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Abstract: This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates
to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will
be compared to methods and applications accompanying this particular administration route. In
addition, we will focus extended discussion on the potential role of IN vaccination in the context of
respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this
disease, including its prevalence and impact upon the elderly population, will be viewed from the
standpoint of improving health outcomes through vaccine design and delivery technology and how
IN administration can play a role in such efforts.
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1. Introduction

Respiratory tract infectious diseases are ubiquitous due to the airways being the most
accessible route to bodily entry. Subsequent infections of the ears, nose, throat, and lungs
produce a range of symptoms associated with both viral and bacterial pathogens [1–4].
Such illnesses are also readily transmissible via aerosolization [5].

Primary examples of respiratory tract diseases include the yearly occurrences of
influenza, pneumonia, and the common cold [5,6]. In particular, secondary bacterial
pneumonia (commonly triggered by influenza co-infection) can have devastating im-
pacts on the very young and elderly populations, with the resulting illness highlighting
synergy between bacterial and viral pathogens [6–10]. Of course, the events of 2020 high-
light the continued emergence of coronaviruses into the public perception of respiratory
tract diseases.

Various therapies over the years have been applied and tested for respiratory tract
diseases, with an emergence of prophylactic options for both viral and bacterial infectious
agents [11–15]. A key element of this mini-review will be to present and analyze the
preventative options, via vaccination, available to common respiratory tract diseases and
how such treatment options are designed and delivered.

In particular, we will closely examine the option of intranasal (IN) delivery for res-
piratory tract illnesses. IN administration offers numerous advantages to the delivery of
both therapeutics and prophylactics due to the obvious co-localization of the treatment
proximal to infection.

Based upon current collaborative efforts of the authors, we will also more closely
examine pneumococcal disease as an important respiratory tract illness, especially as it
relates to the elderly population, defined as individuals > 65 years old, a group that will
greatly expand in size over the next 25 years [16]. The unique features of pneumococcal
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disease, its relationships to other respiratory tract illnesses (particularly influenza), and the
consideration that must be given to vaccine development will be highlighted. Included in
this analysis will be the potential role which IN vaccine delivery might serve.

As such, we will intertwine the impact of respiratory tract diseases, some of the key
elements of disease progression, and the application of IN delivery in the treatment of these
diseases. We will also link the IN delivery approach to elements of particular respiratory
tract illnesses (focusing on pneumococcal disease) and how this administration route can
facilitate immune reactivity, or effective treatment more generally, towards the foundations
of disease and disease progression.

2. Main Respiratory Illnesses and Their Treatment Methods

Respiratory tract infectious diseases have a long history of affecting the quality of
human life. In this section, we introduce this disease category more broadly, highlighting
high profile examples, their historical and recent impact, and treatment options available
(Table 1).

Table 1. Main Respiratory Illnesses and Their Treatment Methods.

Disease Infectious Agent Notes Therapeutic/Preventative Options References

Influenza Primarily Influenza
A virus

• Millions of global cases and
hundreds of thousands of
deaths annually

• Responsible for historic (Spanish,
Asian, Russian, Hong Kong Flu)
and more recent (swine and
avian flu) outbreaks

• Neuraminidase inhibitors (Tamiflu)
• Seasonal and dedicated vaccines
• Cap-dependent

endonuclease inhibitor
[17]

Pneumococcal
Disease

Streptococcus
pneumoniae
(bacteria)

• Millions of global
deaths annually

• Affects young, elderly,
resource-limited groups

• Commonly synergistic
with influenza

• Antibiotics
• Polysaccharide conjugate and

non-conjugate vaccines
[18]

Whooping Cough
(Pertussis)

Bordetella
pertussis

(bacteria)

• Part of common DTaP vaccine
(diphtheria-tetanus-pertussis)

• Millions of global cases annually

• Antibiotics
• Vaccine [19]

Tuberculosis
Mycobacterium

tuberculosis
(bacteria)

• Global incidence in millions
• Complicated by latent and drug

resistant forms

• Antibiotics
• BCG vaccine [20]

Coronavirus-based
diseases

Various viruses
(including

SARS-CoV-2)

