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Abstract

Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the 

bone marrow, and influence each other in vivo. To elucidate the mechanism that controls 

the interrelationship between these two cell types, the signaling pathway of signal transducer 

and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly 

established c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mouse model. In this system, Stat3C­

Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C 

overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. 

In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 

1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate 

in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type 

II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid 

lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor 

cells as a result of Stat3C overexpression. The study supports the concept that activation of the 

Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, 

repopulating and converting into residential AT II epithelial cells in the lung.
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The lung has the largest epithelial surface area of the body in order to facilitate air exchange. 

Alveolar type II (AT II) epithelial cells synthesize and secrete pulmonary surfactant that is 

critical to prevent alveoli from collapse during respiratory cycles [1,2]. AT II epithelial cells 

also participate in pulmonary inflammation and injury repair. In the lung, AT II epithelial 

cells are the local progenitor cells for the alveoli and undergo significant phenotypic changes 

to terminally differentiate into AT I cells [3,4]. In response to injury, AT II epithelial cells 

proliferate to create more AT II epithelial cells and differentiate into AT I epithelial cells [5]. 

Since the lung is constantly exposed to a range of insults from the surrounding environment, 

maintenance of lung function requires both host defense and epithelial cell damage repair. 

Given the importance of AT II epithelial cells in the lung, it is necessary to understand 

homeostasis of AT II epithelial cells under disease conditions.

Bone marrow stem cells (BMSCs) have multiple potentials to convert into residential cells 

in multiple organs. They can be used for regenerative medicine, tissue repair and gene 

therapy. Extensive studies demonstrated that BMSCs contribute to lung tissue repairing 

during damage in various conditions [6]. However, the molecular pathway and the genetic 

network that control these processes are poorly understood. The lung depends on pulmonary 

surfactant for the normal respiratory and host defense functions. We demonstrated that 

blockage of neutral lipid metabolism induced BMSC conversion into AT II epithelial cells 

as a result of pulmonary remodeling (emphysema and hypercellularity) in lysosomal acid 

lipase (LAL) knock-out mice (lal−/−) [7]. In lal−/− mice, BMSC-AT II cell conversion 

is highly associated with systemic inflammation, especially with infiltration of myeloid 

cells (e.g., myeloid-derived suppressive cells) into the lung. These studies suggest a 

tight connection between functions of myeloid cells and BMSCs that are controlled by 

neutral lipid derivative hormones and downstream mediators. Importantly, correction of 

LAL expression in myeloid cells alone significantly improved systemic inflammation and 

tissue remodeling [8,9]. Overexpression of LAL downstream genes in myeloid cells induced 

systemic inflammation and tumorigenesis in the lung [10–12]. Because both myeloid cells 

and BMSCs are originated from the bone marrow, we hypothesize that malfunction of 

myeloid cells may affect the functional role of BMSCs in vivo. We aim at identifying 

pro-inflammatory intracellular signaling molecules in myeloid cells that control migration, 

repopulation and conversion of BMSCs to AT II epithelial cells in vivo.

One such molecule is signal transducer and activator of transcription 3 (Stat3). Stat3 was 

originally identified as the acute phase response factor [13–15]. It is mainly activated 

by pro-inflammatory interleukin 6 (IL-6) family cytokines that share the common gp130 

receptor subunit [16,17]. We demonstrated that persistent activation of the Stat3 pathway 

in lung epithelial cells directly caused pulmonary inflammation and bronchioalveolar 

adenocarcinoma [18,19], supporting the concept that Stat3 is a pro-inflammatory molecule 

and oncogene [20]. It has been reported that Stat3 was involved in myeloid differentiation 

[21]. Activation of Stat3 by phosphorylation at Y705 was observed in myeloid cells of lal−/− 

mice (Figure 1). To elucidate how activation of the Stat3 pathway in myeloid cells influences 

repopulation and AT II epithelial cell conversion of BMSCs, a previously established 

myeloid-specific doxycycline-inducible bitransgenic mouse model system [8] was used 

to specifically induce Stat3C (a constitutively active form of Stat3) overexpression. In 

this system, the “activator” transgenic mouse line bears the reverse tetracycline-responsive 
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transactivator (rtTA) fusion protein under the control of the 7.2 kb 5′-flanking regulatory 

sequence and the downstream intron 2 of the c-fms gene [22] (designated as c-fms-rtTA 

mice). The rtTA expression is restricted to myeloid lineage cells in transgenic mice. 

In the second transgenic mouse line, the Stat3C cDNA is under the control of the tet 

operator DNA binding sequence that is linked to a minimal promoter (designated as 

(TetO)7-CMV-Stat3C mice) [18,23]. After cross-breeding, expression of Stat3C is induced 

by addition of doxycycline in bitransgenic mice (designated as c-fms-rtTA/(TetO)7-CMV­

Stat3C bitransgenic mice). We discovered that activation of the Stat3 pathway in myeloid 

cells of c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice caused systemic increase of 

myeloid-derived suppressive cells (MDSCs) from the hematopoietic system (e.g., bone 

marrow and blood) to the immune system (e.g., spleen) to the tissue organs (e.g., lung). 

