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Abstract: For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging
problem owing to the limited sensing ability of each sensor and the distributed organization of the
network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to
compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN
is generated in a distributed manner. Inspired by Graham’s Scan (GS) algorithm used to compute
the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially
scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm
called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing
Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational
complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the
time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact
Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and
effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization
algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

Keywords: distributed algorithm; limited Voronoi partition; local information; Wireless Sensor
Networks (WSNs); sensing capability

1. Introduction

In the last few decades, Wireless Sensor Networks (WSNs) have been widely used in practical
applications, where a large number of simple individuals is organized into a network to perform
some sophisticated tasks effectively, such as the cooperative exploration of an unknown terrain [1],
the optimal coverage of a region [2] and the distributed deployment of a multi-robot system [3].
In these applications, individuals having the sensing and moving ability are generalized into sensors.
The environment monitored by sensors should be divided into a collection of disjoint regions, each of
which is dominated by only one sensor. A feasible technique to generate region divisions is known as
the Voronoi partition or Voronoi tessellation.

The concept of the Voronoi partition comes from computational geometry. It is commonly
used to separate a plane into multiple regions by a collection of points called generators. For each
generator, its dominant region is called the Voronoi cell consisting of all points closer to itself than
to any other [4]. Traditional algorithms used to compute a Voronoi partition are implemented in a
centralized manner [5], where the position information of all the points is used to generate the entire
Voronoi diagram. However, the distributed and resource-constrained nature of WSNs invalidates
these centralized algorithms. Therefore, it is necessary to devise a correct and efficient algorithm for
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each sensor to autonomously compute its own Voronoi cell based on the relative positions of the nodes
within its limited sensing or communication range so that the complete Voronoi partition of the WSN
can be generated in a distributed fashion.

Besides WSNs, a similar problem of the Voronoi partition also lies in other distributed systems
such as multi-agent systems and robotic networks, where the information exchange among individuals
is indispensable for completing the task cooperatively. In [6], a distributed algorithm was proposed
for multi-robot systems to compute the Voronoi partition by assuming that each robot as a mobile
sensor can obtain the position information of all the others. Through enlarging a virtual sensing radius,
the initially approximate Voronoi cell is gradually refined to the exact one. A distributed algorithm
used to obtain the Voronoi diagram for a WSN was proposed in [7], where the information exchange
was realized by means of communication among sensors. The exact Voronoi diagram is computed
by trivial geometric operations of half-plane intersections. Similarly, in [8], each sensor acquired
sufficient information to construct its Voronoi cell by means of the multi-hop communication from
its neighbors. The core of the above two algorithms is the design of an appropriate communication
protocol among sensors.

For the WSN consisting of sensors having a passive sensing device with a limited sensing range or
an active communication device with a power constraint, it is impossible to compute the exact Voronoi
cell for each sensor with insufficient information. Instead, the exact Voronoi cell is approximated by the
Voronoi cell within a constrained circle, which is called the range-limited Voronoi cell [9]. Theoretically,
in order to generate a correct Voronoi tessellation of a WSN in a distributed way, each sensor should
construct its own limited Voronoi cell within a constrained range based on the position information of
other sensors lying in a circle with a radius at least double the constrained range.

The most commonly-applied algorithm for computing the Voronoi partition is the classical
Adjust-Sensing-Radius (ASR) algorithm proposed in [10]. Without considering the constraint on the
sensing range, the exact Voronoi cell of the sensor can be gradually refined by computing the Voronoi
cell within an adjustable sensing circle and enlarging the virtual sensing range iteratively. Furthermore,
this algorithm can be trivially generalized to compute the range-limited Voronoi cell [9,11] and has
been regarded as a standard algorithm to solve the problem of the Voronoi partition in a distributed
manner over the last few decades.

However, in the ASR algorithm, there is a key step involved in computing the limited Voronoi
cell in the virtual sensing range, which is implemented by the definition of the limited Voronoi cell,
i.e., first computing the full Voronoi partition of the node set consisting of the generator and its
neighbors within the virtual sensing range by a centralized algorithm of the Exact Voronoi Tessellation
(EVT), then extracting the exact Voronoi cell of the generator, finally intersecting the Voronoi cell with
the constrained circle, whose radius is equal to the current adjustable sensing range. Although the
computation can be accomplished by existing Voronoi tessellation techniques in a centralized manner
and has an optimal computational complexity, it is not the most efficient method to generate the limited
Voronoi cell, since the result produced by the centralized algorithm includes not only the necessary
Voronoi cell of the generator, but also the unnecessary ones of its neighbors. When the ASR algorithm
is generalized to compute the limited Voronoi cell, the lack of efficiency to compute the limited Voronoi
cell in the key step still limits its applicability.

An algorithm called the Range-Constrained Voronoi Cell (RCVC) algorithm was proposed in [12]
to efficiently compute only the range-limited Voronoi cell of a robot having a limited sensing range
through comparing a collection of chords, which are the bisectors between the robot and its neighbors
in the communication range twice its sensing range. Although this algorithm generates just the
limited Voronoi cell belonging to the generator, it has a relatively high computational complexity
in its “removing redundant chords” subroutine, which actually has a quadratic rather than a linear
computational complexity stated in that paper.

