
AttnTAP: A Dual-input
Framework Incorporating the
Attention Mechanism for
Accurately Predicting TCR-
peptide Binding

Ying Xu1, Xinyang Qian1, Yao Tong1, Fan Li1, Ke Wang1,2,
Xuanping Zhang1, Tao Liu1,2 and Jiayin Wang1*
1Department of Computer Science and Technology, School of Electronic and Information
Engineering, Xi’an Jiaotong University, Xi’an, China, 2Geneplus Beijing Institute, Beijing, China

T-cell receptors (TCRs) are formed by random recombination of genomic

precursor elements, some of which mediate the recognition of cancer-

associated antigens. Due to the complicated process of T-cell immune

response and limited biological empirical evidence, the practical strategy for

identifying TCRs and their recognized peptides is the computational prediction

from population and/or individual TCR repertoires. In recent years, several

machine/deep learning-based approaches have been proposed for TCR-

peptide binding prediction. However, the predictive performances of these

methods can be further improved by overcoming several significant flaws in

neural network design. The interrelationship between amino acids in TCRs is

critical for TCR antigen recognition, which was not properly considered by the

existing methods. They also did not pay more attention to the amino acids that

play a significant role in antigen-binding specificity. Moreover, complex

networks tended to increase the risk of overfitting and computational costs.

In this study, we developed a dual-input deep learning framework, named

AttnTAP, to improve the TCR-peptide binding prediction. It used the bi-

directional long short-term memory model for robust feature extraction of

TCR sequences, which considered the interrelationships between amino acids

and their precursors and postcursors. We also introduced the attention

mechanism to give amino acids different weights and pay more attention to

the contributing ones. In addition, we used the multilayer perceptron model

instead of complex networks to extract peptide features to reduce overfitting

and computational costs. AttnTAP achieved high areas under the curves (AUCs)

in TCR-peptide binding prediction on both balanced and unbalanced datasets

(higher than 0.838 on McPAS-TCR and 0.908 on VDJdb). Furthermore, it had

the highest average AUCs in TPP-I and TPP-II tasks compared with the other

five popular models (TPP-I: 0.84 on McPAS-TCR and 0.894 on VDJdb; TPP-II:

0.837 on McPAS-TCR and 0.893 on VDJdb). In conclusion, AttnTAP is a

reasonable and practical framework for predicting TCR-peptide binding,

which can accelerate identifying neoantigens and activated T cells for

immunotherapy to meet urgent clinical needs.
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1 Introduction

T-cell receptor (TCR) hypervariable regions are formed by

complex recombination of genomic precursor elements that

mediate recognition of antigens presented by peptide-major

histocompatibility complex (pMHC) molecules (La Gruta

et al., 2018; Joglekar and Li, 2021). Complementary

determining region 3 (CDR3) is the key structural feature

located within the TCR variable regions, and specific CDR3-

pMHC complexes enable T cells to recognize and eliminate

evolving pathogens or malignant cells (La Gruta et al., 2018;

Joglekar and Li, 2021). Thus, the CDR3 region, derived from

quasi-random mutations of V(D)J recombination, is considered

to have a primary function in recognizing the endogenous and

exogenous antigens in the immune-dominant T-cell process and

resulting “TCR repertoire” in an individual, which defines a

unique footprint of cellular immune protection (Chiffelle et al.,

2020).

The high-throughput immune repertoire sequencing (IR-

seq) can capture millions of sequencing reads derived from

the hypervariable regions and produce detailed T-cell

repertoires for individual or population analysis, such as

epitope prediction (Warren et al., 2011; Woodsworth et al.,

2013; Glanville et al., 2017). However, identifying epitopes

from TCR repertoires by biomechanical experiments is a

time-consuming and labor-intensive task. An epitope that is

expanded in multiple T-cell clones is more likely to be

exposed to the pMHC complex and can generally serve as a

surface biomarker for immunotherapy or vaccine targets.

Fortunately, the availability of immune-related TCR/BCR

sequence databases, such as IEDB (Mahajan et al., 2018),

VDJdb (Bagaev et al., 2020), and/or McPAS-TCR (Tickotsky

et al., 2017), will serve as motivation to accelerate the

development of well-integrated epitope prediction pipelines.

As a result, it will be an ideal method that predicts an epitope

from billions of TCR sequences and validates it with a biological

experiment, greatly reducing time and cost consumption.

It is critical to introduce an appropriate prediction model to

predict an epitope, as extracting fitness features from a highly

variable and shortened amino acid chain is difficult (Bolotin

et al., 2012). The length and positional characteristics of the

subsequences are unknown, and the amino acids in the

subsequences contribute to varying degrees. Unfortunately, the

aforementioned public databases have an imbalanced epitope

distribution (a high number of unseen epitopes) as well as a lack

of high-quality labeled seen-epitope data (Moris et al., 2021).

Deep machine learning (DL) models have significantly

accelerated the epitope prediction task by automatically

learning engineering features based on domain knowledge and

extracting unknown and implicit features from unprecedented

amounts of TCR repertoire data using unprecedented scale

models (LeCun et al., 2015; Zemouri et al., 2019; Tran et al.,

2022).