By using hSP-B 1.5-kb lacZ adherent BMSCs, we demonstrated that Stat3C overexpression 

in myeloid cells facilitates migration and repopulation of BMSCs in the bone marrow and 

spleen of c-fms-rtTA/(TetO)7-CMV-Stat3C recipient bitransgenic mice. It also facilitates 

BMSC-AT II cell conversion at a 10% rate in doxycycline-treated recipient c-fms-rtTA/

(TetO)7-CMV-Stat3C bitransgenic mice. The study supports the concept that activation of 

the Stat3 pathway in myeloid cells can facilitate BMSC residing in the recipient mouse bone 

marrow, migrating into the lung and converting into residential AT II epithelial cells.

1 Materials and methods

1.1 Animal care

All scientific protocols involving the use of animals in this study have been approved by the 

Institution Animal Care and Usage Committee (IACUC) and follow guidelines established 

by the Panel on Euthanasia of the American Veterinary Medical Association. Protocols 

involving the use of recombinant DNA or biohazardous materials have been reviewed by 

the Biosafety Committee, and followed the guidelines established by the NIH. Animals 

were housed under IACUC-approved conditions in a secured animal facility. Animals were 

regularly screened for common pathogens (specific pathogen free). Experiments involving 

animal sacrifice utilize CO2 narcosis to minimize animal discomfort.

1.2 Generation of doxycycline-controlled Stat3 transgenic mice

The (TetO)7-CMV-Stat3C transgenic mouse line and the c-fms-rtTA transgenic mice were 

established as previously described [8,23]. C-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic 

mice were obtained by crossbreeding the c-fms-rtTA transgenic mice and (TetO)7-CMV- 

Stat3C transgenic mice. In general, animals were treated with doxycycline at 1 month old 

age after genotyping.

1.3 AT II cell and macrophage purification

Alveolar type II epithelial cells and macrophages were purified as described previously [7].

1.4 BMSCs isolation, culturing and marker defining

The procedures for BMSC isolation and in vitro culturing were the same as previously 

described [7].
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1.5 FACS analyses

FACS analysis of CD11b, Gr-1, CD3 and B220 cells was the same as previously described 

[24,25]. FACS analysis of Stat3C-Flag fusion protein was analyzed by monoclonal ANTI­

FLAG® M2-FITC antibody (F4049; Sigma, Saint Louis, MI). For intracellular phosphor­

Stat3 analysis in lal−/− mice, the assay was performed according to the protocols from 

Cell Signaling Technology (Danvers, MA). Briefly, after cell surface marker staining, cell 

suspensions from bone marrow, blood, spleen and lung of lal−/− mice were fixed with 2% 

formaldehyde. Fixation samples were resuspended in methanol at a final 90% concentration. 

Finally, samples were washed and resuspended in 1× phosphate-buffered saline (PBS) 

containing 4% fetal bovine serum (FBS) at 106 cells in 100 μL. Cell suspensions were 

labeled with the primary anti-phospho-Stat3 antibody (Cell Signaling Technology) for 30 

min at room temperature, washed in PBS containing 4% FBS, and labeled using the 

secondary antibody. After washing, samples were analyzed by FACS.

For BMSC marker analysis, in vitro cultured BMSCs (1×106–2×106 cells) at passages 0, 5, 

7, 9, 11, 13, 15, 17, 19 were harvested and blocked with FcR followed by incubation with 

primary antibodies in FACS buffer. Anti-SSEA-1 (Abcam, MA), anti-CD106 (VCAM-1; 

eBioscience), anti-CD44 (IM7; eBiosciences), anti-Api6 (provided by Dr. Miyazaki, The 

University of Tokyo, Japan), anti-OCT-3/4 (Octamer-3/4, N19; Santa Cruz Biotechnology, 

Santa Cruz, CA), anti-Nanog (Millipore, Temecula, CA), anti-BMP4 (Bone morphogenic 

protein-4; Santa Cruz Biotechnology, CA), anti-SOX2 (SRY, or sex determining region 

Y-box 2; R&D Systems, Inc., Minneapolis, MN), anti-C-kit (CD117; eBiosciences), anti­

Sca-1 (Ly6A/E, Stem Cell Antigen 1; eBiosciences), a biotin-Conjugated Mouse Lineage 

Panel (including biotin anti-mouse CD3ε, CD11b (Mac-1), CD45R/B220, TER-119, Ly-6G 

and Ly-6C; BD Biosciences, San Jose, CA) and AT II epithelial marker SP-C (FL-197; 

Santa Cruz Biotechnology, Santa Cruz, CA) were purchased for FACS analyses on a LSRII 

machine (BD Biosciences, San Jose, CA). Data was analyzed using the BD FACStation™ 

Software (BD Biosciences).

For the BMSC-AT II cell conversion study, AT II epithelial cells were labeled with PE 

anti-SP-C and FITC anti-β-galactosidase antibodies and analyzed as previously described 

[7]. Isotype controls IgG1, IgG2a and IgG2b were included in all experiments. Quadrants 

were assigned using isotype control.

1.6 BMSC in vivo tracing and proliferation study

The procedure was performed essentially the same as we described previously [7], except 

that c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice were used.

