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Antimicrobial resistance (AMR) in enteric bacteria continues to be detected in

turkey flocks and retail products worldwide, including in Canada. However,

studies assessing linkages between on-farm antimicrobial use (AMU) and

the development of AMR are lacking. This study aims to identify AMU

characteristics that impact the development of AMR in the indicator bacteria

Escherichia coli in turkey flocks, building on the Canadian Integrated

Program for Antimicrobial Resistance Surveillance methodology for farm-

level AMU and AMR data integration. Two analytic approaches were

used: (1) multivariable mixed-effects logistic regression models examined

associations between AMU (any route, route-specific, and route-disease-

specific indication) summarized as the number of defined daily doses

in animals using Canadian standards ([nDDDvetCA]/1,000 kg-animal-days

at risk) and AMR and (2) multivariable mixed-effects Poisson regression

models studied the linkages between AMU and the number of classes to

which an E. coli isolate was resistant (nCRE. coli). A total of 1,317 E. coli

isolates from a network of 16 veterinarians and 334 turkey producers across

the five major turkey-producing provinces in Canada between 2016 and

2019 were used. Analysis indicated that AMR emerged with the use of

related antimicrobials (e.g., tetracycline use-tetracycline resistance), however,

the use of unrelated antimicrobial classes was also impacting AMR (e.g.,

aminoglycosides/streptogramins use-tetracycline resistance). As for studying

AMU-nCRE. coli linkages, the most robust association was between the

parenteral aminoglycosides use and nCRE. coli, though in-feed uses of four

unrelated classes (bacitracin, folate pathway inhibitors, streptogramins, and

tetracyclines) appear to be important, indicating that ongoing uses of

these classes may slow down the succession from multidrug-resistant to

a more susceptible E. coli populations. The analysis of AMU (route and
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disease-specific)-AMR linkages complemented the above findings, suggesting

that treatment of certain diseases (enteric, late-stage septicemic conditions,

and colibacillosis) are influential in the development of resistance to certain

antimicrobial classes. The highest variances were at the flock level indicating

that stewardship actions should focus on flock-level infection prevention

practices. This study added new insights to our understanding of AMU-AMR

linkages in turkeys and is useful in informing AMU stewardship in the turkey

sector. Enhanced surveillance using sequencing technologies are warranted

to explain molecular-level determinants of AMR.
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Introduction

Antimicrobial resistance (AMR) is a global health threat that
has limited the options for the treatment of bacterial infections
in animals and humans (McEwen and Collignon, 2018; Murray
et al., 2022). A recent comprehensive study estimated that
1.27 of 4.95 million human deaths in 2019 were attributed to
infection with antimicrobial-resistant bacteria (ARB) (Murray
et al., 2022). In addition, infections with ARB can have long-
term health effects by increasing hospital admissions, treatment
failures, morbidity, mortality, and economic burden (World
Health Organization [WHO], 2015, 2021; Dadgostar, 2019).
Since antimicrobial use (AMU) is a driver for the emergence
of AMR, local, national, and global public health stakeholders
have expressed concerns about the extent of AMU in humans
and food animals (Aidara-Kane et al., 2018; Agunos et al., 2020;
Ceccarelli et al., 2020; World Health Organization [WHO],
2021).

Antimicrobials have been used effectively to treat, control,
and prevent bacterial infections in poultry for decades; however,
AMU (Dorado-García et al., 2016; Callens et al., 2018; Luiken
et al., 2019; Van Gompel et al., 2019; Varga et al., 2019a;
Ceccarelli et al., 2020) enhances the selection pressure on
commensal and pathogenic enteric bacteria that favors the
development of AMR (Kolář et al., 2001; Landers et al., 2012;
Callens et al., 2018; Mughini-Gras et al., 2021). The zoonotic
transmission of ARB through consumption of contaminated
poultry products and contact with infected birds and their
contaminated environment (Brown et al., 2017; Varga et al.,
2018; Agunos et al., 2020) has also been demonstrated.

Globally, Canada is among the top 10 turkey producing
countries in terms of value in agricultural production (FAO,
2022). Canadian turkey production is an important commodity
to include in surveillance since approximately 157.8 million
kilograms of turkey meat is produced each year in Canada,
making this commodity the 4th most consumed animal protein
with a yearly per capita consumption of 3.8 kg per person

(Canadian Turkey Marketing Agency, 2020; Government of
Canada, 2021). In response to national and global mandates, the
poultry sector in North America is proactively implementing
AMU reduction strategies and gradually eliminating the
preventive use of medically important antimicrobials to contain
the emergence and dissemination of AMR (Prescott, 2019;
Turkey farmers of Canada, 2022). However, this policy
might limit the antimicrobial therapy options available to
treat bacterial infections in poultry, which could impact the
sustainability of the poultry industry (Agunos et al., 2021a,b).

Commensal Escherichia coli are part of the intestinal
flora of humans and animals and are broadly used in
many surveillance systems as indicator bacteria to study the
emergence, transmission, and spread of AMR determinants
in the ecosystem as they can be isolated efficiently and cost-
effectively from fecal and environmental samples (McEwen and
Fedorka-Cray, 2002). Commensal E. coli is also considered a
good indicator of the selection pressure of AMU due to their
ability to preserve, acquire and transmit AMR genes in the
intestinal flora of humans and animals (Kolář et al., 2001;
Lambrecht et al., 2019; Mughini-Gras et al., 2021).

Research studies have previously evaluated AMR in E. coli
isolated from turkey flocks and turkey meat worldwide
(Supplementary Table 1), including in Canada (Gosling et al.,
2012; Sheikh et al., 2012; Giovanardi et al., 2013; Boulianne
et al., 2016; Davis et al., 2018; Varga et al., 2019b; Agunos et al.,
2020; Tawyabur et al., 2020; Chrétien et al., 2021; Gholami-
Ahangaran et al., 2021; Mughini-Gras et al., 2021; Talavera-
González et al., 2021). However, surveillance information and
research studies in turkeys on the associations between the
development of AMR in enteric pathogens and flock-level AMU
have been relatively scarce during the last decade. The lower
turkey production volume compared to chicken and pork could
be one reason for the limited data available. Recently, however,
a European study found a high level of multidrug-resistant
E. coli isolates from turkeys and resistance to third and fourth-
generation cephalosporins (Ceccarelli et al., 2020). In another
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study involving turkeys in three European countries, resistance
to beta-lactams and colistin (by metagenomic sequencing)
and ampicillin and ciprofloxacin (by minimum inhibitory
concentration) were found to be positively associated with AMU
(Horie et al., 2021).

The Canadian Integrated Program for Antimicrobial
Resistance Surveillance (CIPARS) has recently reported a
decrease in total AMU that corresponded with a decrease in
multidrug-resistant (MDR) bacteria (Agunos et al., 2021a,b)
in turkeys. However, it is unclear how AMU practices, in
broad terms (i.e., shifts in AMU quantity, changes in the
route of administration, and the change in the proportion
of certain classes of antimicrobials for the prevention and
treatment of the most frequently occurring diseases of turkeys),
as it relates to the turkey sector’s AMU reduction strategy are
influencing the maintenance of MDR E. coli populations in
Canadian turkey flocks. In the context previously described,
this study aimed to (1) investigate associations between AMR
outcomes [the homologous resistances in indicator E. coli
isolated from Canadian turkey flocks, and a composite AMR
outcome, the number of classes to which an E. coli isolate
was resistant (nCRE. coli)] and the corresponding flock-level
AMU (class-specific total administered and administration
route-specific, measured in the number of defined daily doses
using Canadian standards [nDDDvetCA]/1,000 kg-animal days
at risk), (2) investigate associations between the two AMR
outcomes previously described, and any AMU via a specific-
administration route (feed, water, injection) to treat or prevent
a specific disease (i.e., enteric, colibacillosis).

Materials and methods

A schematic diagram with the detail of the study
methodology is shown in Figure 1.