Several cutting-edge TCR-peptide binding prediction

approaches based on DL frameworks have been proposed in

the last 2 years, and they were applicable to both seen and

unseen-TCR epitopes. DLpTCR used a multi-model ensemble

strategy comprised of three base classifiers in predicting the

likelihood of interaction between TCR αβ chains and peptides

(Xu et al., 2021). NetTCR-2.0 provided a 1-dimensional (1D)

convolution neural network (CNN) architecture combining

max-pooling for dealing with sequence length variations

(Montemurro et al., 2021). The input TCR αβ chains and

peptide sequences were encoded by the BLOSUM50 (Henikoff

and Henikoff, 1992) matrix before being fed into a dense layer for

prediction. ImRex used a four-layer convolution and two-layer

max-pooling CNN architecture to predict the combined

representation of CDR3 and peptide sequences, by extracting

their physicochemical properties as features (Moris et al., 2021).

ERGO employed a new multilayer perceptron (MLP) model to

predict the likelihood of TCR-peptide binding. During the study,

they provided two different encoding methods, a long short-term

memory (LSTM) network, and an auto-encoder network to

generate the corresponding models (ERGO-LSTM & ERGO-

AE) (Springer et al., 2020).

The CNN architecture is widely used to extract the features of

TCRs and make TCR-peptide prediction, such as DLpTCR,

ImRex, NetTCR-2.0 and DeepLION (Xu et al., 2022), due to

its superior capacity for image feature learning. However, the lack

of CNN memory capability during the model process will reduce

the feature extraction performance on short sequence data,

especially TCRs. Due to the spatial folding of TCRs, amino

acids in sequences may be related not only to their adjacent

amino acids, but also to some more distant ones. When

extracting sequence features, CNN only considered

interrelationships between adjacent amino acids and ignored

those between non-adjacent amino acids, which also play a

significant role in TCR antigen-binding specificity. The LSTM

architecture, used by the ERGO model, had memory capability

and would reduce the information loss of non-adjacent amino

acids. However, the ERGO model only used the last node output

to represent the entire sequence, ignoring the contribution of

previous node outputs to the final prediction. Furthermore, the

existed start-of-art models could not pay more attention to the

amino acids in sequences that contributed significantly to TCR

antigen recognition. The complex framework would result in

overfitting on TCR-peptide binding tasks, especially under

unbalanced datasets with small labeled sample sizes. As a
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result, there were still some unresolved issues with existed models

and their predictive performances can be further improved by

overcoming several significant flaws in neural network designs.

Motivated by these, we proposed AttnTAP, a dual-input deep

learning network that included the Attn-BiLSTM and Attn-MLP

models, to improve the prediction of TCR-peptide binding

(Figure 1). The bi-directional LSTM (BiLSTM) model with an

attention mechanism was used to extract the features of TCR

sequences, as described in Section 2.2. The BiLSTM model

considered the interrelationships between amino acids and

their adjacent or non-adjacent precursors and postcursors.

Moreover, due to the attention mechanism, all node outputs

were used to represent the entire sequence after weighted

calculation, with a focus on the key amino acids. Given that

FIGURE 1
AttnTAP improved the prediction accuracy of TCR-peptide binding. (A) AttnTAP was a dual-input deep learning framework, which included the
feature extractors for TCR and peptide sequences, Attn-BiLSTM and Attn-MLP. The corresponding feature vectors extracted by the twomodels were
then concatenated for predicting the likelihood of TCR and peptide binding using the multilayer perceptron network. (B) The feature extractor for
TCR sequences, Attn-BiLSTM, was divided into four parts: the input layer, bi-directional long short termmemory (BiLSTM) layer, attention layer,
and output layer. Sequences were preprocessed and encoded into embeddings in the input layer. The embeddings were then fed into the BiLSTM
and attention layers, respectively. The BiLSTM layer extracted the sequences’ feature vectors, while the attention layer computed theweights of each
position in the sequences. Finally, the output layer outputted the weighted feature vectors.
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very few known peptides in the public databases compared to the

TCR sequences, a simple network, MLP, was used to extract

peptide features to reduce the complexity of the network

structure. A dual-input framework of CDR3 sequences and

peptides was used to combine embedding matrices, and then

the two output feature vectors were concatenated by the MLP

network to predict the likelihood of a TCR recognizing a peptide.

Finally, we evaluated the performance of AttnTAP and other

start-of-art TCR-peptide binding prediction models, in terms of

the prediction accuracy, computational cost, and space

complexity.

2 Materials and methods

AttnTAP was a dual-input deep learning framework

developed for predicting the TCR-peptide binding

(Figure 1A). TCR CDR3β sequences, as one of the inputs,

were extracted features using the BiLSTM model with an

attention mechanism, named Attn-BiLSTM. The peptide

sequences were extracted features using the MLP model,

named Attn-MLP. Then, the corresponding features from

Attn-BiLSTM and Attn-MLP models were concatenated to

form a final feature that was used to predict the likelihood of

TCR-peptide binding using the MLP network.

2.1 Data processing

The public TCR-peptide datasets used in this study were

downloaded from the VDJdb (https://vdjdb.cdr3.net/) (Bagaev

et al., 2020), IEDB (http://www.iedb.org/) (Mahajan et al., 2018),

and McPAS-TCR (http://friedmanlab.weizmann.ac.il/McPAS-

TCR/) (Tickotsky et al., 2017), respectively. The three datasets

were used to train the word vectors for AttnTAP, and the VDJdb

andMcPAS-TCR datasets were used to evaluate the performance

of binding prediction approaches. In all of the three datasets, the

standard screening sequences are as follows: 1) We removed the

duplicated sequences, too short (<6bp) or too long (>30bp)
CDR3β sequences, incomplete sequences, and tag-less

sequences; 2) The peptide sequences corresponding to less

than 50 TCR sequences were also removed; 3) We retained

only the correct sequences of the human TCRβ CDR3 and

peptide sequences. As result, we obtained amounts of

181,436 CDR3β sequences from the three public datasets

(“CA . . . F” sequences) to train the word vectors for AttnTAP

(dataset one in this study). The length of CDR3β sequences

ranges from 6 to 27 amino acids, with the majority containing

11–18 amino acids (Supplementary Figure S1).