1.7 Real-time PCR

For Real-time PCR analysis of the lacZ gene, total RNAs were purified from AT II epithelial 

cells using Qiagen RNA purification kit. A pair of sequence-specific oligonucleotide primers 

for the lacZ gene was used. Glyceraldehyde 3-phosphate (GAPDH) primers were used as an 

endogenous control and normalizer for all samples.
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1.8 Double immunofluorescence staining

The procedure for isolation and immunofluorescence staining of AT II epithelial cells was 

the same as previously described [7]. For lung tissue section staining, tissue sections were 

rinsed in PBS-Tween 20 for 5 min, and incubated with normal mouse serum for 30 min 

to block non-specific binding of immunoglobulin. The sections were double stained with 

SP-C rabbit antibody (Santa Cruz Biotechnology, CA) and β-galactosidase mouse antibody 

(1:100 Sigma, St Louis, MO, USA). A Cy2-conjugated donkey anti-rabbit IgG and a Cy3­

conjugated donkey anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA, USA) were 

used as the secondary antibodies.

1.9 Immunoelectron microscopy

For post-embedding electron microscopy, lung tissues were fixed with 4% paraformaldehyde 

in 0.1 mol L−1 phosphate buffer, dehydrated through a graded series of ethyl alcohols and 

embedded in Unicryl (Electron Microscopy Sciences, Hatfield, PA). Thin sections (70–90 

nm) were mounted on Formvar/carbon coated nickel grids. The grids were placed into 

a blocking buffer for 60 min and then into the primary antibody overnight at 4°C. The 

grids were then rinsed with phosphate buffered saline (PBS) and floated on drops of the 

appropriate secondary antibody attached with 10 nm gold particles (AURION, Hatfield, 

PA) for 2 h at room temperature. After rinsing with PBS the grids were placed in 2.5% 

glutaraldehyde in 0.1 mol L−1 phosphate buffer for 15 min. After rinses with PBS and 

distilled water, the grids were allowed to dry and then stained for contrast with uranyl 

acetate. The samples were viewed with a Tecnai Bio Twin transmission electron microscope 

(FEI, Hillsboro, OR) and images taken with a CCD camera (Advanced Microscopy 

Techniques, Danvers, MA). The experiment was performed by Electron Microscopy Core 

Facility at Indiana University School of Medicine.

1.10 Bone marrow transplantation

The procedure for bone marrow transplantation experiment was similar to that previously 

described [26]. Briefly, recipient wild type mice (WT, CD45.2+) at 3-week old were lethally 

irradiated with 1000 rad of γ-irradiation and rested 1 d prior to receiving cells. Bone marrow 

cells were prepared from femurs and tibia of 8−10-week old donor wild type or c-fms-rtTA/

(TetO)7-CMV-Stat3C bitransgenic mice (CD45.1+). Reciprocal recipient mice (CD45.2+) 

were injected with 2.5×106–5×106 donor bone marrow cells in 500 μL 1× PBS via tail 

vein. The chimeric mice either were treated or untreated with doxycycline for three months. 

A group of these chimeric mice were used for inflammatory cell analyses. Another group 

of these chimeric mice were used for the BMSC injection study. Cultured adherent hSP-B 

1.5-kb lacZ BMSCs after 9 passages were harvested and resuspended in 1× PBS. Each 

recipient chimeric mouse was infused with adherent hSP-B 1.5-kb lacZ BMSCs through tail 

vein as described above. After 6 weeks of BMSCs injection, the bone marrow, blood, spleen 

and lungs from various groups were harvested for BMSC-AT II cell conversion analysis.
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1.11 Statistical analysis

The data shown were mean values of at least three independent experiments and expressed 

as mean±SD. A paired Student’s t test or ANOVA was used to evaluate the significance of 

the differences. Statistical significance was set at a level of P<0.05.

2 Results

2.1 Activation of Stat3 in myeloid cells during LAL deficiency

During LAL deficiency, systemic infiltration of myeloid-lineage macrophages and 

neutrophils in multiple organs is a major manifestation of pathogenesis [8,27–29]. 

Inflammation triggered BMSC conversion into AT II epithelial cells in lal−/− mice [7]. 

However, the cellular and molecular mechanism for this event is not clear. Because both 

myeloid lineage cells and BMSCs are originated from the bone marrow, it is possible 

that activation of myeloid lineage cells affects the BMSC behavior. To identify which 

inflammatory signaling molecules are activated in myeloid-lineage cells during LAL 

deficiency, important intracellular signaling molecules were tested by FACS. Interestingly, 

activation of Stat3 phosphorylation at Y705 was observed at various developmental stages of 

myeloid-lineage cells in multiple organs, including the bone marrow, blood, spleen and lung 

(Figure 1). Our results demonstrated that the percentage numbers of phosphor-Stat3 positive 

CD11b+ macrophages and GR-1+ neutrophils in lal−/− mice were highly increased compared 

with those of lal+/+ mice. Therefore, it is possible that Stat3 activation in myeloid lineage 

cells facilitate BMSCs migration, homing and converting into AT II epithelial cells.

2.2 Generation of c-fms-rtTA/(TetO)7-CMV-Stat3 bitransgenic mice

To directly show that activation of the Stat3 pathway in myeloid-lineage cells can increase 

inflammation and BMSC-AT II cell conversion, a doxycycline-controlled bitransgenic 

mouse model was generated to specifically direct Stat3 expression in myeloid cells. 