In this paper, we propose an efficient algorithm for each sensor with the same and limited sensing
range to compute its limited Voronoi cell autonomously so that the limited Voronoi partition of the
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entire WSN is generated in a distributed manner. In the proposed algorithm, each sensor should
be able to acquire the position information from its neighbors in the sensing range to compute the
candidate boundary set of the limited Voronoi cell, i.e., bisectors between itself and its neighbors within
the half sensing range. Inspired by the classic Graham’s Scan (GS) algorithm [13] used to construct the
convex hull of a point set, all the boundaries of the limited Voronoi cell are determined by sequentially
scanning the collection of bisectors sorted by directional angles and comparing the relative position of
two consecutive bisectors in the proposed algorithm. Thus, this algorithm is called the Boundary Scan
(BS) algorithm. The BS algorithm has a lower computational complexity than the RCVC algorithm and
reaches the lower bound of the computational complexity to solve problems of this kind. Furthermore,
the BS algorithm is not only an improvement of the key step in the ASR algorithm, but also more
time-efficient than the whole ASR algorithm for low-density WSNs. Thus, the relevant research such
as the coverage control for sensor networks [14,15], the coordination of multi-robot systems [16] and
node-to-actor allocation algorithm for wireless sensor and actor networks [17], where the construction
of the Voronoi partition is the crucial technique, will benefit by the computational efficiency of the
BS algorithm. Finally, extensive numerical simulations are carried out to verify the correctness and
effectiveness of the proposed algorithm. The distributed realization of the BS combined with the
Distance Vector Hop (DV-Hop) algorithm [18], which is a widely-used localization algorithm in WSNs,
is implemented to justify the WSN nature of the proposed algorithm.

This paper is outlined as follows. In Section 2, the definition of the Voronoi diagram, as well
as some relevant concepts are introduced. Then, the problem of computing a limited Voronoi cell
is formulated. Section 3.1 gives the basic representations of the BS algorithm. The descriptions and
operations of three steps in the BS algorithm are elaborated in Section 3.2. In Section 3.3, the similarity
of the BS and GS algorithm is stated to indicate the feasibility of the BS algorithm. The computational
complexity is analyzed in Section 3.4. In Section 4, numerical simulations are performed to justify the
correctness, effectiveness and applicability of the BS algorithm. The conclusion and future work are
given in Section 5.

2. Problem Formulation

For a WSN consisting of n homogeneous sensors with a fixed and limited sensing range,
the configuration of the network is denoted by a collection of position coordinates of sensors in
a plane P = {pi ∈ R2, i ∈ In}, where In = {1, . . . , n} is an index set. In what follows, we shall use the
position pi to indicate the i-th sensor. The half plane closer to pi than to pj is denoted as:

H(pi, pj) = {q ∈ R2 | ‖pi − q‖ ≤ ‖pj − q‖}.

The Voronoi cell of pi is defined as the intersection of all the half planes closer to pi than to any
other sensors as:

Vi(P) = {q ∈ R2 | ‖pi − q‖ ≤ ‖pj − q‖, j ∈ In\{i}}. (1)

The sensor pi is called the generator of its Voronoi cell Vi(P). The Voronoi diagram or Voronoi
partition generated by a wireless sensor network consists of all the Voronoi cells of sensors as
V(P) = {Vi(P), i ∈ In}.

For sensor pi and pj, if their corresponding Voronoi cells share a common boundary, i.e.,
Vi(P)

⋂
Vj(P) 6= ∅, then two sensors become Delaunay neighbors, all of which form the edge set

of the Delaunay graph (denoted as GD). Since the Delaunay graph is dual to the Voronoi diagram,
it is easy to derive one graph from its dual counterpart [19]. We shall alternatively use these two
representations in the following paper.

There are generally two ways for nodes of the WSN to acquire the position information from
their neighbors. For one thing, if a node is equipped with a passive sensing device, such as infrared,
ultrasonic or laser, it will obtain the position information of its neighbors by means of direct sensing.
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For another, if a node has an active communication function, the position information will be
transferred among nodes by one-hop communication. In this paper, it is assumed that each node
collects necessary information by means of sensing. The limited sensing range of a node is represented
as a circle. For sensor pi, its sensing range is denoted as a closed circle B̄(pi, r) with the center pi and
radius r. If sensor pj lies in the sensing range of sensor pi, i.e., pj ∈ B̄(pi, r), then pi and pj are neighbors
of each other, and there is an undirected edge between them, i.e., (i, j) ∈ EGdisk(r) ⇔ (j, i) ∈ EGdisk(r),
where the graph is called the r-disk graph (denoted as Gdisk(r)). The neighbor set of sensor pi in the
r-disk graph is denoted as:

P r
i = {pj ⊆ P | ‖pi − pj‖ < r, j ∈ In\{i}}.

Within the context of insufficient information, the exact Voronoi cell, which is not generally
obtained, should be intuitively approximated by the part of the exact Voronoi cell that lies within
the sensing range of the node. However, such approximate Voronoi cells of all the sensors do not
constitute a valid partition of a plane due to the overlap of the interior of these regions. The reason
why the invalid partition occurs is that some boundaries separating two Voronoi cells lie outside the
sensing range and cannot be perceived by sensors. In Figure 1, two limited Voronoi cells within the
respective sensing ranges of sensor p1 and p2 are overlapped (shown as the light gray regions in the
figure) since two sensors are not neighbors in the r-disk graph. In contrast, the approximate Voronoi
partition within the half sensing range (shown as the dark gray regions in the figure) is valid since the
bisector between two non-neighboring sensors is outside the constrained circle, whose radius is equal
to the half sensing range.

p0

p1 p2

r

r
2

Figure 1. The comparison of the valid and invalid approximate Voronoi partition of three sensors with
a limited sensing range r.

