.9 Positive

combined multiple models that were designed to classify amyloid
positive or negative cases. For example, the final (SCD amyloid
positive vs. SCD amyloid negative) classifier consists of 20 sub-
models. If all 20 sub-models predicted the unknown data as
positive, the score would be 1.0; if half the models predicted the
data as positive, the score would be 0.5; and if none of the models
predicted the data as positive, the score would be 0. Table 2
illustrates a schematic for composition of multiple sub-models
and the scoring system.

Final Performance
Figure 5 illustrates how the model scored amyloid negative
samples and amyloid positive samples. The cutoff score for SCD
was 0.58 and that for MCI was 0.45.

Classification
The best SCD model achieved 85.7% sensitivity, 89.3% specificity,
and 88.6% accuracy. The best MCI model achieved 83.3%
sensitivity, 85.7% specificity, and 84.6% accuracy. Balanced

FIGURE 5 | Box plot of amyloid classification score.

accuracy for the best SCD model was 87.5% and for the best MCI
model was 84.5%. The confusion matrix of classification is shown
in Table 3.
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TABLE 3 | Confusion matrix of classification.

SCD True
positive

True
negative

MCI True
positive

True
negative

Predicted
positive

6 3 Predicted
positive

5 1

Predicted
negative

1 25 Predicted
negative

1 6

CONCLUSION

Overview
We collected resting state eyes-closed EEG rhythms in pre-
dementia subjects, each of whom also underwent amyloid PET
analysis. We aimed to discriminate and classify an amyloid
positive pre-dementia group and amyloid negative pre-dementia
group from their EEG features alone. While several previous
studies have investigated differences in the EEG power patterns
between amyloid positive and negative patients, none have
confirmed or quantified the plaque at a molecular level. Thus, we
have only had correlational data relating amyloid plaque and EEG
patterns (Smailovic et al., 2018).

An additional limitation has been the complexity of the feature
sets used, which render analysis too challenging for traditional
statistical approaches. To address this challenge, we performed
feature selection using a genetic algorithm strategy to identify
the best combinations of channels and frequency bands of
EEG power to achieve the most accurate classification. While
this is a relatively exhaustive method, and is more substantive
than statistical analysis alone, there remain limitations. In our
approach, as the dimension of features increases, we collect
better features for the next dimension in order to reduce the
computational cost. Therefore, it is not fully exhaustive, and there
is the possibility of missing better combinations. Furthermore,
there is also the possibility of overfitting.

Currently, one of the most commonly used tests for AD
diagnosis is the amyloid PET scan, since amyloid plaque is a
specific marker of AD. However, amyloid PET is costly and
carries risks associated with radiation exposure, both of which
limit its applications. There is general agreement that it is
important to detect AD in its earliest stages, to both reduce
healthcare costs and to halt or slow its progression. We chose
QEEG to assist in early detection, since it is far less expensive,
readily available, non-invasive, and safe.

The present findings suggest that accurate classification for
beta-amyloid accumulation in the brain based on QEEG alone is
possible, which implies that QEEG is a promising biomarker for
beta-amyloid. Since QEEG is more accessible, cost-effective, and
safer than amyloid PET, QEEG-based biomarkers may play an
important role in the diagnosis and treatment of AD. Further, our
findings suggest that genetic algorithms can be useful for feature
selection in QEEG, greatly reducing the number of relevant
feature combinations among brain signals.

Future Work
To address the overfitting problems inherent in studies
using limited numbers of subjects within a single institution,
we are now pursuing more third-party data from diverse

institutions in our validation efforts. It is noteworthy that
several EEG studies have used a variety of EEG features in
addition to band power, such as power ratios, sLORETA, and
functional connectivity.

We also plan to more closely investigate the subset of
misclassified subjects from the present study to identify specific
patterns and methods they may have contributed to these
errors. We will also continue to develop features such as band
power ratio, sex- and age-matched normative z-score power,
source cortical activity from standardized low-resolution brain
electromagnetic tomography (sLORETA), and their correlations.
One especially promising approach is to apply deep learning
using graphically represented QEEG data to permit analysis
via an ANN. Using these and other approaches, we expect to
extend our capabilities toward the classification of beta-amyloid
plaque with more than 80% accuracy, regardless of the patient’s
diagnosis: MCI or SCD.
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Farina, F. R., Emek-Savaş, D. D., Rueda-Delgado, L., Boyle, R., Kiiski, H., Yener,
G., et al. (2020). A comparison of resting state EEG and structural MRI for
classifying Alzheimer’s disease and mild cognitive impairment. NeuroImage
215:116795. doi: 10.1016/j.neuroimage.2020.116795