Figure 2A illustrates myeloid lineage-specific expression of the c-fms-rtTA/(TetO)7-CMV­

Stat3C bitransgenic gene. In this system, a previously established c-fms-rtTA transgenic 

mouse line [8] was crossbred with a previously generated (TetO)7-CMV-Stat3C transgenic 

mouse line [23]. In order to assess the expression pattern of Stat3C in c-fms-rtTA/(TetO)7­

CMV-Stat3C bitransgenic mice, a Flag sequence was added at the C terminus of the 

Stat3C cDNA to distinguish exogenous Stat3C-Flag fusion protein from endogenous 

Stat3 protein. Bitransgenic mice were treated with or without doxycycline for 5 months 

and were sacrificed for FACS analysis. Single-cell suspensions from the bone marrow, 

blood, spleen and lung were double stained with Flag antibody and antibodies specific 

for macrophages (CD11b), dendritic cells (DCs, CD11c), neutrophils (GR-1), or T cells 

(CD3). Myeloid-lineage CD11b+ macrophages, Gr-1+ neutraphils and CD11c+ DCs all 

showed Stat3C-Flag overexpression in tested organs of doxycycline-treated bitransgenic 

mice. As a negative control, there was no Stat3C-Flag induction in CD3+ T lymphocytes, 

SP-C+ AT II epithelial cells and CCSP+ Clara cells regardless of doxycycline treatment 

in bitransgenic mice (Figure 2B and C). These results demonstrated that Stat3C-Flag 

fusion protein overexpression in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice was 

myeloid lineage-specific. No Stat3C-Flag fusion protein was detected in myeloid lineage 

cells in above mentioned organs of wild type mice regardless of doxycycline treatment 
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(data not shown), suggesting that induction of Stat3C-Flag fusion protein was not caused by 

doxycycline alone.

2.3 Overexpression of Stat3C caused systemic inflammation and lung tissue neoplastic 
proliferation

C-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice were treated with or without 

doxycycline for 5 months. The cells from the bone marrow, blood, spleen and lung were 

isolated and stained with fluorochrome-conjugated antibodies specific for macrophages, DC, 

neutrophils, B cells or T cells for FACS analysis. Compared with those from doxycycline­

untreated mice, the percentage of CD11b+ macrophages was increased from 6.85% to 

10.94% in the blood (PBMC), 1.83% to 3.09% in the spleen and 13.18% to 17.43% in the 

lung of doxycycline-treated bitransgenic mice. The percentage of GR-1+ neutrophils was 

increased from 4.41% to 7.33% in the blood (PBMC), 0.68% to 4.99% in the spleen and 

remained unchanged in the lung of doxycycline-treated bitransgenic mice. Interestingly, the 

percentage of CD11b+ GR-1+ myeloid cells was increased from 6.56% to 17.14% in the 

blood, 1.08% to 4.30% in the spleen and 3.63% to 14.73% in the lung of doxycycline-treated 

bitransgenic mice (Figure 3A). The absolute numbers of these cells were also systematically 

increased (Table 1). Therefore, Stat3C overexpression in myeloid lineage cells can increase 

systemic myeloid cells (especially CD11b+ GR-1+ cells) in various organs of bitransgenic 

mice. In the lung, pathogenesis of doxycycline-treated or untreated c-fmsr-tTA/(TetO)7­

CMV-Stat3C bitransgenic mice was further analyzed by histology. Lung inflammation and 

neoplastic pneumocyte proliferation were observed in 10–15 month doxycycline-treated 

bitransgenic mice (Figure 3B). In contrast to myeloid cells, changes of T and B lymphocytes 

were not observed in bitransgenic mice regardless of doxycycline treatment (Table 1).

2.4 BMSC markers

To assess BMSC-AT II cell conversion, a previously published method was used to obtain 

BMSCs that were enriched from the whole bone marrow via plastic adherent of fibroblastoid 

cell fraction in specific culture medium [7]. Although this fractionation method was used 

for isolation of BMSCs, little is known about markers that define self-renewal BMSCs. In 

our cultured condition, BMSCs were mouse hematopoietic lineage panel negative (including 

biotin-conjugated anti-mouse CD3ε, CD11b (Mac-1), CD45R/B220, TER-119, Ly-6G and 

Ly-6C) (data not shown). From 0 to 19 passages, BMSCs expressed relatively high levels 

of Scal-1, SSEA-1, CD44, CD106 and apoptosis inhibitor 6 (Api6/AIM/Spα) under the 

cultured condition (Table 2). CD106, CD44 and SSEA-1 were previously defined markers 

for BMSCs [30–32]. Expression of Api6 was identified for the first time in cultured BMSCs. 

By contrast, embryonic stem cell markers, such as OCT-4, BMP4 and SOX2, and Nanog, 

were expressed at relatively low levels under the same cultured condition (Table 2), even 

though Nanog and Sox2 showed increased expression in BMSCs at later culturing passages 

(11–19). This suggests that BMSCs and embryonic stem cells have different characteristics 

of marker expression, implicating differential function properties in vivo. In addition, 

cultured BMSCs did not express AT II epithelial marker SP-C throughout culture passages. 