Furthermore, after the screening process, we obtained

9,597 TCR-peptide pairs with 25 different peptide sequences

from the McPAS-TCR database and 38,134 TCR-peptide pairs

with 56 different peptide sequences from the VDJdb database as

positive samples (Table 1, dataset two in this study). We analyzed

these peptides in the datasets and their species, TCR counts, and

abundances are shown in Supplementary Table S1. Negative

samples were generated by randomly replacing the corresponding

peptide in positive samples with other peptides (Springer et al.,

2020). The procedure for generating negative samples is shown in

Supplementary Algorithm S1. The ratio of negative samples to

positive samples used in this study ranged from 1:1 to 15:1.

2.2 Attn-BiLSTM model

Attn-BiLSTM model was divided into four parts including

the input layer, BiLSTM layer, attention layer, and output layer

(Figure 1B). In the input layer, amino acid sequences were

preprocessed and encoded into embeddings. Then, the

embeddings were fed into both the BiLSTM and the attention

layers. The feature vectors of sequences were extracted in the

BiLSTM layer, while the weights of each position in the sequences

were computed in the attention layer. Finally, the weighted

feature vectors were output in the output layer.

2.2.1 Input layer
According to the previous studies (Montemurro et al., 2021) and

length-frequency statistics (Supplementary Figure S1), the maximum

input length of CDR3 was 18 amino acids and the redundant part

would be truncated to a longer sequence. For the shorter sequences,

we completed them with a placeholder “X” to the maximum length.

Random initialization vectors and pre-training word vectors

were available for Attn-BiLSTM to encode sequences. We used

the character granularity vectors and word granularity vectors as

pre-training word vectors, respectively. Each amino acid was

viewed as a basic character, resulting in a total of 20 characters.

Moreover, three consecutive amino acid residues in a sequence

were considered as one word in word granularity vectors, also

named triplet word vectors (Asgari and Mofrad, 2015). We used

Word2vec (Mikolov et al., 2013) to train these word vectors.

TABLE 1 The datasets used for approach evaluation.

Peptide type TCR-peptide pair number Positive sample size Negative sample size

McPAS-TCR 25 9,597 9,597 9,597–143,955

VDJdb 56 38,134 38,134 38,134–572,010
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2.2.2 BiLSTM layer
The LSTM model specializes in sequential data, reduces

information loss and long-term dependency problems in the

recurrent neural network, and performs well in TCR-peptide

binding prediction (Springer et al., 2020). Compared to the

LSTM, BiLSTM allows for more comprehensive and robust

feature extraction because it takes into account both precursor

and successor positions (Zhou et al., 2016). As a result, the

BiLSTM model was used to extract the features of

CDR3 sequences in this experiment. The encoded vector in

the ith position xi was fed into the forward LSTM (from left

to right) and backward LSTM (from right to left) network, and

the feature vectors hi
→

and hi
←

were output, respectively.

2.2.3 Attention mechanism
As an example, we plotted the seqlogo graphs of

CDR3 sequences corresponding to the peptide sequences

(Figures 2A,B) (Wagih, 2017), which indicated that the

CDR3 sequences corresponding to different peptide sequences

had similar patterns in upstream and downstream targets, but

extremely distinct in the middle region. The difference between

CDR3 sequences, corresponding to two different peptide

sequences at various positions using “Two Sample Logo”

(Figures 2C,D) (Schneider and Stephens, 2002; Crooks et al.,

2004), also indicated that the amino acid composition of

CDR3 sequences binding to different peptide sequences varies

widely.

As shown in the aforementioned example, due to the significant

differences in amino acid composition in the middle region of the

CDR3 sequence, the attentionmechanism could be used to focus on

the amino acids that contributed to the antigen-binding specificity

and improve the feature extraction (Vaswani et al., 2017; Bahdanau

et al., 2014). The weight of the feature vector in the ith position was

calculated as

ui � Tanh(WAhi + bA), (1)

ai � eu
T
i u

∑
t
eu

T
t u
, (2)

whereWA and bA were, respectively, the weight matrix and bias,

Tanh(x) was the activation function, and ai was the

regularization of ui using the Softmax function.

2.3 Attn-MLP model

Attn-MLP for peptide sequences consisted of the input

layer and MLP layer. The input layer was the same as that in

Attn-BiLSTM, and we set the maximum length of peptide

sequences to nine in our study. We used a two-layer MLP

model, a simple neural network model used in the majority

of TCR-peptide binding prediction approaches (Springer

et al., 2020; Montemurro et al., 2021; Moris et al., 2021;

Xu et al., 2021), to extract the features of peptides. The

operation process in each layer of the MLP model was

given by

x′ � ReLU(WM · x + bM), (3)

where WM and bM were, respectively, the weight matrix and

bias, and ReLU(x) was the activation function to avoid gradient

explosion or disappearance. To avoid overfitting, we used

dropout (Srivastava et al., 2014) with a rate of 0.1.