• Previous SARS (2002) and MERS
(2012) outbreaks

• Current COVID-19 pandemic

• Recent COVID-19 vaccines
• Antiviral drugs and advanced

therapeutics (including
antibody treatments)

[21,22]

In Table 1, well-recognized infectious diseases are highlighted, all of which have direct
impact upon the respiratory tract. Some of these diseases are relatively common and mild
(i.e., influenza and the common cold); however, certain viral strains over time have had
significant global impact, especially as it relates to flu pandemics. Other diseases, like
pneumococcal disease and tuberculosis, are caused by bacterial pathogens. There is also
the potential interplay between various respiratory tract diseases, such as that between
pneumococcal disease and influenza, which will be discussed in greater detail later.

Table 1 also presents common treatment options for the pulmonary diseases listed.
Notably, each disease includes a vaccine option, even those that are bacterial in nature
and might be readily treated by antibiotics. In the case of bacterial-derived tuberculosis,
antibiotic effectiveness can be limited by the latent state of the bacteria and/or the morphol-
ogy and chemical composition of the mycobacterium responsible for disease [23–27]. The
disease progression profile for pneumococcal disease (namely, in vivo biofilm formation)
also poses challenges for effective antibiotic treatment [28–33]. Finally, like most other
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bacterial infectious disease targets, the active agents responsible for tuberculosis, pertussis,
and pneumococcal disease are prone to development of antibiotic resistance [34–39]. As a
result, all of the respiratory tract diseases listed in Table 1 also feature vaccine treatment
options, with each of these routinely used to address the given disease.

3. Intranasal Vaccine Delivery

Table 1 includes vaccines as a consistent treatment option for the range of respiratory
tract diseases highlighted. In this section, we will now introduce intranasal delivery as a
vaccine administration route. As the name indicates, intranasal delivery means a vaccine
formulation, which is introduced in the body through the nose. In the context of treatment
options for respiratory tract diseases, this approach is viewed with great promise.

First, when compared to more traditional forms of vaccine administration methods
(subcutaneous or intramuscular injection), intranasal administration offers a simpler, less
invasive option, potentially leading to more compliance and less medical complications
(localized infection and/or pain) due to traditional methods that require needle-based skin
puncture [40], though it is acknowledged that overall effectiveness will depend on the
consistent degree of IN administration, which is subject to the methodology of delivery
or the skill of personnel overseeing the administration. In addition, in the context of
vaccine delivery for the aforementioned respiratory tract diseases, intranasal delivery offers
the prospect of a localized, mucosal immune response proximal to the target infectious
disease [40,41].

Table 2 covers the broad use of intranasal delivery methods applied to the infectious
diseases introduced in Table 1 (with the majority of these studies reporting similar or better
results compared to traditional methods of intramuscular and subcutaneous administra-
tion). Spacing the analysis over a 12-year window, the total number of IN vaccine studies
completed over this time period were directed at influenza. Whooping cough (pertussis)
has a very established vaccine treatment regimen, and this may decrease newer research
efforts for IN delivery methods. Whereas, diseases like influenza, pneumococcal disease,
and tuberculosis feature some combination of challenging disease features, whether that
be seasonal strain variation (influenza), degree of strain coverage and disease progression
(pneumococcal disease), or disease state (active vs. latent, in the case of tuberculosis). As
such, the complexities associated with these disease types may have spurred more recent
research activity more generally with the inclusion of IN vaccine delivery methods in
particular. Finally, the dominance in attention due to COVID-19 research over the last year
offers an explanation for the recent uptick in IN delivery research [42] (with a noticeable
downtrend for studies focused on influenza in that same time period).

Table 2. Intranasal Vaccine Delivery for Respiratory Tract Diseases.

Disease
Number of IN Applications

(Identified Using the PubMed Search Engine for Indicated Year)

2009 2014 2019 2020 2021

Influenza 14 23 17 6 2

Pneumococcal Disease 4 2 9 3 2

Whooping Cough 1 3 0 3 1

Tuberculosis 4 6 3 3 3

COVID-19 N/A N/A N/A 6 6

Table 3 more closely examines the types of IN methods that have been utilized over
the last 10 years, the rationale behind the methodology, general frequency of use, and
distribution of application across common respiratory tract diseases. The approaches
highlighted include direct IN administration (the addition/inhalation of a dry powder or
instillation within a solution applied directly to the nostrils) and the inclusion of both phys-
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ical (aerosolization) and chemical (various formulations) methods designed to influence
bodily absorption and immune response. Applications generally span the respiratory tract
diseases introduced in Tables 1 and 2 with a heightened degree of usage for influenza and
pneumococcal disease.