In the subsequent studies, BMSCs with 9–13 passages were routinely used for injection 

studies.
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2.5 Repopulation of donor BMSCs in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice

The experimental design for the bone marrow transplantation study involving c-fms-rtTA/

(TetO)7-CMV-Stat3C bitransgenic mice and hSP-B 1.5-kb lacZ transgenic mice is illustrated 

in Figure 4A. First, organ repopulation and self-renew of injected adherent BMSCs in c-fms­

rtTA/(TetO)7-CMV-Stat3C bitransgenic mice was assessed by carboxyfluoresein diacetate 

succinimidyl ester (CFSE) in cell tracing experiment. After enrichment by 9 passages 

in in vitro culturing, adherent BMSCs from hSP-B 1.5-kb lacZ transgenic mice were 

further purified by CD11b, CD34 and CD45 magnetic beads to remove macrophages 

and endothelial cells. Purified BMSCs were labeled by CFSE and tail vein injected into 

doxycycline-treated or untreated c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice. Two 

weeks later, single-cell suspensions were prepared from the bone marrow, spleen and 

lung of recipient mice. As demonstrated in Figure 4B, CFSE-labeled cells were readily 

detected in these organs of doxycycline-treated bitransgenic mice, but not in untreated 

bitransgenic mice (data not shown). This indicates that migration and homing of injected 

adherent BMSCs in recipient bitransgenic mice is associated with inflammation caused by 

Stat3 overexpression in myeloid lineage cells. Enriched BMSCs were able to proliferate as 

demonstrated in the cultured condition by a cell replication (proliferation) study, in which 

divided daughter cells (represented by different peaks) were separated by CFSE labeling 

(Figure 4C). After injection, adherent BMSCs were able to replicate in the bone marrow and 

spleen of doxycycline-treated c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice by CFSE 

labeling (Figure 4D). No cell division of CFSE-labeled adherent BMSCs was observed in 

doxycycline-untreated recipient c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice (Figure 

S1). Therefore, donor adherent BMSCs were able to self-renew primarily in the bone 

marrow and spleen of doxycycline-treated c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic 

mice.

2.6 Conversion of hSP-B lacZ 1.5-kb BMSCs into AT II epithelial cells in c-fms-rtTA/
(TetO)7-CMV-Stat3C bitransgenic mice

To test if hSP-B 1.5-kb lacZ adherent BMSCs were able to convert into AT II 

epithelial cells in the lung of c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice under the 

inflammatory condition, cultured (9 passages) and purified hSP-B 1.5-kb lacZ adherent 

BMSCs were injected into doxycycline-treated and untreated c-fms-rtTA/(TetO)7-CMV­

Stat3C bitransgenic recipient mice. Six weeks after injection, AT II epithelial cells were 

isolated from recipient mice and stained with rabbit anti-proSP-C antibody and mouse 

β-galactosidase antibody for flow cytometry (Figure 5A). Approximate 8%–9% of proSP-C­

positive cells showed β-galactosidase co-staining in doxycycline-treated bitransgenic mice 

(Figure 5B). This observation was confirmed by double immunofluorescence staining at a 

conversion rate of 10% in doxycycline-treated mice, but not in untreated mice (Figure 5C). 

No co-staining was observed in the doxycycline-untreated bitransgenic lung. To prove that 

these converted cells were in indeed located within the alveolar epithelium of the alveolar 

walls, double immunofluorescence staining was performed on tissue sections (Figure 5D). 

SP-C and β-galactosidase signals were overlapped in some AT II epithelial cells located in 

the corner of the alveolar walls. In a systematical study, hSP-B 1.5-kb lacZ adherent BMSCs 

cultured in vitro at various passage time points were injected into c-fms-rtTA/(TetO)7-CMV­

Stat3C bitransgenic mice to assess the ability of BMSC conversion into AT II epithelial 
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cells. After 11 and 13 passages, hSP-B 1.5-kb lacZ adherent BMSCs were still able to 

convert into AT II epithelial cells in doxycycline-treated c-fms-rtTA/(TetO)7-CMV-Stat3C 

bitransgenic mice using the same methods as outlined above. However, after 19 passages 

in vitro, hSP-B 1.5-kb lacZ adherent BMSCs failed to convert into AT II epithelial cells 

in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice regardless of doxycycline treatment 

(data not shown).

Increased expression of β-galactosidase was partially due to transcriptional up-regulation 

since the Real-Time PCR analysis showed increased mRNA expression in AT II epithelial 

cells that were isolated from the lungs of recipient c-fms-rtTA/(TetO)7-CMV-Stat3C 

bitransgenic mice (Figure 5E). It is notable that there was a low level expression of lacZ 

mRNA in doxycycline-untreated mice, indicating a minor leakage in the system. This was 

also observed in Flag expression (PBMC; Figure 2). As a control, no β-galactosidase mRNA 

expression was detected in wild type recipient mice regardless of doxycycline treatment 

after injection of hSP-B 1.5-kb lacZ adherent BMSCs (Figure 5E).

2.7 Bone marrow transplantation

Although the above studies demonstrated that myeloid Stat3C-induced inflammation caused 

BMSCs-AT II cell conversion, they do not address a question whether these phenomenon 

is due to malfunction of myeloid lineage progenitor cells, or due to the microenvironment 

change that affects progenitor cell development as a result of Stat3C overexpression in 

recipient mice. To address this issue, bone marrow cells from wild-type or c-fms-rtTA/

(TetO)7-CMV-Stat3C bitransgenic mice (both CD45.1+) were transplanted into reciprocal 

recipients (CD45.2+) that were lethally irradiated to generate bone marrow chimeric mice. 