The aforementioned r-disk and Delaunay graph are known as proximity graphs in computational
geometry. A proximity graph is composed of a vertex set, which is a collection of distinct points, and an
edge set, which is a set representing the adjacent relations determined by the relative locations of point
pairs. Theoretically, Proposition 2.9 in [9] gives the derived relationship among different proximity
graphs, which is generalized into the spatially-distributed property. Here, we only focus on how to
derive the best approximate Voronoi diagram with the constraint of a limited sensing range. Therefore,
the r-limited Delaunay graph (denoted as GLD(r)), which is spatially distributed over the r-disk graph,
will meet our requirement. This means that the r-disk graph encodes sufficient information to compute
the r-limited Delaunay graph, which is dual to the r/2-limited Voronoi diagram consisting of multiple
r/2-limited Voronoi cells of all the sensors. Take sensor pi for example; its r/2-limited Voronoi cell is
denoted as:

Vr/2
i (P r

i ) = Vi(P r
i ) ∩ B̄(pi, r/2), (2)
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i.e., the intersection of the exact Voronoi cell and the constrained circle whose radius is equal to the
half sensing range of a sensor. Therefore, the plane to be partitioned by a WSN with a limited sensing
range is not the entire plane, but the union of all the half sensing circles as ∪i∈In B̄(pi, r/2).

Figure 2 illustrates a six-node configuration as an example of a WSN and highlights the r/2-limited
Voronoi cell of sensor p0. This region is enclosed by shaded line segments, which are part of the
bisectors between p0 and other sensors in its sensing range depicted as the big circle with a solid line as
its circumference and shaded arcs belonging to the constrained circle depicted as the small circle with
a dashed line as its circumference. Thin line segments are the bisectors inside the constrained range.
They are also the boundaries of the half planes between the sensor and its neighbors. The shaded side
of the boundaries is the half planes in which sensor p0 is located. Two extreme points of the bisector
between p0 and p1 are exclusively marked as s1 and e1 for later use. They are also the starting and
ending points of the arc on the constrained circle. According to the relative position of these bisectors,
it is evident that the bisector between p0 and p5 is not the boundary of p0’s Voronoi cell, so p5 does not
belong to the r-limited Delaunay neighbor set of p0.

p0

p1

p2

p3

p4

p5

e1

s1

s4

e4

xO
θ1

Figure 2. The r/2-limited Voronoi cell of sensor p0 along with other notations.

3. Description and Analysis of the Boundary Scan Algorithm

3.1. Representation of Basic Elements in the Boundary Scan Algorithm

Due to the distributed property of WSNs, the r/2-limited Voronoi partition of a plane should be
decomposed autonomously computing the r/2-limited Voronoi cell of each sensor by means of the BS
algorithm. In the implementation of the BS algorithm, a local Cartesian coordinates system is set up at
the position of the generator, and its neighbors are represented in the local coordinates. Intermediate
results of the BS algorithm including the relative information between the generator and its neighbors,
such as their distances and directional angles, and final results recorded as a collection of vertices of
the r/2-limited Voronoi cell do not depend on the global coordinates system.

For ease of comparing the relative position of two bisectors, each bisector is represented as a
directed line segment with two ordered extreme points. Taking sensor pi for example, all bisectors
between it and its neighbors make up the bisector set Bi = {~bj, j ∈ Im}, where m = |P r

i |. The element
of the set is denoted as~bj = sjej, which indicates that the directed line segment has a starting point sj
and ending point ej such that along the direction from sj to ej, the generator pi lies on the left of the
line segment. Meanwhile, the polar angle θj of the sensor pj in the polar coordinates of sensor pi is
regarded as the directional angle of the bisector~bj for sorting the bisector set.
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Seeing in Figure 2 again, the bisector~b1 between sensor p0 and p1 is represented as the directed
line segment from the starting point s1 to the ending point e1. The left side of~b1 is the half plane
dominated by p0. The directional angle θ1 of~b1 is the polar angle of point p1 in the polar coordinates
with p0 as the pole and the horizontal axis as the polar axis. With the above representations, the relative
position between two bisectors can be readily determined by the cross product of the directed line
segments formed by the extreme points of two bisectors. Taking bisector~b1 and~b4 for example, for the
starting point of~b4, the result of the cross product between two directed line segments s4s1 and s4e1 is
less than zero, which indicates that s4 is on the right of~b1. Likewise, e4 is on the left of~b1, and two
extreme points of~b1 are on the left and right of~b4, respectively. Therefore, the bisectors~b1 and~b4 are
intersected in the constrained circle.

3.2. Three Steps of the Boundary Scan Algorithm

In the BS algorithm, there are three steps to construct the limited Voronoi cell. The first step is
a preprocessing step to obtain bisectors within the constrained range between the generator and its
neighbors in the sensing range. In the bisector set, one of the bisectors should be taken as a reference
to determine other boundaries of the limited Voronoi cell. The selection of the first bisector used to
initiate the algorithm deserves special attention. Since the Voronoi cell consists of the bisectors closer
to its generator than to others, the bisector between the generator and its nearest neighbor would be a
reasonable choice.

Lemma 1. One of the boundaries of the limited Voronoi cell is on the bisector between the generator and its
nearest neighbor.

Proof. A feasible bisector used to determine the validity of other bisectors should not be deleted
during the entire implementation of the algorithm. Without loss of generality, given a WSN with
six sensors in Figure 3, the nearest neighbor of p0 is p1. Their bisector~b1 = s1e1 is illustrated as a thick
line segment. An auxiliary circle represented as the smallest dashed circle with the center p0 and the
radius equal to the distance from p0 to~b1 is tangent to~b1 at T.