Farm and sample collection

At each farm sampling visit, veterinarians administered
a questionnaire to producers to collect data regarding on-
farm AMU practices throughout the turkeys’ grow-out period.
The selection criteria of participating turkey farms and flocks,
protocols for on-farm fecal sampling, and laboratory procedures
are described elsewhere (Government of Canada, 2018; Agunos
et al., 2019). Briefly, poultry veterinarians from each province
were recruited and asked to select turkey farms from their
client list to obtain a representative sample based on the
inclusion and exclusion criteria of flocks as outlined by CIPARS
(Government of Canada, 2018). Before starting the survey, each
veterinarian obtained a signature on the standard informed
consent document from each participating turkey producer. The
veterinarian visited each turkey farm once a year during the

last week of the turkeys’ grow-out period, considering their
marketing weight (i.e., broiler turkeys, light hens, heavy hens,
light toms, heavy toms) as defined by Turkey Farmers of Canada.
During each visit, one flock (described as a group of turkeys
placed on the same day in the specific production unit) was
randomly selected per farm. Four pooled fecal samples (10
fecal droppings per pool) per flock, one from each of the four
quadrants of the selected barn were collected and submitted to
the CIPARS laboratory for bacterial culture and antimicrobial
susceptibility testing.

Laboratory methods

A 25 g sample from each pooled fecal sample was mixed with
225 mL of buffered peptone water and incubated at 35± 1◦C for
24 h. One drop from this incubated mixture was streaked onto
a MacConkey agar plate and was incubated at 35◦C for 18–24 h.
Suspect colonies that fermented lactose were transferred onto
Luria-Bertani agar. Presumptive E. coli colonies were assessed
using Simmons citrate and indole tests. Colonies that were
negative on the indole test were further confirmed using API R©

20E bacterial identification kit.
One E. coli isolate per positive fecal sample was tested

for antimicrobial susceptibility using a broth microdilution
method with the Sensititre Antimicrobial Susceptibility
Testing System (TrekTM Diagnostic Systems Ltd., West
Sussex, United Kingdom) and the CMV4AGNF National
Antimicrobial Resistance Monitoring System (NARMS) plate
comprised of 14 antimicrobials. Isolates were classified as
susceptible, intermediate, or resistant to a specific antimicrobial
by evaluating breakpoints of their minimum inhibitory
concentration (MIC) values following the Clinical and
Laboratory Standards Institute (CLSI) M7-A8 guidelines where
possible. No CLSI interpretive criteria for Enterobacteriaceae
were available for azithromycin or streptomycin therefore
breakpoints were based on the distribution of MIC values and
were harmonized with those of the NARMS. For quality control,
Escherichia coli ATCC 25922 strain was used.

Antimicrobial use data collection and
management

The data analyzed in this study (2016–2019 surveillance
years) were extracted from the CIPARS sentinel-farm
surveillance AMU database. The CIPARS farm AMU
questionnaire (Supplement in Reference #7) generates high-
resolution AMU data comprised of flock-level demographics
to derive various input parameters for the count-, weight- and
dose-based AMU indicators, AMU by route of administration,
and syndromic/animal health information. For our study, the
AMU measurement chosen was the exploratory indicator,
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the number of defined daily doses using Canadian standards
(nDDDvetCA)/1,000 kg-animal days at risk (Agunos et al.,
2021a), which was calculated using the following formula

nDDDvetCA/1000 kg animal days at risk =( total antimicrobials (mg)/DDDmg/kg/day

total no. of turkeys x kg animal biomass x days at risk

)
×1000 . . . . . . (i)

The defined daily dose for an antimicrobial class was
determined by combining the average of all approved unique
doses (for prevention and treatment purposes), based on the
Canadian Compendium of Veterinary Products (Canadian
Animal Health Institute, 2009) and Compendium of Medicating
Ingredients Brochure (Government of Canada, 2019). The days
at risk were defined as the average grow-out period, which varied
from year to year from 84 to 89 days, and the average kg animal
biomass, which varied depending on the year, from 9.44 to
10.26 kg. The kg biomass pertained to the pre-slaughter live
weight of the turkey flock at the end of the grow-out period. This
is an exploratory AMU indicator being examined by CIPARS
and is similar to nDDDvet/kg animal biomass previously used
in the integration of AMU-AMR; however, the time at-risk
component of the exploratory indicator better reflects the long-
term impact of AMU exposure on the emergence of AMR
(Agunos et al., 2021a,b).

Three AMU predictor variables, summarized at the
antimicrobial class level, were defined (1) the quantity of AMU
aggregated across all routes of administration measured in
nDDDvetCA/1,000 kg-animal days at risk (AMUany−routes), (2)
route-specific AMU, also in nDDDvetCA/1,000 kg-animal days
at risk (AMUroute−specific), and (3) route and disease-specific
AMU (binomial variable-yes/no), defined as the use of any
antimicrobial by a specific administration route to treat or
prevent a specific disease (AMUroute−disease−specific).

Antimicrobial resistance data
management

As per CIPARS routine methodology, susceptible isolates
included those that exhibited intermediate susceptibility to
a given antimicrobial. AMR outcomes (susceptible as “0”
and resistant as “1”) by individual antimicrobial agents and
by class were extracted from the CIPARS AMR dataset. The
following were the AMR outcomes used for this study: (1)
seven antimicrobial classes that were included in the NARMS
Gram-negative panel including aminoglycosides (gentamicin,
streptomycin), beta-lactams (amoxicillin-clavulanic acid,
ampicillin, ceftriaxone, cefoxitin), folate pathway inhibitors
(trimethoprim-sulfamethoxazole, sulfisoxazole), macrolides
(azithromycin), quinolones/fluoroquinolones/ (nalidixic
acid/ciprofloxacin), phenicols (chloramphenicol), and

tetracyclines (tetracycline); (2) composite AMR outcome
variable nCRE.coli that signified the number of antimicrobial
classes to which an E. coli isolate was resistant. The AMR and
the AMU variables were descriptively examined and validated
before integrating the data using the common fields of sampling
year and flock identifier.

Statistical analysis

All statistical analyses and data visualization were performed
using the R (R Core Team, 2020) software in R-studio (Version
1.4.1106© 2009–2021 RStudio, PBC) platform. Figure 1
provides an overview of the analytic approach.

Descriptive statistics

The proportion of E. coli isolates resistant to each of the
seven antimicrobial classes described above was calculated, by
dividing the number of isolates resistant to the antimicrobial
class by the total number of isolates tested. The proportion
of antimicrobial classes used on farms was calculated by
dividing the number of farms that used the antimicrobial class
by the total number of farms. Antimicrobial resistance and
antimicrobial use variables with proportions < 5% or > 95%
were excluded from further analysis to keep enough variability
in the models. Tetracyclines, aminoglycosides, folate pathway
inhibitors, and beta-lactams were the only classes with resistance
in > 5% of the isolates and therefore included as homologous
outcome variables of interest. The six antimicrobial classes:
tetracyclines, aminoglycosides, folate pathway inhibitors, beta-
lactams, bacitracin, and streptogramins were used in a
minimum of 5% of the turkey flocks and were used in the AMU
predictor variables created.

Regression analyses

As described in Figure 1, the following regression analyses
were conducted:

AMR-AMUany−routes. The outcome variable was the class-
specific resistance for the logistic mixed-effect analysis and
the nCRE. coli, a composite AMR indicator for the Poisson
mixed-effect regression analysis. The AMU was summarized
by the nDDDvetCA/1,000 kg-animal days at risk for each
antimicrobial class across all routes of administration. The
purpose of this analysis was to explore if AMU regardless
of route of administration (feed, water, or injection) had
an impact on AMR.

AMR-AMUroute−specific. This approach is similar to the
above exercise, but the AMU component was disaggregated by
the route of administration. The purpose of this analysis was
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FIGURE 1

Summary of surveillance design, laboratory, and statistical analysis methods. AMU, antimicrobial use; AMR, antimicrobial resistance; nCRE. coli,
number of antimicrobial classes to which an E. coli isolate was resistant; nDDDvetCA, number of defined daily doses in animals using Canadian
standards.

to characterize if an exposure to an antimicrobial class via a
given route could impact AMR differently. This analysis was
important for providing context on potential shifts in AMU
practices (e.g., feed to water, elimination of parenteral uses)

as it relates to the turkey sector’s AMU strategy (The turkey
farmers of Canada).