After three months, recipient mice were infused with in vitro cultured (9 passages) and 

purified hSP-B 1.5-kb lacZ adherent BMSCs through tail vein of doxycycline-treated or 

untreated recipient mice. After 6 weeks of BMSCs injection, the bone marrow, blood, spleen 

and lung were harvested from various groups for analysis. Recipient cells were excluded 

by gating on CD45.1+ cells that were derived from the donor mice. Four experimental 

bone marrow transplantation (BMT) groups were designed including doxycycline-untreated 

(−DOX, c-fms/Stat3C→WT; −DOX WT→WT) or treated (+DOX, c-fms/Stat3C→WT; 

+DOX, WT→WT) samples. First, myeloid lineage cells were analyzed (Figure 6A and B). 

The percentage of CD11b+ GR-1+ cells in the bone marrow (65.30%–76.82%) and lung 

(4.99%–15.43%) of the doxycycline-treated c-fms/Stat3C→WT BMT group was increased 

compared with those of the doxycycline-untreated c-fms/Stat3C→WT BMT group. The 

percentage of CD11b+ macrophages in the lung of the same group was increased from 

14.70% to 24.52% and remained relatively unchanged in the bone marrow. The percentage 

of GR-1+ neutrophils in the lung of the same group was modestly increased from 1.53% 

to 2.16% and remained relatively unchanged in the bone marrow. In the control WT→WT 

BMT group, CD11b+GR-1+, CD11b+ and GR-1+ cells in the doxycycline-treated group 

were not significantly different from those in the doxycycline-untreated group (data not 

shown). In association with these observations, proSP-C and β-galactosidase double positive 

AT II epithelial cells were increased to 9.8% by flow cytometry in the doxycycline-treated 

c-fms/Stat3C→WT BMT group, but not in other groups (Figure 6C). Therefore, Stat3C­
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induced autonomous of myeloid progenitor cells was the cause of BMSC-AT II cell 

conversion in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice.

To assess contribution made by the microenvironmental change in c-fms-rtTA/(TetO)7­

CMV-Stat3C bitransgenic mice, additional BMT groups were designed including 

doxycycline-treated or untreated WT→c-fms/Stat3C samples. As demonstrated in Figure 

6A and B, no distinct changes of CD11b+GR-1+, CD11b+ and GR-1+ cells were observed in 

reciprocal transplanted mice. As a consequence, minimal BMSC-AT II cell conversion was 

observed (Figure 6C). This result excluded the animal microenvironment as a cause to alter 

development of myeloid lineage progenitor cells and BMSC-AT II cell conversion.

3 Discussion

As we reported previously, Stat3 is a pro-inflammatory and oncogenic molecule. Over­

activation of the Stat3 pathway mobilizes inflammatory cells to influx into the lung [18]. 

In this report, FACS analysis showed that Stat3 was activated in highly proliferative 

CD11b+ and GR-1+ cells in multiple organs of lal−/− mice (Figure 1). It is possible 

that Stat3 activation in myeloid cells mediates inflammation and BMSC conversion to 

AT II epithelial cells as observed in lal−/− mice [7]. To prove this assumption, a myeloid­

specific doxycycline-inducible c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic model system 

was established. FACS analysis with Flag antibody and cell specific antibodies showed 

myeloid cell-specific expression of Stat3C-Flag fusion protein in the bone marrow, 

blood, spleen and lung (Figure 2B). This is in agreement with our previous findings 

[8,11,12,33]. As a consequence, Stat3C over-expression in myeloid cells caused systemic 

increase of macrophages and neutraphils in bitransgenic mice. Importantly, the number 

of CD11b+GR-1+ positive MDSCs was significantly increased (Figure 3A). MDSCs 

have great potential to facilitate the processes of neoplastic tissue remodeling [34–36]. 

Indeed, hyperplasia was observed in doxycycline-treated c-fms-rtTA/(TetO)7-CMV-Stat3C 

bitransgenic lungs (Figure 3B).

In association with inflammation, BMSCs were analyzed to see if activation of the Stat3 

pathway induces BMSC migration, repopulation and conversion into AT II epithelial cells 

in this animal model. To have a better understanding of BMSCs in our in vitro cultured 

condition, multiple markers were analyzed to define BMSC at multi-passage points. BMSCs 

cultured in our condition were low on expression of embryonic stem cell markers (OCT-4, 

BMP4, SOX2, and Nanog), and high on expression of Scal-1, SSEA-1, CD44 and CD106 

markers. Sca-1 expression correlates with the ability of murine BM stromal cells to support 

proliferation of BM cells [37]. SSEA-1 defined mesenchymal compartment has a high 

capacity to differentiate to astrocyte-, endothelial- and hepatocyte-like cells in vitro [32]. 

CD44 and CD106 are adherent molecules. Modification of the glycans on CD44 increases 

the efficiency of BMSCs delivery and homing to the bone marrow [31]. CD106 expression 

has been linked to the hematopoietic supportive capacity of immortalized murine BM 

stromal cell lines [38,39]. In our analysis, expression of Api6 was also high in cultured 

BMSCs. Api6 is a secreted protein and belongs to the macrophage scavenger receptor 

cysteine-rich domain superfamily (SRCR-SF) [40,41]. Although Api6 was originally 

identified from macrophages, its expression was also identified in AT II epithelial cells 
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of lal−/− mice [29]. Over-expression of this molecule in myeloid cells and lung AT II 

epithelial cells using the doxycycline-inducible systems stimulated proliferation and influx 

of macrophages, neutrophils and MDSCs in vivo, which resulted in lung adenocarcinoma 

[33,42]. Since expression of these markers were varied in different passages, BMSCs from 

different passages were injected into c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice to 

verify plasticity.