FIGURE 2
Amino acid composition of CDR3 sequences bound to different peptide. (A,B) The seqlogo graphs of CDR3 sequences to different peptides.
(C,D) The "Two Sample Logo" graphs of CDR3 sequences to two different peptides.
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2.4 Multilayer perceptron network

The feature vectors of TCR and peptide sequences were

concatenated into a final feature vector, which was used as the

input of the latter MLP network for classification. The operation

process of the MLP network was similar to Eq. 3, and the final

prediction output was shown as

~Y � P(Y � 1|{TCRi, Peptiedj}) � ReLU(W ′
M · x′ + b′M), (4)

where ~Y denoted the probability that the ith TCR sequence binds

to the jth peptide sequence. When ~Y> 0.5, we considered the

TCR recognized the peptide and vice versa. The dropout with a

rate of 0.1was used to avoid overfitting. AttnTAP was end-to-end

trainable, and the loss function was the log-likelihood function

defined as

L � −[~Yln~Y + (1 − ~Y)ln(1 − ~Y)]. (5)

2.5 Performance evaluation approaches

We selected several state-of-the-art TCR-peptide

combination prediction methods proposed in the last 2 years,

which employed deep learning frameworks, to compare their

performance with AttnTAP. As a result, ERGO (Springer et al.,

2020), ImRex (Moris et al., 2021), DLpTCR (Xu et al., 2021), and

NetTCR-2.0 (Montemurro et al., 2021) were selected for the

comparison experiments (Table 2).

2.5.1 Two prediction tasks used for approach
validation

Two different tasks, TCR-Peptide Pairing I (TPP-I) and

TCR-Peptide Pairing II (TPP-II) as described in the previous

study (Springer et al., 2020), were selected to estimate the

performance of the binding prediction. In the TPP-I task, all

of the TCRs and peptides both belong to the training and test

sets, and TCR-peptide pairs were divided into disjoint training

and test sets (dataset 2). We performed five-fold cross-

validation (CV) for the TPP-I task. First, we sampled the

original dataset randomly and generated a new dataset

(~10,000 TCR-peptide pairs). Then, the generated dataset

was randomly divided into five equal parts, four of which

were used as the training set and the rest as the test set. Three-

quarters of the training data were used to train the model five

times independently, and the rest were used as the validation

data to select the final model.

The TPP-II was similar to TPP-I, except the TCRs

contained in the pairs belonging to the training set could

not belong to the test set. Considering that it was difficult to

divide the dataset into five equal parts as required, we

conducted independent replicate experiments 30 times to

perform an unbiased estimation. The generated dataset was

divided into a fixed ratio, the same as the five-fold CV in TPP-

I, with a 4:1 ratio of training data to test data.

2.5.2 Metrics used for performance evaluation
In this study, we used the accuracy (ACC), recall (REC),

precision (PRE), F1 score (F1), and area under the receiver

operating characteristic curve (AUC), as the criteria for the

performance evaluation of these six approaches. There were

six values in these equations, including true (T), false (F), true

positive (TP), true negative (TN), false positive (FP), and false-

negative (FN), were used. The formulas were presented as

follows:

ACC � TP + TN

P +N
� TP + TN

TP + FN + TN + FP
, (6)

REC � TP

P
� TP

TP + FN
, (7)

PRE � TP

TP + FP
, and (8)

F1 � 2 ×
PRE × REC

PRE + REC
. (9)

Computational costs are always used in computer science to

evaluate an algorithm. In this study, we considered the time

complexity and the space complexity, which could be represented

by the average running time and the requiredmemory occupancy

of the several algorithms in each model as previously described

(Zhao et al., 2020).

TABLE 2 The selected representative TCR-peptide binding prediction approaches.

Predictable TCR
chain(s)

Model complexity Input length
constraint

Proposed date Availability

ERGO-LSTM TCRβ Medium None August 2020 https://github.com/louzounlab/ERGO/

ERGO-AE TCRβ Low None August 2020 https://github.com/louzounlab/ERGO/

ImRex TCRβ High TCR: 10–20 &
Epitope: 8–11

December 2020 https://github.com/pmoris/ImRex/

DLpTCR TCRα&β High None July 2021 https://github.com/jiangBiolab/DLpTCR/

NetTCR-2.0 TCRα&β Low TCR: 8–18 &Epitope: 9 September 2021 https://github.com/mnielLab/NetTCR-2.0/
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3 Results

3.1 AttnTAP model performance

3.1.1 AttnTAP performance on different
encoding methods

Three pre-training word vectors, random initialization

vectors, amino acid word vectors, and triplet word vectors,

were tested in the Attn-BiLSTM and Attn-MLP model, to

validate their effectiveness on AttnTAP classification

(Table 3). The ACC and AUC were used to evaluate the

performance of the three different encoding methods on

the balanced McPAS-TCR and VDJdb datasets. The

random initialization vectors and amino acid word vectors

showed better performance on two datasets, while the triplet

word vector had the worst performance. The prediction

accuracies of random initialization vectors, whose

computational cost was much less, were similar to those of

amino acid word vectors. Thus, the random initialization

vectors were used for sequence encoding to improve the

prediction accuracy of AttnTAP.

3.1.2 AttnTAP performance on five different TCR
feature extraction models

To assess the ability of the feature extraction method at

predicting accuracy, we tested the five different TCR extraction

methods based on the balanced McPAS-TCR and VDJdb

datasets. The five different TCR feature extraction methods

were (I) the MLP model with the most suitable parameters by

grid search algorithm; (II) the two-layer LSTM model used in

ERGO; (III) the BiLSTM model with the same parameters as

model II; (IV) themodel II with an attentionmechanism; and (V)

Attn-BiLSTM, the model III with an attention mechanism. We

summarized their performances under the AttnTAP framework

with the TPP-I task. The five-fold CV results on McPAS-TCR

and VDJdb datasets are shown in Table 4.