Grunwald, M., Busse, F., Hensel, A., Kruggel, F., Riedel-Heller, S., Wolf, H., et al.
(2001). Correlation between cortical theta activity and hippocampal volumes in
health, mild cognitive impairment, and mild dementia. J. Clin. Neurophysiol.
18, 178–184. doi: 10.1097/00004691-200103000-00010

Ho, S. H., and Yang, D. W. (2020). Risk factors predicting amyloid PET positivity
in patients with mild cognitive impairment and apolipoprotein E 3/3 genotypes.
J. Alzheimers Dis. 77, 1017–1024. doi: 10.3233/JAD-200439

Huang, C., Wahlund, L., Dierks, T., Julin, P., Winblad, B., and Jelic, V.
(2000). Discrimination of Alzheimer’s disease and mild cognitive impairment
by equivalent EEG sources: a cross-sectional and longitudinal study. Clin.
Neurophysiol. 111, 1961–1967. doi: 10.1016/S1388-2457(00)00454-5

Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C.,
et al. (2012). National institute on aging–Alzheimer’s association guidelines for
the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8,
1–13. doi: 10.1016/j.jalz.2011.10.007

Jelic, V., Dierks, T., Amberla, K., Almkvist, O., Winblad, B., and Nordberg,
A. (1998). Longitudinal changes in quantitative EEG during long-term
tacrine treatment of patients with Alzheimer’s disease. Neurosci. Lett. 254,
85–88.

Jelic, V., Johansson, S. E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., et al.
(2000). Quantitative electroencephalography in mild cognitive impairment:
longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol.
Aging 21, 533–540. doi: 10.1016/S0197-4580(00)00153-6

Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clin.
Neurophysiol. 115, 1490–1505. doi: 10.1016/j.clinph.2004.01.001

Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik,
K. H., et al. (2015). The precursor of Alzheimer’s disease amyloid A4 protein
resembles a cell-surface receptor. Nature 325, 733–736. doi: 10.1097/00002093-
198701030-00032

Lehmann, C., Koenig, T., Jelic, V., Prichep, L., John, R. E., Wahlund, L. O., et al.
(2007). Application and comparison of classification algorithms for recognition

of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods
161, 342–350. doi: 10.1016/j.jneumeth.2006.10.023

Mander, B. A., Marks, S. M., Vogel, J. W., Rao, V., Lu, B., Saletin, J. M., et al. (2015).
β-amyloid disrupts human NREM slow waves and related hippocampus-
dependent memory consolidation. Nat. Neurosci. 18, 1051–1057.

Michels, L., Riese, F., Meyer, R., Kälin, A. M., Leh, S. E., Unschuld, P. G., et al.
(2021). EEG-fMRI signal coupling is modulated in subjects with mild cognitive
impairment and amyloid deposition. Front. Aging Neurosci. 13:631172. doi:
10.3389/fnagi.2021.631172

Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern.
Med. 256, 183–194.

Schipke, C. G., Peters, O., Heuser, I., Grimmer, T., Sabbagh, M. N., Sabri, O., et al.
(2012). Impact of beta-amyloid-specific florbetaben pet imaging on confidence
in early diagnosis of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 33,
416–422. doi: 10.1159/000339367

Seubert, P. A., Vigo-Pelfrey, C., Shenk, D. B., and Barbour, R. (2000). Methods
for Aiding in the Diagnosis of Alzheimer’s Disease by Measuring Amyloid-B
Peptide (X-= 41) US Patent, US6114133A. Elan Pharmaceuticals, Inc., South
San Francisco, CA

Shen, X. N., Li, J. Q., Wang, H. F., Li, H. Q., Huang, Y. Y., Yang, Y. X., et al.
(2020). Plasma amyloid, tau, and neurodegeneration biomarker profiles predict
Alzheimer’s disease pathology and clinical progression in older adults without
dementia. Alzheimers Dement. 12:e12104. doi: 10.1002/dad2.12104

Siuly, S., Li, Y., and Zhang, Y. (2016). EEG Signal Analysis and Classification. Cham:
Springer.