Similar to lal−/− mice, hSP-B 1.5-kb lacZ adherent BMSCs were able to migrate into 

the bone marrow, spleen and other organs such as the lung (Figure 4B). BMSCs were 

only able to self-renew in the bone marrow and spleen, not in the blood and lung as 

analyzed by the CFSE tracing study (Figures 4D and S1). Once being recruited into the 

lung, adherent BMSCs showed the ability to convert into AT II epithelial cells by Real­

Time PCR, flow cytometry, and double immunofluorescence staining (Figure 5). Since this 

conversion did not occur in doxycycline-untreated bitransgenic mice, inflammation triggered 

by Stat3C overexpression in myeloid cells is a determining factor for BMSC recruitment 

and conversion. This observation is consistent with our previous finding in lal−/− mice that 

adherent subpopulation of bone marrow cells from hSP-B 1.5-kb lacZ donor mice can 

convert into AT II epithelial cells under the inflammatory and tissue remodeling condition 

[7]. While hSP-B 1.5-kb lacZ adherent BMSCs after 9, 11 and 13 passages from in vitro 
culturing were able to convert into AT II epithelial cells, the same cell population after 

20 passages lost the ability of conversion in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic 

mice.

To clarify whether systemic inflammation and BMSC conversion into AT II epithelial 

cells are due to malfunction of myeloid progenitor cells in the bone marrow, or due to 

the microenvironment change in bitransgenic mice after Stat3C over-expression, whole 

bone marrow transplantation was performed to make chimeric mice. After whole bone 

marrow transplantation for three months, recipient wild type mice that were received bone 

marrow cells from c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice developed systemic 

inflammation and showed BMSCs-AT II cell conversion with doxycycline treatment. In 

a reverse bone marrow transplantation, inflammation and BMSCs-AT II cell conversion 

disappeared in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice after receiving bone 

marrow cells from wild type mice regardless of doxycycline treatment (Figure 6). These 

results clearly demonstrated that alteration of bone marrow progenitor cells, rather than the 

microenvironment change, contributes to systematic inflammation and BMSCs-AT II cell 

conversion in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice.

As proposed for BMSCs to repair the injured lung [43], several conditions must be met: 

(i) BMSCs must be available in the bone marrow; (ii) BMSCs must be mobilized from 

the bone marrow and traffic to the site of injury; (iii) BMSCs must be integrated into the 

existing lung structure, divide and differentiate. Based on our observations, these events are 

highly associated with inflammation and myeloid cell influx into the lung, suggesting that 

some common mechanisms regulate behaviors of both myeloid cells and BMSCs. Since 

both cells are originated in the bone marrow, myeloid cells exert a great impact on BMSC 

functions. Myeloid cells synthesize and secret many cytokines and chemokines, which 

not only regulate the myeloid cell behavior and function, but also influence BMSCs in a 
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paracrine fashion in the bone marrow, circulating system and tissue organs. In this report, we 

demonstrated that Stat3 plays a critical role in myeloid cell proliferation and function. As 

a potent transcription factor, Stat3 induces expression of many pro-inflammatory cytokines 

and chemokines in vivo as we previously demonstrated [18]. These molecules facilitate 

recruitment of myeloid cells into the damaged organs. It is highly possible that the same 

group of cytokines and chemokines mobilizes BMSCs to the damaged site. Identification 

of these molecules will greatly benefit regenerative medicine and cell-based gene therapy. 

Since both MDSCs and BMSCs suppress T cell proliferation/function to subvert immune 

surveillance and prevent the immune system from eliminating tumor cells [34–36,44,45], 

whether bone marrow-derived BMSCs participate in organ pathogenic development along 

with MDSCs in lal−/− mice and c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice is an 

intriguing idea and remains to be tested in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Activation of Stat3 in myeloid lineage cells in lal−/− mice. Single cell suspensions were 

prepared from the bone marrow, blood (PBMC), spleen and lung of 3-month lal+/+ and lal−/− 

mice for FACS analyses of relative phosphor-Stat3 cell populations (pStat3) in myeloid 

cells. Each experiment represents 3 independent (n=3) studies. lal+/+, wild-type mice (gray 

line); lal−/−, LAL knockout mice (black line); Shaded areas were isotype controls. M1 is a 

histogram marker excluding isotypic control (negative control).
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Figure 2. 
Generation of doxycycline-controlled c-fms-rtTA/(TetO)7-CMV-Stat3C double-transgenic 

mice. A, Construct maps for c-fms-rtTA single transgenic mice, (TetO)7-CMV-Stat3C 

single transgenic mice and double transgenic progeny. B, Myeloid specific expression 

of Stat3C-Flag fusion protein in c-fms-rtTA/(TetO)7-CMV-Stat3C double-transgenic mice. 