AMR- AMUroute−disease−specific. In addition to the route
of administration, disease indication of use was an additional
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attribute of the AMU component in this analysis. The purpose
of this exercise was to assess if certain routes of administration
for treating a given disease condition could also alter AMR
differently. As above, the AMR indicator was individual class
level resistance for the logistic models and nCRE. coli for
the Poisson models.

To account for the time-at-risk in the Poisson models, the
natural log-transformed age of the birds at the time of sampling
was used as an offset. To evaluate the overdispersion of any of
the models, a goodness-of-fit chi-squared test was performed.

Each 4-level mixed-effect regression model accounted for
clustering and included the contact network of the veterinarians
(“sampling network” variable which represents the participating
sentinel farms within the veterinary practice), year, and flock
as random intercepts. The hierarchical structure of the 4-level
nested models included isolates at the lowest, flocks at the
second, sampling year at the third, and sampling network at
the highest level.

The model building consisted of two steps. First, univariable
4-level regression models were built, and variables with a
liberal p-value (p < 0.20) were offered to a multivariable
model. To assess collinearity between AMU variables, a
Pearson correlation analysis was performed and examined the
coefficients. When highly correlated (rho = 0.8) variables were
identified, the variable with the smaller p-value was included in
the multivariable model.

In the second step, a multivariable 4-level regression
model was built using a manual stepwise backward elimination
method. All significant (p-value≤ 0.05) predictor variables were
retained in the final multivariable models. When eliminating
non-significant variables, the whole and reduced models were
compared by assessing the AIC and BIC values, and models
with smaller values were considered a better fit. Each final
multivariable model was checked for influential observations,
normality of residuals, homogeneity of variance, and collinearity
among predictor variables using the sjplot package in R software.
The normality of random effects was also evaluated using
the same package. The Poisson models were checked for
overdispersion and inflated zeros. Interaction terms between
predictor variables significant in the final multivariable models
have been evaluated.

For all model outcomes (odds ratio (OR) for the logistic
regression models and incidence rate ratio (IRR) for the Poisson
models), 95% confidence intervals and p-values were presented.
To interpret the findings, when the p-value was significant (p-
value ≤ 0.05), an OR of < 1 indicated that the probability
of resistance decreased with decreased AMU, and if > 1 then
the probability of resistance increased with increased AMU. An
IRR of < 1 indicated a decrease and > 1 indicated an increase
in the nCRE. coli with each additional unit increase in AMU
(nDDDvetCA/1,000 kg-animal days at risk).

Unexplained variance components were also examined at
each level (sampling network, year, flock, isolate) of the model,

assuming that level 1 (isolate) variance on the logit scale
was:π 2

÷ 3 = 3.29;where π = 3.14 (Snijders and Bosker,
2011). The random effects’ impact was shown as none,
negligible, moderate, or high based on the variances of 0, 0.01–
0.15, 0.16–0.69, >0.69, respectively.

Results

Summary of antimicrobial use and
antimicrobial resistance outcomes in
turkey flocks

Isolate-level antimicrobial resistance
There were 1,317 E. coli isolates recovered from pooled fecal

samples collected between 2016 and 2019 from 334 turkey flocks
by 16 veterinarians across the five major turkey-producing
Canadian provinces. Of the 334 flocks, two E. coli isolates were
recovered from one flock, three isolates each from 17 flocks,
and four isolates each from the remaining 316 flocks. Four
antimicrobial classes with at least a 5% prevalence of resistance,
including tetracyclines (61.7%), aminoglycosides (45.0%), folate
pathway inhibitors (30.4%), and beta-lactams (31.2%) were
included in the analysis. Out of 1,317 E. coli isolates, 363 were
susceptible to all the 7 tested antimicrobial classes, whereas
237 isolates were resistant to one, 301 isolates to two, and 416
(31.6%) isolates resistant to at least 3 or more antimicrobial
classes. Resistance to antimicrobial classes in E. coli isolated
from flocks with no antimicrobial use during the study was
detected. In these flocks, a total of 46.73% of isolates were
resistant to tetracyclines, 31.55% to aminoglycosides, 21.43%
to folate pathway inhibitors, and 17.86% to beta-lactams,
respectively (Supplementary Table 2).

Flock-level antimicrobial use
Flock-level nDDDvetCA/1,000 kg-animal days at risk by

antimicrobial class are summarized in Table 1. There were eight
antimicrobial classes used in turkey flocks during the study
period. The AMU in these flocks were reported for treatment
or prevention of colibacillosis (yolk sac infections, omphalitis,
and neonatal septicemia) via injection, for late-stage septicemia
via feed or water, and for enteric diseases (necrotic enteritis and
non-specific enteric syndromes) via feed or water.

The number of individual antimicrobial classes used on
farms varied (n = 42 unique patterns of use), and the three
most frequently occurring patterns were the use of bacitracin
(n = 55), aminoglycosides-streptogramins (n = 36), and
bacitracin-aminoglycosides (n = 32) (Supplementary Table 3).

The six antimicrobial classes: tetracyclines, aminoglycosides,
folate pathway inhibitors, beta-lactams, bacitracin, and
streptogramins were used in a minimum of five percent of the
turkey flocks and therefore were included in the regression
analysis as predictor variables.
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TABLE 1 Quantity, administration route, and disease indication of antimicrobial use (AMU)1 in Canadian turkey flocks (n = 334)
between 2016 and 2019.

Antimicrobial class (antimicrobial
active ingredients)2

Administration route
(reasons for use)

Number of
flocks (%)

AMU mean AMU range Included in
regression

models

Aminoglycosides (gentamicin; neomycin and
streptomycin3)

Injection/water (yolk sac infection
or any colibacillosis4)

121 (36.2) 0.12 0.0–15.5 Yes

Bacitracin (bacitracin methylene disalicylate
[BMD])

Feed/ (necrotic enteritis) 137 (41.0) 30.65 0.0–180.9 Yes

Beta-lactams (amoxicillin; penicillin G
procaine; penicillin G potassium)

Feed/water (yolk sac infection or
any colibacillosis and enteric)

39 (11.7) 1.13 0.0–119.5 Yes

Fluoroquinolones (enrofloxacin) Water (any colibacillosis) 4 (1.2) 0.002 0.0–0.454 No

Folate pathway inhibitors (trimethoprim and
sulfadiazine; sulfa quinoxaline; sulfa
quinoxaline-pyrimethamine combination)

Feed/water (late-stage septicemia,
respiratory)

21 (6.3) 7.60 0.0–312.1 Yes

Macrolides (tylosin) Feed (enteric) 7 (2.1) 0.18 0.0–15.8 No

Orthosomycins (avilamycin) Feed (enteric) 10 (3.0) 1.53 0.0–74.7 No

Streptogramins (virginiamycin) Feed (enteric) 93 (27.8) 28.35 0.0–265.8 Yes

Tetracyclines (chlortetracycline; oxytetracycline
and tetracycline)

Water/feed (enteric, early and late
septicemia and respiratory)

20 (6.0) 1.34 0.0–107.1 Yes

1Measured as the number of Canadian-defined daily doses using Canadian standards [nDDDvetCA]/1,000 kg-animal days at risk. The median for each class is 0.
2Other AMU exposure characteristics including dose or inclusion rates (range), weight at treatment, and duration of exposures have been described elsewhere (Agunos et al., 2019).
3Neomycin and streptomycin are in combination products oxy-/tetracycline and penicillin-streptomycin, respectively.
4Colibacillosis – pertains to any disease syndrome caused by avian pathogenic E. coli such as neonatal diseases (yolk sac infection and early septicemia) and their chronic sequelae including
complex bacterial infections/late-stage septicemia and respiratory diseases.

Associations between antimicrobial
resistance and antimicrobial use

Tetracyclines, aminoglycosides, folate pathway inhibitors,
and beta-lactams were the only classes with resistance in > 5%
of the isolates and were therefore included as outcome variables
of interest in the regression analysis. The transformations
of the continuous variables did not improve the model
estimates; therefore we used the untransformed continuous
AMU variables in all of our models. The best-fitting model for
the nCRE. coli outcome was the Poisson model.

Results of the univariable mixed-effects logistic regression
models are presented in Supplementary Tables 4–6, and the
results of the univariable mixed-effects Poisson models are
presented in Supplementary Table 7, respectively.