The results revealed that the BiLSTM model (model III)

performed better than the MLP (model I) and LSTM (model II)

on the McPAS-TCR dataset, and their three models had similar

performance on the VDJdb dataset. The BiLSTM outperformed

other feature extraction models without attention mechanism

because it considered both precursor and successor amino acids,

which extracted information on the interrelationships between

amino acids in a more rational way. The models with attention

mechanism, especially Attn-BiLSTM (model V), outperformed the

other models without attention mechanism in terms of their ACC,

REC, PRE, recall, F1 score, and AUC, which indicated that attention

algorithms could focus on the key amino acids when processing

large amounts of CDR3 information and improve the feature

extraction. In AttnTAP, the BiLSTM layer and subsequent

attention layer formed the main part of the CDR3 feature

extraction model. The attention mechanism assigned various

weights to the amino acid features output by the BiLSTM layer,

correctly modeling the interrelationships between amino acids and

paying more attention to the amino acids that contributed to the

antigen-binding specificity (Supplementary Figure S2). As a result,

Attn-BiLSTM achieved the highest, and balanced REC (mean

0.818 and 0.829 on McPAS-TCR and VDJdb, respectively) and

PRE (mean 0.762 and 0.870 on McPAS-TCR and VDJdb,

respectively) on two datasets. Furthermore, the AUC value of

Attn-BiLSTM had reached as high as 0.869 and 0.914 on

McPAS-TCR and VDJdb. To some extent, the BiLSTM model

based on the attention mechanism could improve the

performance of TCR-peptide prediction accuracy.

3.1.3 AttnTAP performance on the unbalanced
dataset

A real TCR repertoire usually contains more negative samples

than positive samples. To validate the performance of the AttnTAP

model on an unbalanced dataset andmake it suitable for practice, we

attempted to generate 14 unbalanced datasets (the ratio of negative

to positive samples ranged from 2 to 15) using Supplementary

TABLE 3 The performance of AttnTAP with different encoding
methods.

McPAS-TCR VDJdb

ACCa AUC ACC AUC

Random initialization 0.788 0.878 0.843 0.910

Amino acid word vector 0.784 0.871 0.847 0.911

Triplet word vector 0.616 0.678 0.827 0.878

aAbbreviations: ACC: accuracy; AUC: area under the receiver operating characteristic

curve.

TABLE 4 The performance of AttnTAP under varied TCR feature
extraction models.

ACCa REC PRE F1 AUC

McPAS
-TCR

Ib 0.736 0.803 0.708 0.752 0.827

II 0.762 0.803 0.743 0.772 0.854

III 0.766 0.807 0.747 0.775 0.857

IV 0.774 0.755 0.755 0.758 0.861

V 0.781 0.818 0.762 0.789 0.869

VDJdb I 0.840 0.820 0.855 0.837 0.906

II 0.839 0.799 0.868 0.832 0.901

III 0.842 0.806 0.869 0.836 0.904

IV 0.844 0.820 0.861 0.840 0.908

V 0.847 0.829 0.870 0.844 0.914

aAbbreviations: ACC: accuracy; REC: recall; PRE: precision; F1: F1 score; AUC: area

under the receiver operating characteristic curve.
bModel numbers: I: the multilayer perceptron model; II: the two-layer long short term

memory (LSTM) model; III: the one-layer bi-directional LSTMmodel; IV: the two-layer

LSTM model with attention mechanism; and V: Attn-BiLSTM model.
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Algorithm S1 in this section. The five-fold CV was used to evaluate

the performance of AttnTAP on different unbalanced data (Table 5

and Supplementary Figure S3).

The average AUC on the McPAS-TCR dataset had been

rising from 0.838 to 0.873 during the increased number of

negative samples, while the average AUC on the VDJdb

dataset had reached 0.9 across all the unbalanced data. The

AUC performance results indicated that AttnTAP could

consistently perform well on unbalanced datasets with an

increased number of negative samples.

3.2 Performance evaluation of
comparative approaches

3.2.1 Performance evaluation of the TPP-I task
According to the requirements of the six deep neural networks

(Table 2), we selected only the CDR3 β chains (without the α chains)

and discarded the extra amino acids of the sequences longer than the

maximum length input. We performed five-fold CVs six times to

reduce the unbiased evaluation. We trained the pre-training models

of ERGO-LSTM, ERGO-AE, NetTCR-2.0, and AttnTAP, while the

pre-training models of ImRex and DLpTCR were downloaded

directly (https://github.com/pmoris/ImRex/; https://github.com/

jiangBiolab/DLpTCR/) as previously described (Montemurro

et al., 2021; Xu et al., 2021). We calculated the scores of five

measurements for the different TCR-peptide binding prediction

approaches across the two basic datasets. The ACC, REC, PRE, F1,

and AUC values, with 95% confidence intervals, for a total of

30 validations experiments, were statistically analyzed (Table 6

and Supplementary Table S2). Briefly, among six prediction

approaches, AttnTAP had the highest mean AUC values on both

two datasets (the mean values were 0.84 on McPAS-TCR and 0.

894 on VDJdb), and the AUC values ranged from 0.824 to 0.860 on

McPAS-TCR and ranged from 0.882 to 0.905 on VDJdb

(Supplementary Table S2). Moreover, AttnTAP outperformed all

TABLE 5 The AUC of AttnTAP on unbalanced datasets.