Cells from the bone marrow, blood (PBMC) and spleen of 3-month doxycycline-treated 

(+DOX, black line) and untreated (−DOX, gray line) bitransgenic mice were stained with 

anti-Flag antibody in combination with cell-surface markers CD11b, CD11c, GR-1 and 

CD3. In gated CD11b+, CD11c+, GR-1+ and CD3+ cells, Flag+ cells were analyzed by 

FACS in histograms. Isotype controls were shown as the shaded areas. C, The above study 

was repeated in the lung, except that cell-specific anti-SP-C (AT II epithelial cell marker) 

and −CCSP (Clara cell marker) antibodies were also used for analysis. M1 is a histogram 

marker excluding isotypic control (negative control).
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Figure 3. 
Systemic increases of myeloid cells in c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice. 

A, Single cell suspensions were prepared from the bone marrow, blood (PBMC), spleen 

and lung of 3-month doxycycline-treated and untreated bitransgenic mice for FACS 

analyses. Distribution of CD11b+ macrophage and GR-1+ cells was presented in dot plots. 

Each experiment represents 3 independent (n=3) studies. –DOX, doxycycline-untreated 

bitransgenic mice; +DOX, doxycycline-treated bitransgenic mice. B, C-fms-rtTA/(TetO)7­

CMV-Stat3 bitransgenic mice were treated or untreated with doxcycline for 10–15 months. 

Lungs were inflated, sectioned and analyzed by H&E staining.
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Figure 4. 
Repopulation of hSP-B 1.5-kb lacZ adherent BMSCs in c-fms-rtTA/(TetO)7-CMV-Stat3C 

bitransgenic mice by CFSE analysis. A, Schematic illustration of BMSC transplantation 

experiment. B, CFSE-labeled hsp-B 1.5-kb lacZ adherent BMSCs after 9 passages were 

injected into doxycycline-treated c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice. After 

2 weeks, distribution of donor BMSCs was detected by flow cytometry in various organs 

of the recipient c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice. Non-CFSE-labeled hsp­

B 1.5-kb lacZ adherent BMSCs were used as control. C, Cell division of CFSE-labeled 

hSP-B 1.5-kb lacZ adherent BMSCs (+CFSE) was detected in the cultured condition after 5 

passages, but not in 0 passage. D, Cell division of CFSE-labeled hSP-B 1.5-kb lacZ adherent 

BMSCs (+CFSE) was detected in the bone marrow and spleen of recipient doxycycline­
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treated c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice. Cell cycles of CFSE-labeled 

adherent BMSCs are indicated by arrows (n=3). M1 is a histogram marker excluding 

isotypic controls (negative controls). No BMSCs proliferation was observed in doxycycline­

untreated recipient c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice (Figure S1).

Cong et al. Page 20

Sci China Life Sci. Author manuscript; available in PMC 2021 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Conversion of hSP-B 1.5 kb lacZ adherent BMSCs into AT II epithelial cells in recipient c­

fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice. CD34- and CD45-negatively selected 9th 

passaged hSP-B 1.5-kb lacZ BMSCs were injected into c-fms-rtTA/(TetO)7-CMV-Stat3C 

bitransgenic mice with (+Dox) or without (−Dox) doxycycline treatment. AT II epithelial 

cells were isolated from recipient mice for protein labeling and mRNA analyses. A, 

A representative of FACS analysis by anti-SP-C and β-galactosidase antibodies. B, The 

percentage numbers of proSP-C/β-galactosidase double positive cells from 4 independent 

FACS studies (n=4). *, P<0.01. C, Colocalization of proSP-C and β-galactosidase double 

positive cells by immunofluorescence staining in isolated AT II epithelial cells. No 

colocalization was observed in doxycycline-untreated mice. Blue, DAPI staining of cell 

nuclei; green, pro-SP-C staining; red, β-galactosidase staining; orange, double positive 

staining. D, Colocalization of proSP-C and β-galactosidase double positive cells by 

immunofluorescence staining on lung tissue sections. Double positive cells are pointed out 

by arrows (orange). No colocalization was observed in doxycycline-untreated mice. Green, 

pro-SP-C staining; red, β-galactosidase staining. DAPI staining represents nuclei in the lung. 

E, Expression of lacZ mRNA in AT II epithelial cells of bitransgenic mice (n=3). Wild type 

mice were used as negative control.
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Figure 6. 
Inflammation and BMSC analyses in chimeric mice. Bone marrow cells from wild-type 

or c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mice (CD45.1+) were transplanted into 

reciprocal mice (CD45.2+) that were lethally irradiated. Chimeric mice were treated with or 

without doxycycline. A, A representative analysis of CD11b+ and GR-1+ cells in the bone 

marrow and lung of chimeric mice by FACS. B, The percentage numbers of CD11b+ GR-1+ 

and CD11b+ GR-1− in the bone marrow and lung were analyzed in three independent studies 

(n=3–4). *, P<0.05; **, P<0.01. C, Two months after bone marrow transplantation and 

doxycycline treatment, cultured adherent 9th passage BMSCs were injected into chimeric 

mice. Six weeks later, AT II epithelial cells were isolated from recipient mice for FACS 
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analysis by anti-SP-C and β-galactosidase antibodies. A representative analysis and the 

percentage of proSP-C/β-galactosidase double positive cells from 4 independent FACS 

(n=3–4) are demonstrated. **, P<0.01.
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