Table 3. Range of IN Approaches.

IN Method Used Rational Times Tested Disease Application Reference

Dry Powder
-Inulin nanoparticles
-Chitosan nanospheres

• Highly stable
• Extended residence time 2 Influenza

(Influenza A virus) [43,44]

Intranasal Instillation
-Stabilized protein subunit
-Nanoparticles
-Inert bacterial spores
-Bacterium-like particles

• Simple and easy form of delivery
• Low cost 7

Pneumonia
(Actinobacillus

pleuropneumoniae)
[45]

Tuberculosis
(M. tuberculosis) [46–48]

Pneumococcal
Disease

(S. pneumoniae)
[49]

Influenza
(Influenza A virus) [50,51]

Aerosolization
-Adenovirus vector-based

• Efficient delivery of materials
• Targets lower respiratory tract 1 Influenza

(Influenza A virus) [52]

Nasal Gel
-Cationic cholesteryl pullulan

• Reduction in nasal clearance
• Sustained release 1

Pneumococcal
Disease

(S. pneumoniae)
[53]

4. Pneumococcal Disease and the Elderly

The following section will feature an extended examination of pneumococcal disease,
due both to overlapping collaborative expertise on the part of the authors and its con-
nection to the themes of this mini-review. Of note, pneumococcal disease, derived from
Streptococcus pneumoniae, is particularly relevant due to its broad global impact, especially
on the very young, elderly, and resource limited [54–57]; its unique means of disease
progression spanning the upper respiratory tract to various downstream locations in the
body (including and prominently the lungs) [33,58]; its potentially devastating overlap
with dual infectious diseases, predominantly influenza [9,10,55,59–61]; and the opportunity
to address this disease through unique means of vaccine design and delivery, including
intranasal administration.

Pneumococcal disease has a disproportional impact upon the elderly, where indi-
viduals ≥ 65 years old account for the majority of hospitalizations and deaths following
pneumococcal infection [62]. The number of elderly is projected to double in the com-
ing decades, reaching 2 billion by 2050 [63]. This poses a serious health concern as the
elderly are more susceptible to infections, particularly those caused by S. pneumoniae [54],
which are encapsulated Gram-positive bacteria that include 100 serotypes based on the
composition of the capsular polysaccharide [62,64]. Upon colonization of the upper respi-
ratory tract, these bacteria typically reside asymptomatically in the nasopharynx of healthy
individuals [62], occurring in 10–40% of adults and up to 80–100% in children [65]. In
individuals with compromised immunity, such as the elderly, pneumococci can spread
and cause pneumonia as well as invasive pneumococcal diseases, including meningitis,
endocarditis, and bacteremia [54]. Disease manifestation is in part driven by bacterial
serotypes, as bacteria with different capsular polysaccharides vary considerably in their
ability to cause invasive disease [66]. Despite available vaccine and antibiotic treatments,
S. pneumoniae remain the leading cause of bacterial community-acquired pneumonia in the
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elderly [67] and according to the CDC are responsible for 900,000 cases of pneumonia and
400,000 hospitalizations in the U.S. yearly [68]. In a recent Active Bacterial Core surveillance
report [69], individuals above 50 accounted for 71% of all invasive pneumococcal diseases
cases and 82% of associated deaths [70,71], resulting in an estimated cost of $2.5 billion
annually due to hospitalizations [72,73]. Of further concern is the increase in pneumococcal
antibiotic resistance (thus, limiting traditional antibiotic use), classified by the 2019 CDC
Antibiotic Resistance Threat Report as Serious and resulting in over a million drug-resistant
infections yearly [74]. Strikingly, the elderly are more at risk of acquiring drug-resistant
infections [68]. The risk of pneumococcal pneumonia is further enhanced dramatically (100-
fold) by influenza A virus (IAV) co-infection [60,75], resulting in seasonal increases in lethal
infections, the majority of which (70–85%) are in elderly individuals [60]. Without interven-
tion, projected increases in the aging population will double pneumococcal-related health
impacts and treatment costs in the coming decades [72], necessitating novel strategies to
combat this infectious threat.