Smailovic, U., Koenig, T., Kåreholt, I., Andersson, T., Kramberger, M. G., Winblad,
B., et al. (2018). Quantitative EEG power and synchronization correlate with
Alzheimer’s disease CSF biomarkers. Neurobiol. Aging 63, 88–95. doi: 10.1016/
j.neurobiolaging.2017.11.005

Stockmann, J., Verberk, I. M. W., Timmesfeld, N., Denz, R., Budde, B., Lange-
Leifhelm, J., et al. (2020). Amyloid-β misfolding as a plasma biomarker indicates
risk for future clinical Alzheimer’s disease in individuals with subjective
cognitive decline. Alzheimers Res. Ther. 12:169. doi: 10.1186/s13195-020-
00738-8

Stomrud, E., Hansson, O., Minthon, L., Blennow, K., Rosén, I., and Londos, E.
(2010). Slowing of EEG correlates with CSF biomarkers and reduced cognitive
speed in elderly with normal cognition over 4 years. Neurobiol. Aging 31,
215–223. doi: 10.1016/j.neurobiolaging.2008.03.025

van Rossum, I. A., Vos, S. J., Burns, L., Knol, D. L., Scheltens, P., Soininen,
H., et al. (2012). Injury markers predict time to dementia in subjects with
MCI and amyloid pathology. Neurology 79, 1809-1816 doi: 10.1212/WNL.
0b013e3182704056

Zhao, Y., and He, L. (2015). “Deep learning in the EEG diagnosis of Alzheimer’s
disease,” in Proceedings of the Computer Vision - ACCV 2014 Workshops Lecture
Notes in Computer Science, eds C. Jawahar and S. Shan. (Cham: Springer),
340-353.

Conflict of Interest: NK and SK report personal fees from iMediSync Inc.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kim, Yang, Choi and Kang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 November 2021 | Volume 15 | Article 755499

https://doi.org/10.3233/JAD-170703
https://doi.org/10.1002/dad2.12073
https://doi.org/10.1016/j.artmed.2007.02.006
https://doi.org/10.1016/j.artmed.2007.02.006
https://doi.org/10.3389/fnhum.2020.00245
https://doi.org/10.3389/fnhum.2020.00245
https://doi.org/10.1109/IEMBS.2009.5334862
https://doi.org/10.1016/S1474-4422(14)70090-0
https://doi.org/10.1016/S1474-4422(14)70090-0
https://doi.org/10.1016/j.neuroimage.2020.116795
https://doi.org/10.1097/00004691-200103000-00010
https://doi.org/10.3233/JAD-200439
https://doi.org/10.1016/S1388-2457(00)00454-5
https://doi.org/10.1016/j.jalz.2011.10.007
https://doi.org/10.1016/S0197-4580(00)00153-6
https://doi.org/10.1016/j.clinph.2004.01.001
https://doi.org/10.1097/00002093-198701030-00032
https://doi.org/10.1097/00002093-198701030-00032
https://doi.org/10.1016/j.jneumeth.2006.10.023
https://doi.org/10.3389/fnagi.2021.631172
https://doi.org/10.3389/fnagi.2021.631172
https://doi.org/10.1159/000339367
https://doi.org/10.1002/dad2.12104
https://doi.org/10.1016/j.neurobiolaging.2017.11.005
https://doi.org/10.1016/j.neurobiolaging.2017.11.005
https://doi.org/10.1186/s13195-020-00738-8
https://doi.org/10.1186/s13195-020-00738-8
https://doi.org/10.1016/j.neurobiolaging.2008.03.025
https://doi.org/10.1212/WNL.0b013e3182704056
https://doi.org/10.1212/WNL.0b013e3182704056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Machine Learning to Predict Brain Amyloid Pathology in Pre-dementia Alzheimer's Disease Using QEEG Features and Genetic Algorithm Heuristic
	Introduction
	Research Method
	Materials
	Diagnostic Criteria for Subjective Cognitive Decline and Mild Cognitive Impairment
	Diagnostic Criteria for Amyloid Positron Emission Tomography Result

	Electroencephalograms Recordings
	Feature Generation
	Feature Selections
	Machine Learning Models
	Evaluation of Models

	Results
	Feature Selection
	Multi-Model Ensembles and Weighting
	Final Performance
	Classification


	Conclusion
	Overview
	Future Work

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