Ratio McPAS-TCR VDJdb Ratio McPAS-TCR VDJdb

1:1a 0.838b 0.908 1:9 0.865 0.914

1:2 0.853 0.910 1:10 0.870 0.911

1:3 0.854 0.912 1:11 0.872 0.912

1:4 0.863 0.913 1:12 0.873 0.912

1:5 0.862 0.911 1:13 0.872 0.913

1:6 0.871 0.909 1:14 0.870 0.912

1:7 0.867 0.909 1:15 0.868 0.913

1:8 0.870 0.912 - - -

aIt denotes the ratio of positive samples to negative samples in the dataset.
bWe used the metric, area under the receiver operating characteristic curve, to evaluate the performance of the model.

TABLE 6 The performance evaluation of TPP-I task.

ACCa,b REC PRE F1 AUC

McPAS
-TCR

ERGO-LSTM 0.748 ± 0.004 0.747 ± 0.013 0.748 ± 0.007 0.747 ± 0.006 0.831 ± 0.005

ERGO-AE 0.734 ± 0.004 0.696 ± 0.020 0.754 ± 0.009 0.722 ± 0.008 0.808 ± 0.004

ImRex 0.631 ± 0.003 0.625 ± 0.005 0.648 ± 0.005 0.636 ± 0.004 0.694 ± 0.003

DLpTCR 0.502 ± 0.003 0.500 ± 0.004 0.861 ± 0.003 0.633 ± 0.003 0.529 ± 0.004

NetTCR-2.0 0.728 ± 0.004 0.734 ± 0.010 0.715 ± 0.018 0.722 ± 0.006 0.799 ± 0.004

AttnTAP 0.758 ± 0.003 0.769 ± 0.013 0.752 ± 0.007 0.760 ± 0.005 0.840 ± 0.003

VDJdb ERGO-LSTM 0.834 ± 0.003 0.790 ± 0.004 0.864 ± 0.004 0.825 ± 0.003 0.889 ± 0.003

ERGO-AE 0.837 ± 0.003 0.798 ± 0.006 0.864 ± 0.006 0.829 ± 0.004 0.891 ± 0.003

ImRex 0.561 ± 0.004 0.556 ± 0.005 0.571 ± 0.006 0.564 ± 0.005 0.598 ± 0.004

DLpTCR 0.482 ± 0.005 0.487 ± 0.004 0.861 ± 0.004 0.622 ± 0.004 0.503 ± 0.005

NetTCR-2.0 0.832 ± 0.003 0.851 ± 0.008 0.802 ± 0.007 0.826 ± 0.003 0.890 ± 0.002

AttnTAP 0.839 ± 0.003 0.801 ± 0.006 0.865 ± 0.004 0.831 ± 0.003 0.894 ± 0.002

aThe results show 95% confidence intervals for all the validations (totally 30 validations for each cross-validation).
bAbbreviations: ACC: accuracy; REC: recall; PRE: precision; F1: F1 score; AUC: area under the receiver operating characteristic curve.
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other methods overall with respect to the other four metrics, where,

in particular, the REC and PRE of its prediction results on the

datasets were balanced, indicating its good robustness and stability.

Therefore, the AttnTAP was an optimal framework for predicting a

TCR-peptide binding.

3.2.2 Performance evaluation of the TPP

To further validate the generalization performance of

these methods, we evaluated them in the TPP-II task and

conducted independent replicate experiments 30 times.

Similar to the TPP-I task, the AttnTAP model achieved the

highest AUC values (the mean values were 0.837 on McPAS-

TCR and 0.893 on VDJdb) (Table 7), and the AUC values

ranged from 0.810 to 0.864 on McPAS-TCR and ranged from

0.873 to 0.908 on VDJdb in the TPP-II task (Supplementary

Table S3). Moreover, it had better overall performance than

other methods in terms of the other four metrics, with a

balanced REC and PRE. As a result, compared with the

existing methods, AttnTAP had better generalization and

could perform better on new data.

3.2.3 Computational costs of approaches

In this study, the average running time was recorded 30 times

independent experiments (Figure 3A and Supplementary Table S2).

Figure 3A demonstrates that NetTCR-2.0, ERGO-AE, andAttnTAP

had similar running times, which wasmuch less than the other three

TABLE 7 The performance evaluation of TPP-II task.