Two vaccines consisting of capsular polysaccharides that cover the most common
disease-causing S. pneumoniae serotypes are recommended for the elderly [76]. The pneu-
mococcal polysaccharide vaccine (PPSV or Pneumovax) covers 23 serotypes and triggers T
cell-independent antibody (Ab) production with 56–75% efficacy (in non-elderly groups).
The pneumococcal conjugate vaccine (PCV or Prevnar-13) contains polysaccharides from
13 strains covalently linked to a non-pathogenic diphtheria toxoid protein (CRM197) that
triggers a T cell-dependent antibody response [76]. PCV provides protection against
74–88% of invasive pneumococcal disease cases (in non-elderly groups). The introduction
of PCV in children leads to eradication of bacterial nasal colonization or carriage, thereby,
reducing transmission and indirectly leading to a decline in infections within adults for
strains included in the vaccine.

However, there are several issues associated with the currently licensed vaccines that
limit their efficacy (defined as prevention of infection by pneumococci) against pneumo-
coccal infections overall and particularly in the elderly population. The first is serotype
coverage and replacement [77,78]. The above vaccine methods focused upon inhibiting
initial colonization have prompted increased infections caused by “replacement” strains
not included in the current vaccines. This prospect has been made more daunting by
the sizable number of serotypes (currently 100 identified thus far [64]) that must be ac-
counted for to enable full vaccine coverage [79,80]. Moreover, novel disease-associated
non-encapsulated pneumococcal strains that carry antibiotic resistance genes have recently
emerged [81], and these are not covered by the available licensed vaccines. The second
issue with current vaccines is a failure to account for changes in pneumococcal biology
during disease progression. S. pneumoniae typically reside asymptomatically in the na-
sopharynx of healthy individuals [62], and it is hypothesized that S. pneumoniae establish
an asymptomatic biofilm on the nasopharyngeal epithelium by attenuating the production
of virulence factors and concomitant inflammation [32,82–84]. In humans, pneumococcal
carriage is believed to be a prerequisite of invasive disease [85,86], which occurs when im-
munity is compromised, as is observed in the elderly. The transition from benign colonizer
to lethal pulmonary or systemic pathogen also involves changes in bacterial transcript
profiles and morphology [83,87–89]. This was highlighted in recent studies that showed
that the set of genes expressed by pneumococci during colonization were distinct from
those expressed during lung infection as well as during bacteremia, indicating that the
bacteria adapt to their host in an infection site/organ-specific manner [83,87]. Importantly,
sets of conserved genes were upregulated across the several strains tested, suggesting
they could be potential vaccine targets that induce strain-independent protection [87,89].
Similarly, it is well-established that regulation of capsule expression is required for bacterial
virulence [90]. Capsule expression is required for evasion of entrapment by mucus in
the airways; however, downregulation of capsule allows for efficient bacterial binding to
the pulmonary epithelium [91]. Upon bacterial localization into deeper tissues, including
the lower airways and the bloodstream, capsule formation is again required to evade
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phagocytosis and clearance by immune cells [80,91]. These findings have important im-
plication on vaccine design, and vaccines that encompass capsular polysaccharides along
with other bacterial factors key for establishment of lung infection or invasive disease
(e.g., bacteremia) would be ideal for eliciting full host protection against infection. Finally,
the third issue with current vaccines is reduced efficacy during aging. PPSV has been
traditionally recommended for the elderly while PCV is now recommended for the most
vulnerable elderly with underlying conditions [79,92]. While protective against bacteremia,
the efficacy of both vaccines is limited against pneumonia in the elderly: PPSV and Prevnar-
13 showed only 33% [93] and 45% protection against pneumonia, respectively [94,95]. This
age-driven decline in pneumococcal immunization and conjugate vaccine efficacy has been
recapitulated in mice [96,97]. The moderate ability of current vaccines in protecting against
pneumonia in the elderly necessitates better strategies to boost vaccine efficacy.