As the distance between p0 and~b1 is the smallest one among all the bisectors in the set B0, there are
two types of relative positions between~b1 and other bisectors in the constrained circle. In the first case,
other bisectors do not intersect with~b1, so that they do not intersect with the auxiliary circle, such as~b4

and~b5. Due to the property of the Voronoi cell, the entire bisector~b1 is closer to the generator than to
any other bisector and should be preserved as one of the boundaries of the limited Voronoi cell. In the
second case, other bisectors intersect with~b1 so that intersection points are outside the auxiliary circle,
such as the intersection point A between~b2 and~b1, which is on the line segment between the point
of tangency T and extreme point e1, as well as the intersection point B between~b3 and~b1, which is
on the line segment between the point of tangency T and extreme point s1. Two intersection points
are always located on the different side of T. The part of the bisector~b1 between A and B should be
preserved as one of the boundaries of the limited Voronoi cell. Under no circumstance should the
bisector~b1 be an invalid bisector. Therefore, taking~b1 as the initial bisector in the BS algorithm is an
appropriate option.
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p3

p4

p5

e1

s1

e2

s2s3
e3

s4

e4

e5

s5

A

B

T

Figure 3. The determination of the initial bisector.

Then, starting from the initial bisector, other bisectors are sorted by the directional angle in a
counterclockwise order. Consequently, the first step of the BS algorithm is summarized as follows.

3.2.1. Step 1: The Generation of the Sorted Bisector Set

• Input: the neighbor set P r
i of pi

• Output: the bisector set Bi sorted by directional angles starting from that of the bisector closest to
the generator

• Step 1.1: computing the intersection points between the constrained circle of pi and those of each
sensor in its neighbor set P r

i to obtain the bisector set Bi.
• Step 1.2: computing the directional angle of each sensor in the neighbor set P r

i relative to that of
the bisector closest to pi.

• Step 1.3: sorting all the bisectors of the set Bi according to their directional angle in a
counterclockwise order.

The second step is the core of the BS algorithm. After obtaining the sorted bisector set Bi, all the
bisectors will be sequentially scanned so that the boundary set of the r/2-limited Voronoi cell is
determined. Since the Voronoi cell consists of points closer to the generator than to others, the part
of one bisector closer to the generator is preserved as the accepted boundary of the limited Voronoi
cell by comparing the relative position of two consecutive bisectors. Once the accepted boundary is
farther than the currently scanned bisector, it should be removed from the boundary set of the limited
Voronoi cell. Therefore, in the process of the BS algorithm, it is convenient to store the boundary set of
the limited Voronoi cell in a stack.

According to the representation of bisectors in Section 3.1, the relative position between the
accepted boundary stored on top of the stack and the currently scanned one along with their
corresponding operation is described in detail as follows. Different types of relative positions are
depicted in the corresponding subfigures of Figure 4, where all the sensors are represented as black
dots. The solid and dashed circles indicate the sensing and constrained region of sensor p0, respectively.
The starting and ending points of each bisector in the set B0 are marked along the circumference of the
constrained circle. The intersection point between two bisectors is denoted as xjk, where j and k are
the indices of corresponding sensors. The green and red line segments with shade are the bisectors
on top of the stack and currently scanned, respectively. The black line segments with shade are the
accepted boundaries of the limited Voronoi cell stored in the stack. The blue ones without shade
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are the bisectors that have not been scanned yet, and the gray ones without shade are bisectors that
do not constitute the r/2-limited Voronoi cell. The relative position between two bisectors and the
corresponding operation to deal with this are given as follows.

1. Two bisectors are intersected:

Two bisectors satisfy that~bj
⋂~bk = xjk and θk − θj < π, which implies that sj lies on the left of~bk,

ej on the right of~bk, sk on the right of~bj and ek on the left of~bj (see Figure 4b).

In this case, the ending point of the bisector on top of the stack and the starting point of the
bisector currently scanned are simultaneously replaced by the intersection point of these two
bisectors, and then, the updated bisector~bk is pushed into the stack.

2. Two bisectors are intersected in a reverse order:

Two bisectors satisfy that~bj
⋂~bk = xjk and θk − θj > π, which implies that sj is on the right of~bk,

ej on the left of~bk, sk on the left of~bj and ek on the right of~bj. This case will occur in Figure 4 if we
take~b1 and~b5 as two consecutive bisectors.

No action is taken.~bk is just pushed into the stack for the subsequent operation, since, after looping
back, the latter bisector will intersect with the former one as the first case.

3. Two bisectors do not intersect, and the latter is on the right of the former:

sj lies on the left of~bk, ej on the left of~bk, sk on the right of~bj and ek on the right of~bj (see Figure 4a).

Since~bk is outside the half plane generated by~bj, it can not be the boundary of the Voronoi cell.
Thus, the bisector on top of the stack remains unchanged, and the next candidate bisector will
be scanned.

4. Two bisectors do not intersect, and the latter is on the left of the former:

sj lies on the right of~bk, ej on the right of~bk and ek on the left of~bj (see Figure 4d).

Since the intersection point of two bisectors may be outside the constrained circle, once the ek
lies on the left of~bj, the scanned bisector will be closer to the generator than the one on top of
the stack, i.e., the latter is outside the half plane generated by the former in the constrained circle.
In this case, the bisector on top of the stack is no longer a boundary of the Voronoi cell and will be
popped from the stack. Then, the second bisector in the stack becomes the one on the top and is
used to compare with the currently scanned bisector.