The final multivariable mixed effect models are presented
below. No interaction terms among the variables included in the
multivariable models were significant.

AMR-AMUanyroute associations

The results of the multivariable mixed-effects logistic
regression models evaluating associations among the
homologous AMR outcome and the AMUanyroute predictors
are shown in Table 2a, while the results of the multivariable
mixed-effects Poisson regression model for the associations
among the alternate AMR outcome, nCRE. coli, and AMUanyroute

are shown in Table 2b.

AMR-AMUanyroute – logistic regression
models

Significant associations were observed between
aminoglycosides resistance and the use of two unrelated classes
of antimicrobials (folate pathway inhibitors and bacitracin),
however, effect estimates (ORs and 95% CI’s) were very small.
Similar effect estimates were noted in other AMR-AMU pairs
examined (Tables 2a,b), Two homologous AMU-AMR pairs
(folate pathway inhibitors resistance-folate pathway inhibitors
use; tetracycline resistance-tetracycline use) showed significant
association. However, it is important to note that in all the
models examined, OR estimates were comparable (minimal
difference in ORs) and approached an OR of 1 in the vast
majority of the AMU-AMR pairs assessed. For example, if the
use of folate pathway inhibitors was reduced by 25%, from the
current mean of 7.6 to 5.7 nDDDvetCA/1,000 kg-animal days at
risk, in the absence of changes to any other factors in the model,
the odds of an E. coli isolate being resistant: to aminoglycosides
would decrease by 0.017, to beta-lactams would decrease by
0.015, and to folate pathway inhibitors would decrease by 0.024.

nCRE. coli – AMUanyroute – Poisson
regression model

The use of four classes (tetracyclines, bacitracin,
streptogramins, and folate pathway inhibitors) significantly
increased nCRE. coli. As with the above analysis, the IRR
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TABLE 2a Multivariable mixed-effects logistic regression models showing associations between antimicrobial use via any route of administration in
turkey flocks (n = 334) and homologous and multiclass resistance in E. coli isolates (n = 1,317), 2016–2019.

Antimicrobial
resistance models

AMUanyroute
1 Coefficient Odds ratio (95% CI) p-value Random intercepts2 Variances

(Std. dev)

1. Aminoglycosides Bacitracins 0.004 1.004 (1.000–1.008) 0.042 Sampling network 0.035 (0.186)

Folate pathway inhibitors 0.009 1.009 (1.004–1.014) <0.000 Year: Sampling network 0.118 (0.343)

Intercept 0.474 0.622 (0.473–0.819) 0.001 Flock: Year: Sampling
network

0.890 (0.943)

2. Beta-lactams Folate pathway inhibitors 0.007 1.008 (1.002–1.013) 0.003 Sampling network 0.144 (0.379)

Streptogramins 0.004 1.004 (1.000–1.007) 0.027 Year: Sampling network 0.001 (0.033)

Tetracyclines 0.021 1.021 (1.001–1.042) 0.039 Flock: Year: Sampling
network

1.149 (1.072)

Intercept 1.261 0.283 (0.209–0.384) 0.000

3. Folate pathway
inhibitors

Folate pathway inhibitors 0.015 1.013 (1.008–1.018) <0.000 Sampling network 0.000 (0.000)

Intercept 1.029 0.344 (0.289–0.41) <0.000 Year: Sampling network
Flock: Year: Sampling

network

1.355e−09

(3.681e−05)
0.682 (0.826)

4. Tetracyclines Bacitracins 0.006 1.006 (1.002–1.01) 0.002 Sampling network 0.000 (0.000)

Streptogramins 0.003 1.004 (1.001–1.007) 0.014 Year: Sampling network 0.176 (0.420)

Tetracyclines 0.076 1.087 (1.031–1.145) 0.002 Flock: Year: Sampling
network

0.388 (0.623)

Intercept 0.159 1.223 (0.965–1.551) 0.106

1AMUanyroute – Antimicrobial use across all routes, in the number of defined daily doses using Canadian standards/1,000 kg-animal days at risk.
2Four levels: isolates at the lowest, flocks at the second, years at the third, and sampling network at the highest level. Level 1 variance was assumed to be 3.29 (Snijders and Bosker, 2011).
CI, confidence interval. Only significant associations were shown in the Table. Sampling network – pertains to the sentinel veterinary practice-producer contact networks within their
province/region of practice.

TABLE 2b Multivariable mixed-effects Poisson regression models show associations between antimicrobial use via any route of administration
(AMUanyroute

1) in turkey flocks (n = 334) and resistance to the number of antimicrobial classes in E. coli isolates (nCRE. coli) (n = 1,317), 2016–2019.

AMU classes Coefficient IRR (95% CI) p-value Random Intercepts Variances2

(std. dev)

Bacitracin 0.003 1.003 (1.002–1.005) <0.000 Sampling network 2.56e−35

(1.27e−19)

Folate pathway inhibitors 0.003 1.003 (1.002–1.005) <0.000 Year: Sampling network 0.015 (0.121)

Streptogramins 0.003 1.003 (1.002–1.004) <0.000 Flock: Year: Sampling network 0.134 (0.366)

Tetracyclines 0.010 1.010 (1.003–1.016) 0.003

Intercept –4.229 0.015 (0.013–0.016) <0.000

1AMUanyroute – Antimicrobial use across all administration routes, in number of defined daily doses using Canadian standards/1,000 kg-animal days at risk.
IRR, incidence rate ratio; CI, confidence interval.
2Four levels: isolates at the lowest, flocks at the second, years at the third, and veterinarians at the highest level. Level 1 variance was assumed to be 3.29 (Snijders and Bosker, 2011).

estimates were relatively similar across the 4 AMU-AMR
pairs modeled and approached an IRR of 1. The predicted
marginal effects of antimicrobial use on nCRE. coli of turkeys
showed an increasing trend with the increase in the quantity
of AMU (Figure 2). Again, using folate pathway inhibitors as
an example, if the quantity of folate pathway inhibitors were
to increase from 90 to 220 nDDDvetCA/1000 kg-animal days
at risk, without changes to any other predictors in the model,
the incidence of antimicrobial classes that are resistant would
increase from 2 to 3.

The model diagnostics for the Poisson model, including
normality of residuals, influential observations, collinearity
among predictor variables, and homogeneity of variance are

presented in Supplementary Figure 1. All residuals were
normally distributed and no influential observations were
detected. No collinearity among predictor variables and no
major issues with homogeneity of variance were detected. The
diagnostic plots that assessed the normality of the random
effects (sampling network, year, flocks) of the models are
presented in Supplementary Figure 2. The residuals of the
random effects were normally distributed.

Analysis of the unexplained variance components residing
at each level of the mixed-effects regression models indicated
that the sampling network have a negligible effect in all
of the models, except for the model of resistance to
aminoglycosides (Table 2a); whereas year had no effect or
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FIGURE 2

Predicted marginal effects of antimicrobial use on the incidence of resistance to the number of antimicrobial classes in E. coli isolates
(nCRE. coli) of turkeys. The antimicrobial used was represented by the number of defined daily doses per 1,000 kg-animal days at risk.

had a moderate effect depending on the models. The largest
unexplained variances resided at the flock and the isolate levels
across all models.

AMR and AMUroute−specific associations

The results of the multivariable mixed-effects logistic
regression models assessing the linkages between AMU via
specific administration routes and AMR are presented in
Table 3a. Table 3b shows the results of the mixed-effects Poisson
regression model using the alternate AMR outcome, nCRE. coli.