Immunosenescence, the overall dysregulation in immunity that occurs with age,
drives the increased susceptibility of the elderly to invasive pneumococcal diseases and
the linked decline in vaccine efficacy [98–100]. Several aspects of the age-related decline in
adaptive immunity have been characterized [97,101,102]. Antibody production by B cells
can depend on T cells such as that elicited by PCV [103] or be T cell-independent as elicited
by PPSV [104]. Aging leads to defects in both T cell-dependent and -independent antibody
production [105,106], limiting current vaccine efficacy [105,107]. Following vaccination
with PPSV, both antibody levels and functionality, defined as the ability of antibodies to
opsonize and enhance phagocytic uptake of bacteria (opsonophagocytic activity or OPA),
were significantly impaired among the elderly when compared to younger individuals [108].
The drivers of declined vaccine response in aging are multi-factorial and may be attributed
to chronic inflammation [105], intrinsic defects in B cells including reduced repertoire,
defects in key transcription factors and reduction in AID, the enzyme required for class-
switch recombination and somatic hypermutation, as well as overall defects in T cell
signaling and proliferation [76,109] and in T-follicular helper cells that mediate antibody
production by B cells [110,111]. Thus, vaccines that enhance antigen presentation and
simultaneously target more than one arm of the immune response are attractive avenues to
boost memory responses in the elderly.

In the U.S., influenza accounts for over 10,000 deaths annually and over 40,000 deaths
during epidemic years [112]. Individuals ≥ 65 years account for a staggering 88% of all
influenza-associated deaths [112]. A high percentage of deaths during major influenza
pandemics are due to secondary bacterial pneumonia, particularly by S. pneumoniae [113]. In
fact, the risk of invasive pneumococcal infection is enhanced 100-fold by influenza A virus
(IAV) infection [112], resulting in the seasonal peak of invasive pneumococcal disease
during influenza outbreaks [60]. The means by which IAV promotes bacterial infection
are manifold and have been characterized using mouse models of co-infection [114]. As
mentioned, S. pneumoniae typically colonizes asymptomatically, and it is thought that
IAV infection triggers bacterial release from the nasopharynx into the lungs, priming the
infection [115]. First, IAV exposure enhances the nutritional environment for pneumococcus
in the nasopharynx by increasing the availability of sialylated substrates and increasing
rates of pneumococcal carriage [116]. Second, factors such as ATP, released by viral infected
host cells, promote the dispersion of pneumococci from nasopharynx biofilms to the lower
respiratory tract [83,116,117]. The dispersed bacteria have altered transcriptional profiles
and express increased levels of certain factors required for infection, thus, rendering them
more virulent [83,89]. Third, IAV infection of the lung, through inflammation and oxidative
stress, damages the pulmonary epithelium, facilitating pulmonary bacterial colonization
and rendering the lung more permissive for subsequent replication. In addition, the
adaptive immune response to IAV, mediated by type II and I IFNs produced by anti-
viral T cells, impairs both the recruitment of innate immune cells and their ability to kill
bacteria [118,119]. The combined tissue damage and compromised immune functions
promote systemic spread of S. pneumoniae [118,120,121]. As IAV infection alters both the
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host immune response and bacterial virulence, updated vaccine formulations that maintain
protection during co-infections are required.

Built specifically to address weaknesses in PPSV and PCV vaccine options, the liposo-
mal encapsulation of polysaccharide (LEPS) vaccine platform (Figure 1) broadly protects
against multiple stages of pneumococcal infection. The LEPS formulation features a liposo-
mal vaccine carrier that encapsulates serotype-specific polysaccharides with the capability
to scale to any desired number required for vaccine coverage, which is a technical and
economic impossibility with current glycoconjugate formulations. The LEPS vehicle also
includes a non-covalent attachment mechanism (via either metal-based chelation or biotin
affinity) to affix surface proteins, including CRM197 or new protein antigens that have been
identified within virulence progression steps for S. pneumoniae, such as proteins temporally
displayed by invasive biofilm-dispersed bacteria following influenza co-infection [88,122].
Importantly, this binding mechanism mimics the immunological outcome of Prevnar-13
(i.e., IgM to IgG class switching); triggers Th2, Th1, and Th17 responses (which as indi-
cated above are crucial for overall vaccine effectiveness); and extends recognition to >70
S. pneumoniae serotypes due to multiple antigen types (polysaccharide and protein) target-
ing multiple phases of pneumococcal disease progression (including those traditionally
triggered by influenza co-infection) [88,122]. Each feature thus positions the LEPS vaccine
as a new and improved option for pneumococcal disease.
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Figure 1. Vaccines for pneumococcal disease derived from polysaccharide content of S. pneumoniae
to generate either pneumococcal polysaccharide vaccine (PPSV) or pneumococcal conjugate vaccine
(PCV) clinical options. The liposomal encapsulation of polysaccharide (LEPS) vaccine platform is
presented in comparison.