5. Two bisectors do not intersect and lie on the left of each other:

sj lies on the left of~bk, ej on the left of~bk, sk on the left of~bj and ek on the left of~bj (see Figure 4c).

In this case, two bisectors on top of the stack and currently scanned are both valid boundaries of
the limited Voronoi cell, so that~bk will be pushed into the stack.
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Figure 4. The sequential implementation of the BS algorithm.

According to the different cases and their corresponding operations described above, the second
step of the BS algorithm used to generate the raw boundary set of the r/2-limited Voronoi cell is given
as follows.

3.2.2. Step 2: The Determination of the Boundary Set of the r/2-Limited Voronoi Cell

• Input: the sorted bisector set Bi of pi
• Output: the raw boundary set VCi of the r/2-limited Voronoi cell of pi
• Step 2.1: initializing the stack for the boundary set VCi with the first element of the bisector set Bi.
• Step 2.2: sequentially scanning all the other bisectors in the set Bi to compare with the bisector on

top of the stack and obtain the boundary set VCi according to different cases described above.

In order to represent the r/2-limited Voronoi cell unambiguously, the boundary set obtained in the
second step should be refined to a labeled vertex set. The third step of the algorithm is a post-processing
step to generate the vertex set of the r/2-limited Voronoi cell by distinguishing the situation that two
vertices are connected by an arc or a line segment according to the r-limited Delaunay neighbor set of
the generator. The specific step is given as follows.
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3.2.3. Step 3: The Determination of the Vertex Set of the r/2-Limited Voronoi Cell

• Input: the boundary set VCi of the r/2-limited Voronoi cell of pi
• Output: the labeled vertex set Vi of the r/2-limited Voronoi cell of pi
• Step 3.1: finding corresponding generators of the boundary set VCi to obtain the r-limited

Delaunay neighbor set DNi of pi.
• Step 3.2: traversing the boundary set VCi and labeling different types of vertices according to

corresponding r-limited Delaunay neighbor set DNi. Two extreme points belonging to the same
bisector are labeled as line segment vertices and those belonging to two different bisectors as arc
vertices. The r/2-limited Voronoi cell can be correctly represented as the labeled vertex set Vi.

In Figure 4, an instance of the whole procedure of the BS algorithm is illustrated step-by-step.
Figure 4a shows the initial configuration of the bisector set. Next, sequential scanning processes are
given from Figure 4b to Figure 4g, where all the boundaries of the limited Voronoi cell are gradually
determined according to corresponding operations in various cases. Figure 4h is the final result of the
BS algorithm.

3.3. Theoretical Basis of the Boundary Scan Algorithm

In the procedure of the BS algorithm applied to compute the limited Voronoi cell, there are some
concepts and operations analogous to GS algorithm used to construct the convex hull of a collection of
points. In the GS algorithm, basic elements to be dealt with are a point set in a plane. One of the points
belonging to the convex hull is chosen as the reference to initiate the algorithm. Starting from this
initial point, other points sorted by the directional angle relative to it are sequentially scanned. If the
scanned point and its immediately before and after points are arranged in a convex configuration, it is
added to the vertex set of the convex hull. Otherwise, it is discarded, and the next point will be scanned
until the entire point set is traversed. Finally, the convex hull of a point set is precisely constructed.

Correspondingly, in the BS algorithm, basic elements for constructing the r/2-limited Voronoi
cell are a collection of bisectors between the generator and its neighbors. The bisector closest to the
generator is designated as the initial element to compare with other bisectors sorted by the directional
angle relative to it. The property that the limited Voronoi cell consists of points closer to its generator
than to others is used to determine the validity of the scanned bisector. After traversing the bisector
set, the limited Voronoi cell is effectively generated. In other words, the correctness and effectiveness
of the BS algorithm come from the GS algorithm.

Due to the distributed nature of WSNs, the feasibility of the limited Voronoi partition of a
plane is ensured by the sufficiency of the information obtained by each sensor and the correctness
of the algorithm used to autonomously compute each limited Voronoi cell. First of all, because the
r-limited Delaunay graph is spatially distributed over the r-disk graph, the latter encodes enough
information to generate the r/2-limited Voronoi partition of a WSN. Therefore, for each sensor,
the position information of other sensors in its sensing range r is sufficient for each sensor to compute
its r/2-limited Voronoi cell independently. Then, Lemma 1 guarantees that it is appropriate to choose
the bisector between the generator and its nearest neighbor as the first bisector to initiate the BS
algorithm. What is more, all the operations in the BS algorithm strictly comply with the property
that the Voronoi cell consists of the points closer to the generator than to the others. As a result,
at each step of the scanning process, the bisector on top of the stack and the one currently scanned
are properly handled in the corresponding cases described in Section 3.2. Finally, the extreme points
of boundaries of the r/2-limited Voronoi cell are labeled as the vertices belonging to an arc or a line
segment unambiguously with the help of the r-limited Delaunay neighbor set.

3.4. Computational Complexity of Boundary Scan Algorithm

Since the r-limited Delaunay graph is spatially distributed over the r-disk graph,
the computational complexity of the BS algorithm is closely related to the number of neighbors
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in the r-disk graph. Assuming a sensor has m neighbors in its sensing range, the analysis of the
computational complexity of the BS algorithm with the aforementioned three steps is given in Table 1.
In the first two sub-steps of the first step and second step, the whole neighbor set with m elements is
traversed. In the third step, the refined vertex set has the number of operations less than or equal to m
in that some invalid bisectors have been removed from the bisector set after the first two steps. In the
third sub-step of the first step, sorting m bisectors has the highest computational complexity. As a result,
the computational complexity of the BS algorithm as a whole is O(m log m). Due to the equivalence of
the BS and GS algorithm, the BS algorithm reaches the lower bound on the computational complexity
of the algorithms used to solve this problem.