AMR- AMUroute−specific – logistic
regression models

The odds of resistance to tetracyclines were increased
by using injectable aminoglycosides, in-feed use of folate-
pathway inhibitors, and tetracyclines. The highest magnitude
of OR estimates was observed for aminoglycoside use

(aminoglycosides > folate pathway inhibitors > tetracyclines).
A significant association was noted between the unrelated
AMR-AMU pairs (beta-lactams resistance-streptogramins use
in feed; aminoglycosides resistance and in feed use of two
unrelated classes), however, OR is slightly more than 1 (by three
decimals) in these models. It also indicates that if there is a 25%
decrease in the mean use of injectable aminoglycosides (from
0.12 to 0.09 nDDDvetCA/1,000 kg animal days at risk), the
odds of resistance to tetracyclines will decrease by 0.06 given
other variables remain constant. A significant association was
observed for the homologous pair (folate pathway inhibitors
resistance-folate pathway inhibitor use via feed) but OR
estimate similarly approached 1.

nCRE. coli-AMUroute−specific – Poisson
regression model

The nCRE. coli significantly increased by the injectable use
of aminoglycosides (IRR = 2.585), and in-feed use of four
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TABLE 3a Multivariable mixed-effects logistic regression models showing associations between antimicrobial use via specific administration routes
in turkey flocks (n = 334) and homologous and multidrug-resistant E. coli isolates (n = 1,317), 2016–2019.

Antimicrobial
resistance models

AMUroute−specific
1 Coefficient Odds ratio

(95% CI)
p-value Random

intercepts
Variances2

(Std. dev)

1. Aminoglycoside Feed Bacitracin 0.004082 1.004 (1.000–1.008) 0.040 Sampling network 0.118 (0.343)

Feed Folate pathway
inhibitors

0.009117 1.009 (1.004–1.014) <0.000 Year: Sampling network 0.035 (0.186)

Intercept 0.474326 0.622 (0.473–0.819) 0.001 Flock: Year: Sampling
network

0.890 (0.943)

2. Beta-lactams Feed Streptogramins 0.003616 1.004 (1.000–1.007) 0.040 Sampling network 0.126 (0.355)

Intercept −1.161782 0.313 (0.234–0.419) <0.000 Year: Sampling network
Flock: Year: Sampling

network

0.019 (0.140)
1.242 (1.115)

3. Folate pathway
inhibitors

Feed Folate pathway
inhibitors

0.013239 1.013 (1.008–1.018) <0.000 Sampling network 0.000 (0.000)

Intercept −1.066113 0.344 (0.289–0.410) <0.000 Year: Sampling network
Flock: Year: Sampling

network

1.356e−09

(3.681e−05)
0.686 (0.826)

4. Tetracyclines Injectable Aminoglycosides 2.05768 7.66 (1.46–40.18) 0.016 Sampling network 0.007 (0.082)

Feed Folate pathway
inhibitors

0.14802 1.160 (1.029–1.306) 0.015 Year: Sampling network 0.185 (0.430)

Feed Tetracyclines 0.07489 1.078 (1.024–1.134) 0.004 Flock: Year: Sampling
network

0.389 (0.624)

Intercept 0.34121 1.407 (1.144–1.730) 0.001

1AMUroute−specific – antimicrobial use disaggregated by routes of administration in the number of defined daily doses using Canadian standards/1,000 kg-animal days at risk.
2Four levels: isolates at the lowest, flocks at the second, years at the third, and veterinarians at the highest level. Level 1 variance was assumed to be 3.29 (41).
CI, confidence interval. Only significant associations were shown in the Table. Sampling network – pertains to the sentinel veterinary practice-producer contact networks where each of
the practices sampled amongst their turkey client contacts within their province.

TABLE 3b Multivariable mixed-effects Poisson regression models showing associations between antimicrobial use via specific routes of
administration in turkey flocks (n = 334) and resistance to the number of antimicrobial classes in E. coli isolates (nCRE. coli; n = 1,317) of
turkeys, 2016–2019.

AMUroute−specific
1 Coefficient IRR (95% CI) p-value Random

Intercepts
Variances2

(std. dev)

Route AMU classes

Feed Bacitracin 0.003 1.003 (1.001–1.004) <0.000 Sampling network 7.525e−16

(2.743e−08)

Feed Folate pathway inhibitors 0.003 1.003 (1.002–1.004) <0.000 Year: Sampling network 0.013 (0.116)

Feed Streptogramins 0.002 1.002 (1.001–1.004) 0.001 Flock: Year: Sampling
network

0.129 (0.360)

Feed Tetracyclines 0.009 1.009 (1.003–1.016) 0.004

Injection Aminoglycosides 0.950 2.585 (1.313–5.091) 0.006

Intercept −4.239 0.014 (0.013–0.016) <0.000

1AMUroute−specific – antimicrobial use disaggregated by routes of administration in the number of defined daily doses using Canadian standards/1,000 kg-animal days at risk. IRR,
incidence rate ratio; CI, confidence interval.
2Four levels: isolates at the lowest, flocks at the second, years at the third, and sampling network at the highest level. Level 1 variance was assumed to be 3.29 (Snijders and Bosker, 2011).
Sampling network – pertains to the sentinel veterinary practice-producer contact networks where each of the practices sampled amongst their turkey client contacts within their province.

antimicrobial classes (tetracyclines, folate pathway inhibitors,
bacitracin, and streptogramins) but their effect estimates
approached 1 (Table 3b). As in previous models, the highest
unexplained variance component resided at the isolate and
flock levels, whereas there was moderate unexplained variance
at the year level and low variance at the sampling network
level (Table 3b).

AMR and AMUroute−disease−specific
associations

The results of multivariable mixed-effects logistic regression
models that evaluated associations of individual class resistances
and nCRE. coli with the use of any antimicrobial by a specific
administration route (feed, water, or injection) to treat or
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prevent a specific disease are presented in Figure 3. Table 4
illustrates the results of the multivariable mixed-effects Poisson
regression model using the alternate AMR outcome, nCRE. coli.

AMR-AMUroute−disease−specific – logistic
regression models

As shown in Figure 3, the administration of antimicrobials
via water for treating enteric diseases had the greatest impact
(ORs and 95% CI) on the development of resistance to
aminoglycosides and tetracyclines. On the other hand, the use
of antimicrobials via feed for treating enteric diseases has the
greatest impact on resistance to folate pathway inhibitors and
beta-lactam antimicrobials.

The highest variances were observed at the isolate and
flock levels. The flock-level variances were 0.78 (standard
deviation: 0.88) for aminoglycosides, 1.15 (1.07) for beta-
lactams, 0.65 (8.06) for folate pathway inhibitors, and 0.34 (0.58)
for tetracyclines models.

nCRE. coli-AMUroute−disease−specific –
Poisson regression model

The nCRE. coli significantly increased in turkey flocks treated
with antimicrobials via water for enteric diseases and via feed
for late septicemia and enteric diseases. Similar to the previous
models, there were small variances at the sampling network and
year levels (Table 4).

Discussion

This study builds on previous CIPARS experiences in AMU-
AMR data integration and analysis to further explore the
relationships between AMU and AMR in indicator E. coli
from turkey flocks. Accounting for the time the turkeys spent
in the barn, and the clustering at the sampling networks
(veterinary practices’ producer contact network/client list), year,
and flock levels, the nCRE. coli increased gradually with the
increase in the antimicrobial quantity used in turkey flocks.
This study identified specific classes of antimicrobials and
certain exposure characteristics (disease indications and route of
administration) that potentially contribute to AMR emergence.
It further highlights the importance of high-resolution AMU
data collected from the end-user (reasons for use, route of
administration) and the complementarity of different AMR
indicators (class-specific and nCRE. coli) for understanding
AMU-AMR linkages.

Comparing our study results to previous studies is difficult
because one needs to consider differences in study design

(longitudinal or cross-sectional), analytical approaches (isolate-
level or flock-level analysis), sample size (large or small
number of isolates), AMU indicator used ( dose-, weight-
or count-based; class-specific vs. total quantity), health status
(disease present in a flock or not), husbandry (conventional
vs. reduced antibiotic use program), sampling procedures (on-
farm, at slaughter, or diagnostic laboratories), and antimicrobial
susceptibility testing (disk diffusion or broth microdilution;
clinical breakpoints used).