5. Intranasal Vaccine Delivery for Pneumococcal Disease

One approach that could boost vaccine-mediated immunity against pulmonary in-
fections is to elicit mucosal immune responses, which entails reactivity at the interface of
the external environment and the mucus membranes of the respiratory system. This, of
course, is a primary motivator for IN vaccine administration. In previous efforts with the
LEPS vaccine platform applied towards pneumococcal disease, administration routes had
utilized more common intramuscular and subcutaneous injections (with inclusion of the
alum adjuvant) [88,122]. Once localized in these locations, the LEPS particles are likely
recognized by probing phagocytes, engulfed, and processed for antigen presentation. The
LEPS particles may also act in an adjuvant-like manner, activating immune cells, enhancing
antigen uptake, and eliciting a more robust immune response.
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However, other efforts in pneumococcal disease vaccine research have begun testing
the potential for IN administration. In mice, intranasal immunizations with killed [123] or
live pneumococci were shown to protect against invasive pneumococcal disease in young
hosts [96,124–126]. This protection was mediated by both induction of systemic antibody
responses [96] as well as mucosal cell-mediated responses including IL-17-producing lung-
resident CD4+ T cells [124–126]. Importantly, in humans, experimental pneumococcal car-
riage, where live pneumococci are administered intranasally to volunteers, similarly elicited
systemic antibody responses [127,128], elicited lung IL-17+ CD4+ memory T cells [129],
stimulated tissue resident innate immune cells [130], and protected against re-colonization
by the same serotype [131]. Further, intranasal delivery of pneumococcal protein-based vac-
cines along with adjuvants protected against invasive disease in mouse models [132]. Thus,
intranasal immunizations that trigger systemic and mucosal immune responses are likely
viable strategies to elicit host protection against lung infections. Intranasal immunization
offers other advantages over traditional immunization administration methods, namely,
the lack of injection-driven complications including infections at the administration site
and a simple, non-invasive administration that could potentially be self-administered or
not require expertise of registered nurses (a plus in remote regions in countries where
accessibility is an issue).

There are currently only two licensed intranasal vaccines against influenza A and
B viruses, FluMist/Fluenz® (MedImmune, Gaithersburg, MD, USA) and Nasovac® (Serum
Institute of India Ltd. Hadapsar, India). Both vaccines consist of live-attenuated strains.
Intranasal vaccines against a few other pathogens including SARS-CoV-2, Respiratory
Syncytial Virus (RSV) and B. pertussis have also reached clinical trials (ClinicalTrials.gov).
However, the lack of safe mucosal adjuvants has been an obstacle to successful widespread
intranasal vaccinations in humans [133,134]. No mucosal adjuvants have been approved for
human use [135], and alum-based adjuvants, commonly used in more traditional vaccine
administrations, have shown the potential for several deleterious effects (local tissue
irritation, biased immune response) when administered intranasally [136,137]. However,
intranasal delivery in the absence of adjuvants may not elicit protective immune responses
and could alternatively induce tolerance [138].