Table 1. The computational complexity of the Boundary Scan (BS) algorithm.

Step Operation Complexity

1
Computing bisector set Bi O(m)
Finding an initial bisector O(m)
Sorting bisector set Bi by directional angles O(m log m)

2 Scanning sorted bisector set Bi O(m)

3 Computing vertex set Vi O(m′), m′ ≤ m

Meanwhile, the RCVC algorithm proposed in [12] is applied to solve a similar problem, where the
r-limited Voronoi cell of a robot is computed based on the position information of the robots in the 2r
communication range. Its computational complexity is analyzed in Table 2. There are also three steps
in the RCVC algorithm. Except for constructing and sorting the set of polar angles Θi, which consist
of polar angles of all the extreme points of bisectors in Bi, the first step of the RCVC algorithm is
the same as the corresponding one in the BS algorithm. In the second step, invalid bisectors are
removed from the bisector set Bi by constructing the set of polar angles Θdi f f

i consisting of polar angles
of the extreme points of other bisectors lying between the bisector~bi. Notably, the computational
complexity of this step is not correctly analyzed in that paper. For every bisector~bi, it will traverse all
the other bisectors to check their validity in the worst case, so that the computational complexity of
this step is actually O(m2) rather than O(m), which is claimed in that paper without considering the
computational complexity of the sorting operation. Therefore, the entire RCVC algorithm has a higher
computational complexity than the BS algorithm.

Table 2. The computational complexity of the Range-Constrained Voronoi Cell (RCVC) algorithm.

Step Operation Complexity

1
Computing bisector set Bi and polar angle set Θi O(m)
Finding an initial bisector O(m)
Sorting bisector set Bi and polar angle set Θi O(m log m)

2 Removing redundant bisectors according to polar angle set Θdi f f
i O(m2)

3 Computing vertex set Vi O(m′), m′ ≤ m

For comparison, the centralized algorithms used to construct the exact Voronoi diagram of a set
of n points, such as the divide-and-conquer algorithm [20] and the sweep line algorithm [5], have a
computational complexity equal to O(n log n). Thus, the algorithm applied in the ASR algorithm,
i.e., the EVT algorithm, has a computational complexity O(m log m) to compute the limited Voronoi
cell of a sensor with m neighbors. Although the EVT algorithm is not the most efficient method to
compute the r/2-limited Voronoi cell, it provides a lower bound of the computational complexity of
the algorithm used to compute the limited Voronoi cell and can be regarded as a benchmark to verify
the correctness of the proposed algorithm.
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4. Simulation Studies

4.1. Simulations of Boundary Scan Algorithm Compared with Existing Algorithms

Although the algorithm of the limited Voronoi partition should be implemented on a WSN
platform, it is easy and sufficient to demonstrate the advantages of the proposed algorithm over
existing ones by performing simulations on a general PC platform. The correctness and effectiveness
of the BS algorithm are verified by extensive numerical simulations, in which algorithms are coded
by Python 2.7.12 and implemented on Windows 10 with Intel Core i7-4770 at 3.4 GHz and 8 GB
memory. It is expected that the lower computational complexity of the proposed algorithm and the
simple mechanism of information exchange among nodes by means of the passive sensing or one-hop
communication will lead to a lower energy consumption and small number of sending and receiving
messages. The advantages of our proposed algorithm are platform-independent.

First, we compare the limited Voronoi partition obtained by the BS algorithm implemented on
all the sensors with the exact Voronoi tessellation of a WSN generated by a centralized algorithm.
For a WSN consisting of 500 sensors with a fixed sensing range r = 1 and uniformly distributed
on a 10× 10 plane, the exact and the r/2-limited Voronoi partition of this network computed by
aforementioned two algorithms are depicted together in Figure 5, where the exact Voronoi cells are
polygons composed of a set of line segments as their boundaries, while the corresponding r/2-limited
Voronoi cells are the regions filled with different colors. The white parts near the boundary and in the
sparse area of the plane are the regions that cannot be covered by the r/2-limited Voronoi cells. It is
obvious that the results generated by two algorithms are similar except for several Voronoi cells since
the region partitioned by the WSN with a limited sensing range is not the entire plane, but the union
of all the constrained circles with a half sensing radius. Therefore, the correctness of the BS algorithm
is easily verified.

Figure 5. The comparison of the exact and r/2-limited Voronoi partition of the same WSN.
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Next, the performance of the proposed BS algorithm and that of the existing RCVC algorithm
are compared through the computational time spent by two algorithms to compute the r/2-limited
Voronoi partition of the same WSN with various configurations. According to the analysis in Section 3.4,
the number of neighbors of a sensor is closely related to the computational complexity of both the
BS and RCVC algorithm. Moreover, a WSN is usually a dynamical system in practical applications.
Sensors should accomplish some tasks by means of cooperative motions so that the configuration of
the network will change dynamically. In different scenarios, the density of the WSN is variable, so is
the average number of neighbors of each sensor. Therefore, the time efficiency of two algorithms is
compared through computing the limited Voronoi partitions of a WSN with the increasing density
of sensors.