We identified significant associations between the use of
specific antimicrobial classes and the development of AMR in
E. coli isolates to the same or unrelated antimicrobial classes.
However, the odds ratios were positive and slightly more than
one in most models, indicating that substantial changes in
antimicrobial use may still result in small changes in resistance.
The diversity of AMU patterns signifies various AMU practices
in turkey flocks ranging from zero or no use (i.e., in raised
without antibiotic or organic production), single antimicrobial
class to multiple classes that might entail simultaneous or
concurrent AMU exposures in turkey flocks. Exposures to > 1
antimicrobial class could be a routine practice or could occur
in an outbreak situation (i.e., complex bacterial infections with
chronic sequelae); it could also be associated with the use of
combination products. In our previous analysis, the odds of
being a high user of antimicrobials in turkeys were significantly
higher for those that used any antimicrobial via water and those
that used folate pathway inhibitors, bacitracin, and tetracyclines.
These findings highlight the potential role of co-selection for
resistance or selection for fitness of specific AMR strains and
could be explained by the co-location and transmission of
antimicrobial resistance genes on mobile genetic elements (e.g.,
plasmids or integrons) (Johnson et al., 2012; Sheikh et al.,
2012; Ahmed et al., 2013; Cazer et al., 2019; Ramadan et al.,
2021). Another potential explanation is that the long-term use
of antimicrobials (e.g., bacitracin for prevention of necrotic
enteritis) may alter the population of antimicrobial-resistant
strains in the gut flora (Agunos et al., 2020) interfering with the
succession of the microbial population from resistant toward
a more susceptible population. This might also explain why
changes in AMU practices do not always follow the development
of AMR (Sheikh et al., 2012; Cheng et al., 2019).

As previously demonstrated, once resistance to individual
and multiple antimicrobial classes is developed, MDR E. coli
isolates can persist in the environment (Maal-Bared et al.,
2013; Aslam et al., 2021; Bell et al., 2021) and can transmit
their AMR determinants to other enteric bacteria (Allocati
et al., 2013; Bakkeren et al., 2019; Cheng et al., 2019).
In the EU following the ban on the use of glycopeptide
antimicrobials for growth promotion, sustained levels of
glycopeptide-resistant Enterococcus faecium (GRE) in pigs were
detected and observance of an abrupt decline only occurred
upon the phasing out of other antimicrobials such as macrolides
(Aarestrup et al., 2001). It is also important to reassess the
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FIGURE 3

Significant associations between antimicrobial use via a specific route for a specific disease and resistance to antimicrobial classes in E. coli
isolates (n = 1,317) of turkeys. Any antimicrobial class used on the Canadian turkey flocks was included in the multivariable mixed-effects logistic
regression model with flocks, years, and sampling networks included as random intercepts. The figure included only significant associations
determined. The x-axes show an odds ratio (OR) that is represented as a point and the line represents the 95% Confidence Intervals. The y-axes
with “(YS)” represent yolk saculitis, “(ED)” – enteric diseases, and “(LS)” – late-stage septicemia.

TABLE 4 Multivariable mixed-effects Poisson regression models showing associations between route and disease-specific antimicrobial use in
turkey flocks (n = 334) and resistance to the number of antimicrobial classes in E. coli isolates (n = 1,317), 2016–2019.

AMUroute− and disease−specific
1 Estimate IRR (95% CI) p-value Random

intercepts
Variances2 (std.

dev)

Route Disease

Feed Late septicemia 0.336 1.398 (1.109–1.763) 0.004 Sampling network (0.000)

Feed Enteric diseases 0.400 1.492 (1.244–1.788) <0.000 Year: Sampling network 0.033 (0.181)

Water Enteric diseases 0.538 1.712 (1.300–2.254) <0.000 Flock: Year: Sampling
network

0.129 (0.360)

Intercept −4.396 0.012 (0.010–0.015) <0.000

1AMUroute−disease−specific – Antimicrobial use in the model above is a binomial indicator of whether the flock used the antimicrobial via a given route for a specific disease syndrome. IRR,
incidence rate ratio; CI, confidence interval.
2Four levels: isolates at the lowest, flocks at the second, years at the third, and veterinarians at the highest level. Level 1 variance was assumed to be 3.29 (Snijders and Bosker, 2011).

impact of the intervention with aggravating health challenges
in the field as a result of the elimination of certain classes that
may prompt producers to shift from prophylactic/metaphylactic
to therapeutic uses (thus, higher tetracyclines, folate pathway
inhibitors, beta-lactam penicillins, and aminoglycosides). For
example, in the EU, the ban on antimicrobial growth
promoters necessitated the use of antimicrobials belonging to
aminopenicillins to control necrotic and non-specific enteritis
(dysbacteriosis), contributing to the maintenance of beta-lactam
resistance (Casewell et al., 2003). Additional surveillance data
(beyond the timeframe included in this study) are necessary to

understand how the progressive elimination of antimicrobials,
are shifting the turkey gut/environment flora and the factors that
might delay the succession of susceptible E. coli strains.

The administration of antimicrobials via various routes did
affect the emergence of AMR in the E. coli isolates differently.
Given multiple mechanisms underlying the development of
AMR (Cheng et al., 2019), it is important to characterize the
effects of each administration route to inform the enhancements
of stewardship in the poultry sector. For example, reduction
targets could include antimicrobials used for treatment or
the promotion of enhanced integrated health management
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(biosecurity and vaccination). In this regard, the AMU indicator
to be used should be able to detect the changes in AMU
practices. Dose and duration of exposures vary by route of
administration, for example, injection is administered only once
in the life of the flock, whereas a treatment course via water
could be from 2 to 5 days and medicated feed rations could be
administered in a single to multiple rations (one full growing
cycle) (Agunos et al., 2020). As previously described, CIPARS
developed route-specific DDDvetCA standards to account for
dosing variations by route of administration (Bosman et al.,
2019) to better capture the shifts in AMU practices. As noted by
previous researchers (Collineau et al., 2017), the exact exposure
characteristics that are most influential on the selection pressure
of AMR are yet to be determined.

A robust association was noted between aminoglycosides
use (mainly gentamicin) through injections and tetracycline-
resistant E. coli. Historically, the widespread use of
aminoglycosides at the hatchery was intended to prevent
neonatal diseases (i.e., colibacillosis and its sequelae). Previous
use of injectable gentamicin may have exerted co-selection
of AMR in E. coli resulting in tetracycline resistance. The
treatment uses of combination products via water (neomycin-
oxy-/tetracycline combination products), in part, could also
play a role. In response to the Turkey Farmers of Canada’s
AMU reduction policy, the preventive use of gentamicin was
no longer allowed by 2019. Having only 1 year of post-AMU
intervention data in the study timeframe, the long-term impact
of gentamicin use on the gut and environmental flora of turkeys
warrants ongoing monitoring of AMU and AMR. With the
elimination of injectable gentamicin use, the potential for a
compensatory increase in aminoglycosides administered via
other routes will need to be monitored through surveillance.

It is important to identify the most common turkey
infectious diseases that initiated the use of different
antimicrobial classes and consequently affect the development
of AMR. Our previous analysis indicated an increase in enteric
and neonatal diseases (colibacillosis and its sequelae) consistent
with the timing of the removal of the preventive use of certain
antimicrobial classes intended for these syndromes (Burow
et al., 2014). This present study indicated that in-feed use of
antimicrobials for the prevention and treatment of enteric
diseases were most influential in the development of resistance
to folate pathway inhibitors, beta-lactams, and tetracyclines.
Thus, non-antimicrobial and flock health interventions directed
toward the prevention of these diseases are essential.

A recent study has shown the impact of short-term AMU
on the development of AMR (Luiken et al., 2019). In our study,
the use of antimicrobials via injections to prevent colibacillosis
increased the odds of resistance to aminoglycosides and
folate pathway inhibitors. As injectable antimicrobials were
historically used at the hatchery level (upon hatch), this finding
could be explained by the effect of the short-term use of
aminoglycosides such as gentamicin.

Our study used a novel approach by building multivariable
mixed-effects Poisson regression models, which are ideal for
assessing the influence of exposure to antimicrobials on the
development of resistance to multiple antimicrobial classes.
Compared to the logistic regression model’s binary outcome
(resistant or susceptible), the Poisson model allowed us to use
an outcome variable nCRE.coli that signified the number of
antimicrobial classes to which an E. coli isolate was resistant.
Moreover, we accounted for the time of exposure by including
the natural log-transformed age of turkeys at the time of
sampling as an offset. Previous studies also demonstrated the
effect of simultaneous use of more than one antimicrobial on the
development of MDR bacteria (Johnson et al., 2012; Simoneit
et al., 2015).