Liposomes have shown potential as adjuvants, as have other formulations and addi-
tions (such as the inclusion of CpG oligodeoxynucleotide) [137,139–144]. As such, vaccine
designs that leverage liposomal antigen delivery (such as the LEPS platform introduced
above, for example) may very well support efforts in intranasal administration. In doing so,
however, liposomal formulations must account for natural forms of bodily defense against
intranasal entry of foreign particles, including mucociliary clearance and various barriers
to cellular entry [145]. Many liposomal formulation may be prone to these challenges due
to a negative surface charge that provides an electrostatic barrier to the interaction with
negatively charged mucus and the antigen presenting cells located in the nasal cavity [146];
liposomal vaccine carriers may also lack in mechanical stability when delivered to the
nasal passage.

Table 4 summarizes IN administration efforts in more detail for pneumococcal disease
application. Here, these studies, all conducted over the last 10 years, show positive IN
vaccine efforts for pneumococcal disease. Nearly all of those listed use a direct addition
of the antigen content to the nasal region, with only a couple of entries using some sort
of material-based formulation to assist in nasal localization and/or immune reactivity.
The majority of cases rely upon subunit protein antigens, particularly those that have
been identified as a promising marker of virulence. If included, adjuvant content spans
non-biologic (liposomal, polymeric, alum) and biologic (chitosan, various bacterial toxins,
macromolecules) materials. Though it should be noted that there have been previous
concerns of host toxicity associated with bacterial-derived toxoid protein formulations
when administered intranasally [133,134].

ClinicalTrials.gov
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Table 4. Intranasal Vaccine Studies for Pneumococcal Disease.

Vaccine Category Antigen Content (IN Method) Adjuvant Included Reference

Subunit Vaccine

S. pneumoniae serotype 4 capsule
(Intranasal Instillation) No adjuvant [147]

Recombinant PspA (Nasal Gel) No adjuvant [53]

Recombinant PspA (Intranasal Instillation) DOTAP/DC-chol liposome [148]

Recombinant PspA (Intranasal Instillation) Chitosan [149]

Recombinant PspA (Intranasal Instillation) Clostridium perfringens enterotoxin (C-CPE) [150]

Recombinant PspA/BLP (Intranasal Instillation) No adjuvant [49]

Recombinant PspA (nanoparticle absorbed)
(Intranasal Instillation) (PGA-co-PDL) nanoparticles [151]

Recombinant PLY (Intranasal Instillation) Aluminum hydroxide [152]

Recombinant LytA (Intranasal Instillation) CpG oligodeoxynucleotides [153]

Recombinant PspA/FlaB fusion (Intranasal Instillation) Recombinant FlaB [154]

Live and/or Attenuated

S. pneumoniae Y1 (Intranasal Instillation) Cholera Toxin [155]

S. pneumoniae serotype 19F/23A/35B
(Intranasal Instillation) No adjuvant [124]

S. pneumoniae serotype 19F (Intranasal Instillation) No adjuvant [125]

S. pneumoniae serotype 23F (Intranasal Instillation) No adjuvant [129]

S. pneumoniae serotype 6B (Intranasal instillation) No adjuvant [130]

S. pneumoniae serotype 6B (Intranasal instillation) No adjuvant [131]

Inactivated/Killed

Gamma irradiated nonencapsulated S. pneumoniae
TIGR4 (Intranasal Instillation) Cholera toxin [156]

Gamma irradiated whole cell S. pneumoniae
(Intranasal Instillation) No adjuvant [157]

6. Conclusions

Respiratory tract diseases have a long history of affecting human health, with ongoing
and recent events emphasizing this historical impact. The pathogens responsible for these
diseases span bacterial and viral agents, and though antibiotics have been and continue to
be used for the bacterial sources of disease, vaccines have emerged as dominant options for
all the main diseases highlighted in this mini-review, spanning influenza, pneumococcal
disease, pertussis, tuberculosis, and of course COVID-19. Given the localized disease
impact to the pulmonary system, intranasal (IN) vaccine delivery offers a logical option
to enhance the eventual immune response to the responsible infectious agents. Here, we
have outlined IN utility, prevalence, and approaches for respiratory tract diseases, with an
emphasis on vaccine administration for pneumococcal disease, which has a broad impact
globally, especially amongst the elderly, and can be particularly synergistic with influenza
co-infection. The advantages of IN vaccine delivery may offer new and better vaccine
regimens for pneumococcal disease, and several more recent efforts towards this end
highlight ongoing approaches that utilize a range of sub-unit and cellular antigenic cargo.
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