For a WSN consisting of 500 sensors with a fixed sensing range r = 1, the length of the region,
where all the sensor are deployed, is varied from one to 10 with a unit interval. The relationship
between the density of the WSN ρ and the length of the region L is ρ = N/L2. For each density, the
total computational times spent by all the sensors to compute their Voronoi cells through implementing
the BS and RCVC algorithm are averaged for 10 randomly-generated configurations, respectively.

Two curves of the computational time of the BS and RCVC algorithm with the increasing density
of WSNs are illustrated in Figure 6, where the horizontal and vertical axes represent the density and the
computational time, respectively. For a better illustration, curves are plotted in the dual-logarithmic
coordinates. The blue and red curves of the computational time are generated by the BS and RCVC
algorithm, respectively. It takes a longer time to compute the limited Voronoi cell with the increasing
density of WSNs since more sensors are included in the neighbor set of the r-disk graph. In general,
due to the classic ASR algorithm, the problem of computing the limited Voronoi cell with a large-scale
neighbor set can be decomposed into multiple subproblems with a small number of neighbors.
Moreover, the most common configuration of the WSN has a moderate density, i.e., each sensor has
tens of neighbors in its sensing range. In this situation, the computational time of the RCVC algorithm
is three- to six-times longer than that of the BS algorithm. In the low-density situation, each sensor has
a relatively small number of neighbors in its sensing range. The BS algorithm runs just one time faster
than the RCVC algorithm. Although it is less likely to deal with an extremely high-density WSN in
applications, we should not ignore this worst case, where the difference between the time efficiency of
two algorithms increases up to 70 times. In all the scenarios, the BS algorithm provides a full-range
improvement in computational time.

101 102

ρ

100

101

102

t(
s)

BS
RCVC

Figure 6. The computational time of the BS and RCVC algorithm versus the increasing density of WSNs.
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Then, in order to demonstrate the improvement of the ASR algorithm after introducing the BS
algorithm, the computational times of the BS algorithm implemented individually and embedded
into the framework of ASR algorithm are compared with corresponding existing algorithms in the
following simulations. For one thing, since the BS algorithm is used to replace the EVT algorithm
used in the standard ASR algorithm, the computational time of the BS and EVT are compared first.
For another, both the BS and EVT algorithms are applied in one of the key steps in the ASR algorithm.
Hence, two algorithms combined with the ASR algorithm (ASR+EVT and ASR+BS) are implemented
under the same condition. Since the BS and EVT algorithms are usually used to construct the limited
Voronoi cell of a sensor with a small number of neighbors, we generated a typical configuration of a
WSN consisting of 30 sensors uniformly distributed in a 3× 3 plane, where the average number of
neighbors of each sensor is about nine.

An example of such WSNs is illustrated in Figure 7, where the r-disk graph and the corresponding
r/2-limited Voronoi diagram are depicted in two subfigures, respectively. We randomly generate 100
such configurations to compare the computational time spent by two individual and two combined
algorithms. The average times with standard deviations are given in Table 3. The result indicates
that the BS algorithm is superior to its counterpart in both cases. In addition, when observing the
second and fourth row of this table, we notice an interesting result that the BS algorithm performs even
better than the ASR+BS algorithm to compute the limited Voronoi partition of such a configuration of
the WSN.

1 0 1 2 3 4
x

1

0

1

2

3

4

y

(a) (b)

Figure 7. The r-disk graph and corresponding r/2-limited Voronoi diagram of a WSN. (a) The r-disk
graph. (b) The r/2-limited Voronoi diagram.

Table 3. The computational time of the individual Exact Voronoi Tessellation (EVT) and BS algorithms
and those embedded in the framework of the Adjust-Sensing-Radius (ASR) algorithm

Algorithms Computational Times (s)

EVT 0.02703± 0.00926
BS 0.00574± 0.00096

ASR+EVT 0.06043± 0.00537
ASR+BS 0.01177± 0.00190

Finally, motivated by the result of the previous simulation, we carry out a detailed simulation to
compare the computational time of the BS algorithm implemented individually with that embedded
into the ASR algorithm in various scenarios. For a WSN consisting of 500 sensors with a fixed sensing
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range r = 1, all the sensors are uniformly distributed in a square region whose side length is varied
from 1 to 15 with a unit interval so that WSNs with different densities are generated correspondingly.
For each side length of the region, we randomly generate 100 networks to compare the computational
time of two algorithms. The means and standard deviations of the computational times spent by two
algorithms with the increasing length of regions are depicted in Figure 8, where the computational
times of two algorithms are almost equal at L = 4. Obviously, this critical side length of the region
corresponding to the critical density of WSNs can be used to determine the applicability of two
algorithms qualitatively. The ASR+BS algorithm is more efficient for a network with a relatively
high density, where most limited Voronoi cells are the same as the exact ones without arc boundaries.
Consequently, the termination condition of the ASR algorithm can be quickly achieved without
traversing the large-scale neighbor set as the BS algorithm does. On the contrary, the BS algorithm will
perform better for a network with a relatively low density, where the number of sensors in the sensing
range is small and the limited Voronoi cell is usually enclosed by arc and line segment boundaries.
The ASR algorithm will not terminate until the adjustable sensing range is enlarged to the actual one.
The computational time spent in the last step of the ASR algorithm is equal to that spent in the entire
BS algorithm. Therefore, the total time of the ASR algorithm is no doubt longer than that of the BS
algorithm. In practical applications, it is more reasonable to consider a tradeoff between the iterated,
multi-step ASR algorithm and the traversed, single-step BS algorithm. For instance, each sensor should
first evaluate the local density in its sensing range and then decides which algorithm is suitable for the
current situation. This problem is worthy of further investigation.
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L
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ASR+BS

Figure 8. The computational time of the BS and ASR+BS algorithm versus the increasing side length of
the region.