To identify intervention targets, we evaluated the
unexplained variance components residing at each level
(sample, flock, year, and sampling network) of our mixed-
effects regression models. Flocks had the highest variances in
all of the models, suggesting flock-level AMU interventions
might have the highest impact on reducing the emergence
of AMR in E. coli isolates. Besides, the odds ratios of AMU
predictor variables were close to 1 indicating that an overall
reduction in AMU across multiple antimicrobial classes might
be needed to decrease AMR. There were negligible to moderate
variance components residing at the year level, suggesting that
AMU practices did not differ substantially over time. However,
the data used include only one-year post-AMU reduction
intervention (2019) and thus requires the reevaluation of farm
data in subsequent years to fully assess the impact of the turkey
sector’s AMU strategy. Despite our study showing a negligible
to low effect of sampling network on the emergence of AMR in
E. coli isolates of turkey flocks, veterinarians have an important
role in implementing antimicrobial stewardship programs to
mitigate the emergence of antimicrobial-resistant bacteria.

The scope of this study was to evaluate associations
among the flock-level AMU in turkeys and the development
of phenotypic antimicrobial resistance in E. coli isolates.
Future studies should evaluate the genetic determinants of
AMR and identify genetic elements associated with the co-
selection of AMR. Our study also identified AMR in E. coli
isolated from flocks with no previous antimicrobial use
history (e.g., tetracyclines and aminoglycosides resistance),
stressing the importance of future studies to identify additional
risk factors besides AMU (aspects of biosecurity including
downtime/rest period, cleaning and disinfection and use of
premise disinfectants) that impact the development of AMR.
In addition, future studies should evaluate the effectiveness of
antimicrobial alternatives (e.g., prebiotics, probiotics) (Brown
et al., 2017; Fuhrmann et al., 2022; Reddy et al., 2022) to
reduce the emergence of resistance to individual and multiple
antimicrobial classes. This study methodology could be used
to evaluate the AMU-AMR linkages in other animals as
well as in humans.
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Conclusion

This study showed that the flock-level use of antimicrobial
classes impacted the emergence of AMR to the same or
unrelated antimicrobial classes, highlighting that mechanisms
independent of AMU are playing a role (e.g., co-selection or
alteration in the gut flora responsible for the perpetuation of
resistant strains). This study further highlights the utility of a
dose-based AMU indicator in AMU-AMR association studies;
the indicator accounted for the average daily doses specific
to the antimicrobial, the exposure period, and the weight of
birds, which is an ideal method to evaluate the impact of
AMU on the prevalence of AMR over the lifetime of turkeys.
The use of aminoglycosides administered via injections had
the highest impact on homologous resistances. In-feed use
of bacitracin, streptogramins, folate pathway inhibitors, and
tetracyclines appear to be playing a role in the perpetuation of
resistance in turkey flocks. Given that these antimicrobial classes
are indicated for specific disease syndromes (enteric disease
and late septicemia), infection prevention control measures
for the reduction of these diseases are necessary to offset the
need for AMU. Flocks had the highest variances in all of the
models; from an AMU stewardship perspective, interventions at
the producer level might have the highest impact on reducing
the emergence of AMR in E. coli isolates. At the turkey
industry level, reassessment of the AMU reduction strategy on
flock health, particularly, trends in the diagnosis of diseases
and shifts from preventive to therapeutic AMU would inform
additional stewardship measures in addition to an ongoing
AMU/AMR surveillance.

Data availability statement

The datasets presented in this article are not readily available
because data requests should be sent to the Public Health
Agency of Canada. Requests to access the datasets should be
directed to AA, agnes.agunos@phac-aspc.gc.ca.

Ethics statement

Ethical review and approval was not required for the animal
study because there were no animal experiments conducted for
this research. An informed consent form was administered by
the veterinarian to their producers before the flock visit.

Author contributions

RS: study design, data analysis, writing – prepared initial
draft, review, editing, and visualization. AA: writing – review,
editing, resources, and project administration. SG and AD:

writing – review and editing, and resources. CV: study design,
data analysis, writing – prepared initial draft, review, editing,
project administration, and supervision. All authors contributed
to the article and approved the submitted version.

Funding

The Public Health Agency of Canada funded and
administered the CIPARS Farm Surveillance. Partial funding
was also received from Saskatchewan Agriculture, the Ontario
Ministry of Agriculture, Food and Rural Affairs, the Canadian
Poultry Research Council, and Alberta Agriculture and Forestry.
RS and CV were supported by a start-up fund of the Department
of Pathobiology, College of Veterinary Medicine, the University
of Illinois at Urbana-Champaign. The funders had no role in the
study design, data analyses, and interpretation, in the writing of
the manuscript, and in the decision of publishing the results.

Acknowledgments

We would like to thank the producers for their consent and
participation in the CIPARS Farm Surveillance and acknowledge
the veterinarians for enabling sample and data collection.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2022.954123/full#supplementary-material

Frontiers in Microbiology 14 frontiersin.org

https://doi.org/10.3389/fmicb.2022.954123
mailto:agnes.agunos@phac-aspc.gc.ca
https://www.frontiersin.org/articles/10.3389/fmicb.2022.954123/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2022.954123/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-954123 July 26, 2022 Time: 15:4 # 15

Shrestha et al. 10.3389/fmicb.2022.954123

References

Aarestrup, F. M., Seyfarth, A. M., Emborg, H. D., Pedersen, K., Hendriksen,
R. S., and Bager, F. (2001). Effect of abolishment of the use of antimicrobial
agents for growth promotion on occurrence of antimicrobial resistance in fecal
enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45,
2054–2059. doi: 10.1128/AAC.45.7.2054-2059.2001

Agunos, A., Gow, S. P., Deckert, A. E., Kuiper, G., and Léger, D. F.
(2021a). Informing Stewardship Measures in Canadian Food Animal Species
through Integrated Reporting of Antimicrobial Use and Antimicrobial Resistance
Surveillance Data&mdash;Part I. Methodology Development. Pathogens 10:1492.
doi: 10.3390/pathogens10111492

Agunos, A., Gow, S. P., Deckert, A. E., and Léger, D. F. (2021b). Informing
Stewardship Measures in Canadian Food Animal Species through Integrated
Reporting of Antimicrobial Use and Antimicrobial Resistance Surveillance Data—
Part II. Application. Pathogens 10:1491. doi: 10.3390/pathogens10111491

Agunos, A., Gow, S. P., Léger, D. F., Carson, C. A., Deckert, A. E., Bosman,
A. L., et al. (2019). Antimicrobial Use and Antimicrobial Resistance Indicators—
Integration of Farm-Level Surveillance Data From Broiler Chickens and Turkeys
in British Columbia, Canada. Front. Vet. Sci. 6:131. doi: 10.3389/fvets.2019.00131

Agunos, A., Gow, S. P., Léger, D. F., Deckert, A. E., Carson, C. A., Bosman, A. L.,
et al. (2020). Antimicrobial Use Indices—The Value of Reporting Antimicrobial
Use in Multiple Ways Using Data From Canadian Broiler Chicken and Turkey
Farms. Front. Vet. Sci. 7:567872. doi: 10.3389/fvets.2020.567872

Ahmed, A. M., Shimamoto, T., and Shimamoto, T. (2013). Molecular
characterization of multidrug-resistant avian pathogenic Escherichia coli isolated
from septicemic broilers. Int. J. Med. Microbiol. 303, 475–483. doi: 10.1016/j.ijmm.
2013.06.009

Aidara-Kane, A., Angulo, F. J., Conly, J. M., Minato, Y., Silbergeld, E. K.,
McEwen, S. A., et al. (2018). World Health Organization (WHO) guidelines on
use of medically important antimicrobials in food-producing animals. Antimicrob.
Resist. Infect. Control 7:7.

Allocati, N., Masulli, M., Alexeyev, M. F., and Di Ilio, C. (2013). Escherichia coli
in Europe: an overview. Int. J. Environ. Res. Public Health 10, 6235–6254.

Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N.,
et al. (2021). Antibiotic Resistance: one Health One World Outlook. Front. Cell.
Infect. Microbiol. 11:771510. doi: 10.3389/fcimb.2021.771510

Bakkeren, E., Huisman, J. S., Fattinger, S. A., Hausmann, A., Furter, M., Egli,
A., et al. (2019). Salmonella persisters promote the spread of antibiotic resistance
plasmids in the gut. Nature 573, 276–280. doi: 10.1038/s41586-019-1521-8

Bell, R. L., Kase, J. A., Harrison, L. M., Balan, K. V., Babu, U., Chen, Y.,
et al. (2021). The Persistence of Bacterial Pathogens in Surface Water and Its
Impact on Global Food Safety. Pathogens 10:1391. doi: 10.3390/pathogens1011
1391

Bosman, A. L., Loest, D., Carson, C. A., Agunos, A., Collineau, L., and Léger,
D. F. (2019). Developing Canadian defined daily doses for animals: a metric to
quantify antimicrobial use. Front. Vet. Sci. 6:220. doi: 10.3389/fvets.2019.00220

Boulianne, M., Arsenault, J., Daignault, D., Archambault, M., Letellier, A., and
Dutil, L. (2016). Drug use and antimicrobial resistance among Escherichia coli and
Enterococcus spp. isolates from chicken and turkey flocks slaughtered in Quebec,
Canada. Can. J. Vet. Res. 80, 49–59.

Brown, K., Uwiera, R. R. E., Kalmokoff, M. L., Brooks, S. P. J., and Inglis,
G. D. (2017). Antimicrobial growth promoter use in livestock: a requirement
to understand their modes of action to develop effective alternatives. Int. J.
Antimicrob. Agents 49, 12–24. doi: 10.1016/j.ijantimicag.2016.08.006

Burow, E., Simoneit, C., Tenhagen, B.-A., and Käsbohrer, A. (2014). Oral
antimicrobials increase antimicrobial resistance in porcine E. coli–A systematic
review. Prev. Vet. Med. 113, 364–375. doi: 10.1016/j.prevetmed.2013.12.007

Callens, B., Cargnel, M., Sarrazin, S., Dewulf, J., Hoet, B., Vermeersch, K.,
et al. (2018). Associations between a decreased veterinary antimicrobial use and
resistance in commensal Escherichia coli from Belgian livestock species (2011–
2015). Pre. Vet. Med. 157, 50–58. doi: 10.1016/j.prevetmed.2017.10.013

Canadian Animal Health Institute (2009). Compendium of Veterinary Products.
11th Edn. Waterloo, ON: North American Compendiums Ltd, 928.

Canadian Turkey Marketing Agency (2020). 1944-2020 Canadian Turkey Stats.
Available online at: https://www.turkeyfarmersofcanada.ca/wp-content/uploads/
2021/08/TURKEY-FACTBOOK-1974-to-2020-1.pdf (accessed on Feb 11, 2022).

Casewell, M., Friis, C., Marco, E., McMullin, P., and Phillips, I. (2003). The
European ban on growth-promoting antibiotics and emerging consequences for
human and animal health. J. Antimicrob. Chemother. 52, 159–161. doi: 10.1093/
jac/dkg313

Cazer, C. L., Al-Mamun, M. A., Kaniyamattam, K., Love, W. J., Booth,
J. G., Lanzas, C., et al. (2019). Shared Multidrug Resistance Patterns in
Chicken-Associated Escherichia coli Identified by Association Rule Mining. Front.
Microbiol. 10:687. doi: 10.3389/fmicb.2019.00687

Ceccarelli, D., Hesp, A., Van Der Goot, J., Joosten, P., Sarrazin, S., Wagenaar,
J. A., et al. (2020). Antimicrobial resistance prevalence in commensal Escherichia
coli from broilers, fattening turkeys, fattening pigs and veal calves in European
countries and association with antimicrobial usage at country level. J. Med.
Microbiol. 69, 537–547. doi: 10.1099/jmm.0.001176

Cheng, G., Ning, J., Ahmed, S., Huang, J., Ullah, R., An, B., et al. (2019).
Selection and dissemination of antimicrobial resistance in Agri-food production.
Antimicrob. Resist. Infect. Control 8:158.

Chrétien, L., Boutant, J., Lyazrhi, F., and Galliard, N. (2021). Retrospective
Assessment of Escherichia coli Vaccination in Broiler Turkeys Under Field
Conditions in 37 Farms from Brittany (France). Avian Dis. 65, 659–662.

Collineau, L., Belloc, C., Stärk, K. D., Hémonic, A., Postma, M., Dewulf, J., et al.
(2017). Guidance on the selection of appropriate indicators for quantification of
antimicrobial usage in humans and animals. Zoonoses Public Health 64, 165–184.
doi: 10.1111/zph.12298

Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. Infect.
Drug Resist. 12:3903.

Davis, G. S., Waits, K., Nordstrom, L., Grande, H., Weaver, B., Papp, K., et al.
(2018). Antibiotic-resistant Escherichia coli from retail poultry meat with different
antibiotic use claims. BMC Microbiol. 18:174. doi: 10.1186/s12866-018-1322-5

Dorado-García, A., Mevius, D. J., Jacobs, J. J. H., Van Geijlswijk, I. M., Mouton,
J. W., Wagenaar, J. A., et al. (2016). Quantitative assessment of antimicrobial
resistance in livestock during the course of a nationwide antimicrobial use
reduction in the Netherlands. J. Antimicrob. Chemother. 71, 3607–3619. doi: 10.
1093/jac/dkw308

FAO (2022). FAOSTAT. Value of Agricultural Production. Available online at:
https://www.fao.org/faostat/en/#data/QV (accessed on Jul 09, 2022).

Fuhrmann, L., Vahjen, W., Zentek, J., Günther, R., and Saliu, E.-M. (2022). The
Impact of Pre- and Probiotic Product Combinations on Ex vivo Growth of Avian
Pathogenic Escherichia coli and Salmonella Enteritidis. Microorganisms 10:121.
doi: 10.3390/microorganisms10010121

Gholami-Ahangaran, M., Moravvej, A., Safizadeh, Z., Nogoorani, V. S., Zokaei,
M., and Ghasemian, S. (2021). The evaluation of ESBL genes and antibiotic
resistance rate in Escherichia coli strains isolated from meat and intestinal contents
of turkey in Isfahan, Iran. Iran. J. Vet. Res. 22:318. doi: 10.22099/ijvr.2021.39493.
5737

Giovanardi, D., Lupini, C., Pesente, P., Rossi, G., Ortali, G., and Catelli, E.
(2013). Characterization and antimicrobial resistance analysis of avian pathogenic
Escherichia coli isolated from Italian turkey flocks. Poult. Sci. 92, 2661–2667.
doi: 10.3382/ps.2013-03194

Gosling, R., Clouting, C., Randall, L., Horton, R., and Davies, R. (2012).
Ciprofloxacin resistance in E. coli isolated from turkeys in Great Britain. Avian
Pathol. 41, 83–89.

Government of Canada (2018). Canadian Integrated Program for Antimicrobial
Resistance Surveillance (CIPARS) 2018 Annual Report. Ottawa: Government of
Canada.

Government of Canada (2019). Compendium of Medicating Ingredients
Brochure. Available online at: https://inspection.canada.ca/animal-health/
livestock-feeds/medicating-ingredients/eng/1300212600464/1320602461227
(accessed on Apr 15, 2022).

Government of Canada (2021). Poultry and egg marker information/Turkey.
Available online at: https://agriculture.canada.ca/en/canadas-agriculture-sectors/
animal-industry/poultry-and-egg-market-information/turkey (accessed on Feb
11, 2022).

Horie, M., Yang, D., Joosten, P., Munk, P., Wadepohl, K., Chauvin, C., et al.
(2021). Risk Factors for Antimicrobial Resistance in Turkey Farms: a Cross-
Sectional Study in Three European Countries. Antibiotics 10:820. doi: 10.3390/
antibiotics10070820

Johnson, T. J., Logue, C. M., Johnson, J. R., Kuskowski, M. A., Sherwood, J. S.,
Barnes, H. J., et al. (2012). Associations between multidrug resistance, plasmid
content, and virulence potential among extraintestinal pathogenic and commensal
Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 9, 37–46. doi:
10.1089/fpd.2011.0961
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