ACCa,b REC PRE F1 AUC

McPAS
-TCR

ERGO-LSTM 0.735 ± 0.005 0.761 ± 0.016 0.724 ± 0.009 0.741 ± 0.006 0.818 ± 0.004

ERGO-AE 0.731 ± 0.005 0.672 ± 0.022 0.764 ± 0.012 0.712 ± 0.009 0.800 ± 0.005

ImRex 0.627 ± 0.004 0.621 ± 0.006 0.644 ± 0.007 0.632 ± 0.005 0.690 ± 0.005

DLpTCR 0.501 ± 0.003 0.499 ± 0.003 0.859 ± 0.004 0.631 ± 0.003 0.524 ± 0.004

NetTCR-2.0 0.731 ± 0.004 0.746 ± 0.008 0.699 ± 0.018 0.720 ± 0.008 0.804 ± 0.004

AttnTAP 0.755 ± 0.005 0.778 ± 0.011 0.743 ± 0.006 0.760 ± 0.006 0.837 ± 0.004

VDJdb ERGO-LSTM 0.832 ± 0.003 0.794 ± 0.007 0.860 ± 0.005 0.825 ± 0.004 0.891 ± 0.003

ERGO-AE 0.836 ± 0.003 0.800 ± 0.009 0.864 ± 0.005 0.830 ± 0.004 0.888 ± 0.004

ImRex 0.561 ± 0.005 0.560 ± 0.006 0.575 ± 0.006 0.568 ± 0.006 0.597 ± 0.006

DLpTCR 0.488 ± 0.004 0.494 ± 0.004 0.862 ± 0.004 0.628 ± 0.004 0.510 ± 0.004

NetTCR-2.0 0.832 ± 0.003 0.860 ± 0.007 0.794 ± 0.009 0.825 ± 0.004 0.891 ± 0.003

AttnTAP 0.838 ± 0.003 0.794 ± 0.006 0.872 ± 0.004 0.831 ± 0.004 0.893 ± 0.003

aThe results show 95% confidence intervals for totally 30 independent experiments.
bAbbreviations: ACC: accuracy; REC: recall; PRE: precision; F1: F1 score; AUC: area under the receiver operating characteristic curve.

FIGURE 3
The computational costs of the approaches on theMcPAS-TCR dataset. (A) The average running time of the six approaches on theMcPAS-TCR
dataset in the TPP-I task. (B) The required memory occupancy of the six approaches on the McPAS-TCR dataset in the TPP-I task.
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approaches, while DLpTCR achieved the longest running time,

which indicated that DLpTCR had a higher complexity of model

configuration. The required memory occupancy of all the six

approaches on the McPAS-TCR datasets was also recorded and

averaged for comparison (Figure 3B and Supplementary Table S2).

The running ERGO-AE with the minimal space and followed by

AttnTAP, whereas the DLpTCR had the largest space occupancy for

its complex framework. Thus, AttnTAP improved the accuracy of

TCR-peptide binding prediction while being quite efficient in terms

of computational time and memory usage.

FIGURE 4
The performance of AttnTAPwith different hyperparameters. (A,B) Panels showed the performance of AttnTAP with different learning rates and
bi-directional long short-term (BiLSTM) layer numbers. (C–F) Panels depicted the performance of AttnTAP using LSTM/BiLSTMwith different training
epochs, dropout rates, dimensions of encoding vectors, and LSTM/BiLSTM layers, respectively.
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4 Discussion

The prediction of TCRs binding to the peptide is urgent in

a clinical, but still extremely challenging, with highly cross-

reactive TCRs and peptides, unseen peptides lack biological

verification, and limited available training samples (Rudolph

et al., 2006; Szeto et al., 2020; Moris et al., 2021). The

breakthrough of deep convolutional neural networks in

predicting TCR-peptide binding accuracy, accelerating well-

integrated human immune repertoire, and potentially

interacting peptides prediction pipelines. However, a few

remaining issues led us to design this experiment. In this

study, we designed the attention mechanism under the Attn-

BiLSTM framework, considering the various contributions of

amino acids in CDR3 sequences. Then, a dual input of

CDR3 sequences and peptides was needed to improve the

prediction accuracy, instead of separate embedding steps

ignoring the two protein molecular interactors. The

experimental results also showed the AttnTAP achieved a

good performance in TCR-peptide binding prediction.

Due to the high dimensionality, non-homogeneous, and

sparsity of TCR repertoire data, we proposed a novel and

unified architecture, which combined a bi-directional LSTM

(BiLSTM), an attention mechanism, and a convolutional

layer. The BiLSTM extracted TCR features by considering

both the preceding and succeeding amino acid representations

of a single CDR3 chain (Zhou et al., 2016). Moreover, an

attention mechanism was employed to give a different focus to

the information outputted from the hidden layers of BiLSTM.

In Supplementary Figure S2, the weight of amino acids in a

CDR3 chain varies greatly at different positions, with the color

changed from light to dark. It is a biological truism that high

weights (dark) tend to appear in the middle region of a

CDR3 chain (Robins et al., 2009), and the weighting

pattern displayed by AttnTAP on most CDR3 sequences

was consistent with this truism. However, some sequences

had special weighting patterns, showing strong weighting at

the beginning or ending amino acids (N- or C- terminus of the

CDR loop). We analyzed the attention weight condition of

1957 test samples from the VDJdb dataset in one five-fold CV

test. We found that AttnTAP exhibited strong weighting for

their beginning part only on 59 CDR3 sequences, which

represented only 0.03 of all the samples, and these

sequences corresponded to 31 different peptides.

Furthermore, some CDR3 sequences showed strong

weighting at the terminal amino acids (C- terminus) of the

shorter sequences as well as the placeholders. Given that the

attention mechanism may assign higher weights to the

boundary part, where the anterior and posterior position

features differ, AttnTAP focused on the terminal amino

acid “F” and the placeholders, taking into account the

sequence length feature. In addition, we also speculated

that some CDR3 sequences had unexpected patterns due to

the strong V or J region preferences or the dataset biases.

Although most CDR3 sequences have a similar beginning or

ending (e.g., beginning with “C” and ending with “F”), these

similar beginnings and endings may still form specific

combinations with highly variable amino acids in the

middle of the sequences, which allows the sequences to

possess antigen-binding specificity.