In practical applications, the distributed algorithm of the limited Voronoi partition of a plane is
generally applied to the dynamic simulation of multi-robot systems [21], sensor networks [10] and
self-propelled particles [22]. In these systems, each individual will first compute its own limited
Voronoi cell as the dominant region autonomously and then plan its motion for the next step according
to the obtained limited Voronoi cell. In particular, the entire dynamic simulation of collective motion
of self-propelled particles will incur a heavy computational burden. For one thing, the scale of the
particle group is quite large, up to 104 in general. During the evolution, the formation of the particle
group may change drastically. Thus, the geometric configurations with which the ASR algorithm
cannot efficiently deal will frequently occur. For another, it will take a long time to implement the
simulation of collective motion of self-propelled particles, 105 steps in general, in order to avoid
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memory effects of the initial condition. The total time of the entire simulation would be reduced
substantially, even though there was only a small improvement in the computation time of the limited
Voronoi cell in each step. Therefore, the improvement in the time efficiency provided by the proposed
BS algorithm is significant in practical applications.

4.2. Simulations of Boundary Scan Algorithm Combined with the Localization Algorithm

For WSNs used in practice, the position of each node is generally not known in advance,
but should be estimated by means of some localization algorithm. In order to demonstrate the
utility of the proposed BS algorithm in the field of WSNs, a simulation combining the BS algorithm
with the DV-Hop algorithm, a widely-used localization technique for ad hoc and wireless sensor
networks [18], is performed to generate the limited Voronoi partition of a WSN based on the estimated
positions of nodes. For a WSN consisting of 100 sensors with the same sensing and communication
range r = 20 and uniformly distributed on a 100× 100 plane, the configuration and the connectivity
relationship of this network are shown in Figure 9, where 30% of the nodes are the anchor nodes with
known positions and represented by red triangles, and other normal nodes to be located are blue
circles. Two nodes that can exchange information with each other are connected by a gray line as the
communication link.
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Figure 9. The configuration of the WSN used with the DV-Hop algorithm.

The simulation result generated by the DV-Hop algorithm is given in Figure 10, where the anchor
and normal nodes are still represented by red triangles and blue circles, respectively. The estimated
positions of the normal nodes are marked as red squares. The gray lines indicate the deviations
between the true and estimated positions of nodes.
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Figure 10. The true and estimated positions of nodes in the WSN.

Based on the true and estimated positions of nodes, two limited Voronoi partitions of the WSN
generated by the BS algorithm are depicted in Figure 11. It is obvious that the accurate localization of
each node plays an important role in the computation of the limited Voronoi partition.

(a) (b)

Figure 11. The comparison with the limited Voronoi partition of the WSN with exact and estimated node
positions. (a) The limited Voronoi partition of the WSN based on exact node positions. (b) The limited
Voronoi partition of the WSN based on estimated node positions.
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In order to evaluate the cost of transmitted messages of the proposed algorithm, the number of
sending and receiving messages of each node in the distributed implementation of the BS combined
with the DV-Hop algorithm for the WSN given above is regarded as a measurement of the message
complexity. The result shown in Figure 12 indicates that the anchor nodes with known positions have
a relatively low message complexity, while the normal nodes having more neighbors have to exchange
necessary information with their neighbors more times to achieve localizations and computations.
Moreover, anchor nodes will broadcast their information twice in the DV-Hop algorithm, while all
the nodes implementing the BS algorithm just need to transmit their positions to their neighbors
once. The communication cost in the BS algorithm accounts for a small proportion of the total cost.
In addition, the energy consumption of the network used to generate the limited Voronoi partition is
related primarily to the number of communications among nodes. By ignoring some minor factors
such as the computational cost and idle power of each node, we believe that the number of information
exchanges among nodes could indicate the energy consumption for computing the limited Voronoi
partitions of the WSN to some extent [23]. When the hardware features of nodes such as the CPU type
and transmit/receive power are given, referring to the package size and transfer rate defined in the
IEEE 802.15.4 protocol [24], the energy consumption of each node can be exactly calculated.

Figure 12. The number of transmitted messages of each node in the BS combined with the DV-Hop algorithm.

5. Conclusions

For a wireless sensor network, the boundary scan algorithm is proposed in this paper to
compute the limited Voronoi cell of each sensor with a limited sensing range in order to generate
the limited Voronoi partition of a plane in a distributed manner. Inspired by GS algorithm used
to construct the convex hull of a collection of points, through sequentially scanning bisectors
between a sensor and its neighbors, comparing the relative position of two consecutive bisectors
and implementing corresponding operations, each sensor can construct its limited Voronoi cell
autonomously. The computational complexity of the BS algorithm is lower than that of the RCVC
algorithm and reaches the lower bound of the computational complexity of equivalent algorithms.
Furthermore, the proposed algorithm is an improvement of the key step in the ASR algorithm and is
also more efficient than the ASR algorithm for low-density WSNs. The correctness and time efficiency
of the proposed BS algorithm are demonstrated by extensive numerical simulations.
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Since our paper is just involved with a theoretical algorithm extracted from the practical
applications of WSNs, the simulation studies are implemented merely on a general PC platform
rather than an emulation environment or a real WSN at present. The implementation of the proposed
algorithm on a practical WSN platform is one of the indispensable works in the future.
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