As is well-known, an adjustable hyperparameter,

including the learning rate, the number of BiLSTM layers,

the training epoch, and the dropout rate, could balance the

latent channel capacity and improve the prediction accuracy

(Graves et al., 2013; Zhou et al., 2016). We conducted a series

of experiments on the McPAS-TCR dataset to validate the

effect of different hyperparameters on model prediction

FIGURE 5
The prediction performance of AttnTAP and NetTCR-2.0 on
different peptides. We first selected nine peptides according to
abundance for the McPAS-TCR and VDJdb datasets, respectively,
of which three were of lowest abundance (McPAS-TCR:
HPKVSSEVHI, YSEHPTFTSQY, RPRGEVRFL; VDJdb: RPPIFIRRL,
EPLPQGQLTAY, HPKVSSEVHI), three were of intermediate
abundance (McPAS-TCR: SFHSLHLLF, ELAGIGILTV, FRCPRRFCF;
VDJdb: SFHSLHLLF, FLKEKGGL, NLSALGIFST), and three were of
highest abundance (McPAS-TCR: GLCTLVAML, GILGFVFTL,
LPRRSGAAGA; VDJdb: NLVPMVATV, GILGFVFTL, KLGGALQAK).
Then, we performed five-fold cross-validation on NetTCR-2.0 and
AttnTAP using only TCR β chain CDR3 sequences, where we used
all training data to train the models but only used the test data
containing the corresponding peptide to test the models. The
average accuracy was used to evaluate their prediction
performance.
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performances and determine the value of the hyperparameters

based on the results. We used the metric ACC to evaluate the

model prediction accuracy in the experiments (Figure 4). Four

hyperparameters, including training epoch, dropout rate,

dimension of encoding vectors, and the dimension of

LSTM/BiLSTM layers, were used to compare the

performance of Attn-LSTM and Attn-BiLSTM (Figures

4C–F). BiLSTM was an ideal model under the different

hyperparameters conditions. Thus, in this study, we set the

training epoch, the dropout rate, the dimensions of amino acid

encoding vectors, and the BiLSTM layer to 10, 0.1, 70, and

80 for AttnTAP, respectively, according to the results. The

ACC had deteriorated significantly when the learning rate was

below 0.0001, thus we set the threshold to 0.001 for

compatibility with the application in the various dataset

(Figure 4A). There was no significant improvement in

model performance as the number of BiLSTM layers

increased, we used one-layer BiLSTM to reduce model

complexity (Figure 4B).

ImRex and DLpTCR had lower prediction accuracies than

the other four approaches under TPP-I and TPP-II tasks,

maybe due to the overfitting caused by their complex model

structures. We reduced the complexity of AttnTAP by using

one-layer BiLSTM instead of multi-layer BiLSTM to extract

TCR sequences features and the MLP model instead of the

LSTM model to extract peptide features to avoid the

overfitting. The results of AttnTAP in TPP-II were similar

to those in TPP-I, which indicated that AttnTAP had a robust

and good generalization in predicting an unseen TCR

sequence binding to a peptide. Thus, the AttnTAP

presented here could serve as an unseen TCR-peptide

prediction method, for accelerating identifying neoantigens

and activated T cells for immunotherapy clinically.

In addition to the performances of AttnTAP on the entire

McPAS-TCR and VDJdb datasets, we also evaluated its

performances on different peptides, especially the peptides with

low abundance, in the TPP-I task. The abundance of peptides in the

McPAS-TCR dataset ranged from 0.005 to 0.219, and from 0.001 to

0.356 in the VDJdb dataset (Supplementary Table S1). We selected

nine peptides according to their abundances (high-, medium- and

low-abundance accounted for one-third) for the McPAS-TCR and

VDJdb datasets, respectively (Supplementary Table S1). Considering

that NetTCR-2.0 is the latest method for TCR-peptide binding

prediction and has high prediction accuracies with low

computational cost, we selected it as the baseline model. We

performed a five-fold CV on NetTCR-2.0 and AttnTAP using

only TCR β chain CDR3 sequences and compared their

performance by average ACC. In detail, we used all training data

to train the models, while only used the test data containing the

corresponding peptide to test the models (Figure 5 and

Supplementary Table S4). On the McPAS-TCR dataset, the

average ACCs of AttnTAP and NetTCR-2.0 were 0.894 and

0.720 for the lowest abundance peptides, 0.718 and 0.714 for the

intermediate abundance peptides, and 0.823 and 0.700 for the

highest abundance peptides. Moreover, on the VDJdb dataset,

their average ACCs were 0.932 and 0.800 for the lowest

abundance peptides, 0.821 and 0.793 for the intermediate

abundance peptides, and 0.916 and 0.828 for the highest

abundance peptides, respectively. The results indicated that

AttnTAP had higher ACCs than NetTCR-2.0 on most of the

peptides and had similar performances to the latter on the other

peptides (e.g., SFHSLHLLF and FRCPRRFCF in the McPAS-TCR

dataset andNLSALGIFST in the VDJdb dataset). In our opinion, the

AttnTAP framework had a good performance on TCR-peptide

binding prediction, especially the low-abundance peptides, due to its

BiLSTM model with attention mechanism in extracting

CDR3 features, which validated that AttnTAP has good stability

and robustness.

In conclusion, we successfully trained a dual-input model to

predict the interactions between seen and unseen TCRs and

peptides. Due to the limited training samples and known

peptides we had available, we tried to reduce the complexity of

themodel to avoid overfitting on the premise of prediction accuracy.

In the future, we will consider more information on TCR sequences,

such as the CDR1 and CDR2, or TCRα chain when data become

available, to train a good performance and more generalization

prediction model to be suitable for multi-types data, meeting the

urgent clinical needs.
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